1
|
Sullivan RM, Lucas CG, Sponchiado M, Eitel EK, Spate LD, Lucy MC, Smith MF, Wells KD, Prather RS, Geisert RD. Conceptus estrogen and prostaglandins provide the maternal recognition of pregnancy signal to prevent luteolysis during early pregnancy in the pig†. Biol Reprod 2024; 111:890-905. [PMID: 38904948 DOI: 10.1093/biolre/ioae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Conceptus estrogens and prostaglandins have long been considered the primary signals for maternal recognition of pregnancy (MRP) in the pig. However, loss-of-function studies targeting conceptus aromatase genes (CYP19A1 and CYP19A2) and prostaglandin-endoperoxide synthase 2 (PTGS2) indicated that conceptuses can not only signal MRP without estrogens or prostaglandins but can maintain early pregnancy. However, complete loss of estrogen production leads to abortion after day 25 of gestation. Although neither conceptus estrogens nor prostaglandins had a significant effect on early maintenance of corpora lutea (CL) function alone, the two conceptus factors have a biological relationship. To investigate the role that both conceptus estrogens and prostaglandins have on MRP and maintenance of pregnancy, a triple loss-of function model (TKO) was generated for conceptus CYP19A1, CYP19A2, and PTGS2. In addition, a conceptus CYP19A2-/- model (A2KO) was established to determine the role of placental estrogen during later pregnancy. Estrogen and prostaglandin synthesis were greatly reduced in TKO concept uses which resulted in a failure to inhibit luteolysis after day 15 of pregnancy despite the presence of conceptuses in the uterine lumen. However, A2KO placentae not only maintained functional CL but were able to maintain pregnancy to day 32 of gestation. Despite the loss of placental CYP19A2 expression, the allantois fluid content of estrogen was not affected as the placenta compensated by expressing CYP19A1 and CYP19A3, which are normally absent in controls. Results suggest conceptuses can signal MRP through production of conceptus PGE or stimulating PGE synthesis from the endometrium through conceptus estrogen. Failure of conceptuses to produce both factors results in failure of MRP and loss of pregnancy.
Collapse
Affiliation(s)
- Riley M Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Emily K Eitel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Zang X, Gu S, Wang W, Shi J, Gan J, Hu Q, Zhou C, Ding Y, He Y, Jiang L, Gu T, Xu Z, Huang S, Yang H, Meng F, Li Z, Cai G, Hong L, Wu Z. Dynamic intrauterine crosstalk promotes porcine embryo implantation during early pregnancy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1676-1696. [PMID: 38748354 DOI: 10.1007/s11427-023-2557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 08/09/2024]
Abstract
Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjuan He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Huaqiang Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| |
Collapse
|
3
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
4
|
Wang X, Zhang X, Wang Z, Xia Y, Shi Z, Hu K, Zhu X, Xu W, Zhu R, Cao Z, Zhang Y. CircHIRA sponges miR-196b-5p to promote porcine early embryonic development. Int J Biol Macromol 2024; 271:132451. [PMID: 38777006 DOI: 10.1016/j.ijbiomac.2024.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Circular RNA (circRNA) is abundantly expressed in preimplantation embryos and embryonic stem cells in mice and humans. However, its function and mechanism in early development of mammalian embryos remain unclear. Here, we showed that circHIRA mediated miR-196b-5p to regulate porcine early embryonic development. We verified the circular feature of circHIRA by sanger sequencing, and proved the authenticity of circHIRA by enzyme digestion test. HIRA and circHIRA were expressed in porcine early embryos, and its expression levels significantly increased from 8-cell stage onwards and reached the maximum at the blastocyst stage. Functional studies revealed that circHIRA knockdown not only significantly reduced the developmental efficiency of embryos from 8-cell stage to blastocyst stage, but also impaired the blastocyst quality. Mechanistically, integrated analysis of miRNA prediction and gene expression showed that circHIRA knockdown significantly increased the expression of miR-196b-5p in porcine early embryos. Furthermore, miR-196b-5p inhibitor injection could rescue the early development of circHIRA knockdown embryos. Taken together, the findings reveal that circHIRA regulates porcine early embryonic development via inhibiting the expression of miR-196b-5p.
Collapse
Affiliation(s)
- Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhichao Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi Xia
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenhuan Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Dufour A, Kurylo C, Stöckl JB, Laloë D, Bailly Y, Manceau P, Martins F, Turhan AG, Ferchaud S, Pain B, Fröhlich T, Foissac S, Artus J, Acloque H. Cell specification and functional interactions in the pig blastocyst inferred from single-cell transcriptomics and uterine fluids proteomics. Genomics 2024; 116:110780. [PMID: 38211822 DOI: 10.1016/j.ygeno.2023.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The embryonic development of the pig comprises a long in utero pre- and peri-implantation development, which dramatically differs from mice and humans. During this peri-implantation period, a complex series of paracrine signals establishes an intimate dialogue between the embryo and the uterus. To better understand the biology of the pig blastocyst during this period, we generated a large dataset of single-cell RNAseq from early and hatched blastocysts, spheroid and ovoid conceptus and proteomic datasets from corresponding uterine fluids. Our results confirm the molecular specificity and functionality of the three main cell populations. We also discovered two previously unknown subpopulations of the trophectoderm, one characterised by the expression of LRP2, which could represent progenitor cells, and the other, expressing pro-apoptotic markers, which could correspond to the Rauber's layer. Our work provides new insights into the biology of these populations, their reciprocal functional interactions, and the molecular dialogue with the maternal uterine environment.
Collapse
Affiliation(s)
- Adrien Dufour
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Cyril Kurylo
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jan B Stöckl
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Denis Laloë
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Yoann Bailly
- INRAE, GenESI, La Gouvanière, 86480 Rouillé, France
| | | | - Frédéric Martins
- Plateforme Genome et Transcriptome (GeT-Santé), GenoToul, Toulouse University, CNRS, INRAE, INSA, Toulouse, France; I2MC - Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Ali G Turhan
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | | | - Bertrand Pain
- Université de Lyon, Inserm, INRAE, SBRI, 18 Av. du Doyen Jean Lépine, 69500 Bron, France
| | - Thomas Fröhlich
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Sylvain Foissac
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jérôme Artus
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Hervé Acloque
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France.
| |
Collapse
|
7
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
8
|
Geisert RD, Johns DN, Pfeiffer CA, Sullivan RM, Lucas CG, Simintiras CA, Redel BK, Wells KD, Spencer TE, Prather RS. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Mol Reprod Dev 2023; 90:459-468. [PMID: 35736243 DOI: 10.1002/mrd.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Riley M Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Kaczynski P, Goryszewska-Szczurek E, Baryla M, Waclawik A. Novel insights into conceptus-maternal signaling during pregnancy establishment in pigs. Mol Reprod Dev 2023; 90:658-672. [PMID: 35385215 DOI: 10.1002/mrd.23567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022]
Abstract
Pregnancy establishment in mammals, including pigs, requires coordinated communication between developing conceptuses (embryos with associated membranes) and the maternal organism. Porcine conceptuses signalize their presence by secreting multiple factors, of which estradiol-17β (E2) is considered the major embryonic signal initiating the maternal recognition of pregnancy. During this time, a limited supply of prostaglandin (PGF2α) to the corpora lutea and an increased secretion of luteoprotective factors (e.g., E2 and prostaglandin E2 [PGE2]) lead to the corpus luteum's maintained function of secreting progesterone, which in turn primes the uterus for implantation. Further, embryo implantation is related to establishing an appropriate proinflammatory environment coordinated by the secretion of proinflammatory mediators including cytokines, growth factors, and lipid mediators of both endometrial and conceptus origin. The novel, dual role of PGF2α has been underlined. Recent studies involving high-throughput technologies and sophisticated experimental models identified a number of novel factors and revealed complex relationships between these factors and those already established. Hence, it seems that early pregnancy should be regarded as a sequence of processes orchestrated by pleiotropic factors that are involved in redundancy and compensatory mechanisms that preserve the essential functions critical for implantation and placenta formation. Therefore, establishing the hierarchy between all molecules present at the embryo-maternal interface is now even more challenging.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | | | - Monika Baryla
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
10
|
Miles JR, Walsh SC, Rempel LA, Pannier AK. Mechanisms regulating the initiation of porcine conceptus elongation. Mol Reprod Dev 2023; 90:646-657. [PMID: 35719060 DOI: 10.1002/mrd.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Sophie C Walsh
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| | - Lea A Rempel
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Karaffová V, Teleky J, Pintarič M, Langerholc T, Mudroňová D, Hudec E, Ševčíková Z. Application of Lactobacillus reuteri B1/1 ( Limosilactobacillus reuteri) Improves Immunological Profile of the Non-Carcinogenic Porcine-Derived Enterocytes. Life (Basel) 2023; 13:life13051090. [PMID: 37240735 DOI: 10.3390/life13051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In our previous studies, Lactobacillus reuteri B1/1, which was renamed Limosilactobacillus reuteri (L. reuteri), was able to modulate the production of pro-inflammatory cytokines and other components of the innate immune response in vitro and in vivo. In this study, we evaluated the effect of Lactobacillus reuteri B1/1 in two concentrations (1 × 107 and 1 × 109 CFU) on the metabolic activity, adherence ability and relative gene expression of pro-inflammatory interleukins (IL-1β, IL-6, IL-8, IL-18), lumican and olfactomedin 4 produced by non-carcinogenic porcine-derived enterocytes (CLAB). CLAB cells were cultured in a 12-well cell culture plate at a concentration of 4 × 105 cells/well in DMEM medium in a controlled humidified atmosphere for 48 h. A 1 mL volume of each probiotic bacterial suspension was added to the CLAB cells. Plates were incubated for 2 h and 4 h. Our results revealed that L. reuteri B1/1 was able to adhere to CLAB cells in sufficient numbers in both concentrations. In particular, the concentration of 109L. reuteri B1/1 allowed to modulate the gene expression of pro-inflammatory cytokines, as well as to increase the metabolic activity of the cells. In addition, administration of L. reuteri B1/1 in both concentrations significantly stimulated gene expression for both proteins in the CLAB cell line after 4 h of incubation.
Collapse
Affiliation(s)
- Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Jana Teleky
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Erik Hudec
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
12
|
Gonzalez-Plaza A, Cambra JM, Garcia-Canovas M, Parrilla I, Gil MA, Martinez EA, Rodriguez-Martinez H, Martinez CA, Cuello C. Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression. Theriogenology 2023; 206:1-10. [PMID: 37148716 DOI: 10.1016/j.theriogenology.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
The most commonly used technique to vitrify pig embryos is the super open pulled straw (SOPS), where a maximum of 6 embryos can be vitrified simultaneously per device without compromising the minimum volume necessary for optimal preservation. Since optimal embryo transfer (ET) demands a transfer of 20-40 embryos per recipient, the customary use of SOPS complicates embryo warming and ET in field conditions. Such complications could be avoided when using the Cryotop® (OC) system, which has been proven to be an effective option for vitrifying at least 20 porcine embryos simultaneously. This study aimed to investigate the changes in the transcriptome of blastocysts caused by vitrification using both systems. In vivo-derived blastocysts were OC- (n = 60; 20 embryos/device) and SOPS- (n = 60; 4-6 embryos/device) vitrified and cultured for 24 h after warming. Nonvitrified blastocysts (n = 60) cultured for 24 h postcollection acted as controls. At the end of culture, 48 viable embryos from each group (6 pools of 8 embryos) were selected for microarray (GeneChip® Porcine Genome Array, P/N 900624, Affymetrix) analysis of differentially expressed genes (DEGs). The survival rate of embryos vitrified with the OC and SOPS systems (>97%) was similar to that of the control embryos (100%). Microarray analysis of each vitrification system compared to the control group showed 245 DEGs (89 downregulated and 156 upregulated) for the OC system and 210 (44 downregulated and 166 upregulated) for the SOPS system. Two pathways were enriched for the DEGs specifically altered in each vitrification system compared to the control (glycolysis/gluconeogenesis and carbon metabolism pathways for the OC system and amino sugar and nucleotide sugar metabolism and lysosome pathways in the SOPS group). The OC group showed 31 downregulated and 24 upregulated genes and two enriched pathways (mineral absorption and amino sugar and nucleotide sugar metabolism pathways) when compared to the SOPS group. In summary, vitrification with the OC system altered fewer genes related to apoptosis and activated genes related to cell proliferation. We conclude that vitrification with either the OC or SOPS system has a moderate to low effect on the transcriptome of in vivo-derived porcine blastocysts. Further investigation is needed to elucidate how the differences in the transcriptome of embryos vitrified with these systems affect their subsequent developmental ability after ET.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Manuela Garcia-Canovas
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A Gil
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina A Martinez
- Department of Animal Reproduction. National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| | - Cristina Cuello
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
13
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
14
|
Tian Q, He JP, Zhu C, Zhu QY, Li YG, Liu JL. Revisiting the Transcriptome Landscape of Pig Embryo Implantation Site at Single-Cell Resolution. Front Cell Dev Biol 2022; 10:796358. [PMID: 35602598 PMCID: PMC9114439 DOI: 10.3389/fcell.2022.796358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Litter size is one of the most economically important traits in commercial pig farming. It has been estimated that approximately 30% of porcine embryos are lost during the peri-implantation period. Despite rapid advances over recent years, the molecular mechanism underlying embryo implantation in pigs remains poorly understood. In this study, the conceptus together with a small amount of its surrounding endometrial tissues at the implantation site was collected and subjected to single-cell RNA-seq using the 10x platform. Because embryo and maternal endometrium were genetically different, we successfully dissected embryonic cells from maternal endometrial cells in the data according to single nucleotide polymorphism information captured by single-cell RNA-seq. Undoubtedly, the interaction between trophoblast cells and uterine epithelial cells represents the key mechanism of embryo implantation. Using the CellChat tool, we revealed cell-cell communications between these 2 cell types in terms of secreted signaling, ECM-receptor interaction and cell-cell contact. Additionally, by analyzing the non-pregnant endometrium as control, we were able to identify global gene expression changes associated with embryo implantation in each cell type. Our data provide a valuable resource for deciphering the molecular mechanism of embryo implantation in pigs.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Gu Li
- *Correspondence: Yu-Gu Li, ; Ji-Long Liu,
| | | |
Collapse
|
15
|
Tanga BM, Fang X, Bang S, Seong G, De Zoysa M, Saadeldin IM, Lee S, Cho J. MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4. Theriogenology 2022; 183:90-97. [DOI: 10.1016/j.theriogenology.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 12/11/2022]
|
16
|
He Y, Zang X, Kuang J, Yang H, Gu T, Yang J, Li Z, Zheng E, Xu Z, Cai G, Wu Z, Hong L. iTRAQ-based quantitative proteomic analysis of porcine uterine fluid during pre-implantation period of pregnancy. J Proteomics 2022; 261:104570. [DOI: 10.1016/j.jprot.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
17
|
Almeida FRCL, Dias ALNA. Pregnancy in pigs: the journey of an early life. Domest Anim Endocrinol 2022; 78:106656. [PMID: 34474228 DOI: 10.1016/j.domaniend.2021.106656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Embryo mortality is responsible for greater losses in litter size in pigs. It is well known that pregnancy establishment is a complex process, and important changes occur continuously in both the corpora lutea and the endometrium, which varies depending on the pre-natal development phase: embryonic, pre-implantation or fetal stages. The placenta is a key organ responsible for the exchange of nutrients, metabolites and respiratory gases between mother and fetuses. The porcine placenta is diffuse, epitheliochorial, and placentation begins with implantation, which involves specialized cell adhesion and cell migration, leading to the attachment of the trophectoderm to the uterine endometrial lumen epithelium. The efficiency with which the placenta provides adequate amounts of nutrients and oxygen to the fetus is crucial for proper fetal growth and development. In the last decades, emphasis on selection for sow prolificacy has resulted in a substantial increase in the number of piglets born per litter, which had a direct effect on piglet quality, compromising birth weight and litter uniformity. Placental insufficiency will lead to fetal intrauterine growth restriction. This review addresses the main events of early embryo development, including preimplantation and implantation periods. In addition, placentation and its role on fetal development are covered, as well as intrauterine growth restriction, as it is a natural condition in the pig, with long lasting detrimental effects to the production chain.
Collapse
Affiliation(s)
- F R C L Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, CEP 31207-901, Belo Horizonte, MG, Brazil.
| | - A L N Alvarenga Dias
- Faculty of Veterinary Medicine, Federal University of Uberlandia, Rodovia BR-050, km 78 - CEP 38410-337, Uberlandia, MG, Brazil
| |
Collapse
|
18
|
Chen PR, Lucas CG, Cecil RF, Pfeiffer CA, Fudge MA, Samuel MS, Zigo M, Seo H, Spate LD, Whitworth KM, Sutovsky P, Johnson GA, Wells KD, Geisert RD, Prather RS. Disrupting porcine glutaminase does not block preimplantation development and elongation nor decrease mTORC1 activation in conceptuses†. Biol Reprod 2021; 105:1104-1113. [PMID: 34453429 DOI: 10.1093/biolre/ioab165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Elongation of pig conceptuses is a dynamic process, requiring adequate nutrient provisions. Glutamine is used as an energy substrate and is involved in the activation of mechanistic target of rapamycin complex 1 (mTORC1) during porcine preimplantation development. However, the roles of glutamine have not been extensively studied past the blastocyst stage. Therefore, the objective of the current study was to determine if glutaminase (GLS), which is the rate-limiting enzyme in glutamine metabolism, was necessary for conceptus elongation to proceed and was involved in mTORC1 activation. The CRISPR/Cas9 system was used to induce loss-of-function mutations in the GLS gene of porcine fetal fibroblasts. Wild type (GLS+/+) and knockout (GLS-/-) fibroblasts were used as donor cells for somatic cell nuclear transfer, and GLS+/+ and GLS-/- blastocyst-stage embryos were transferred into surrogates. On day 14 of gestation, GLS+/+ conceptuses primarily demonstrated filamentous morphologies, and GLS-/- conceptuses exhibited spherical, ovoid, tubular, and filamentous morphologies. Thus, GLS-/- embryos were able to elongate despite the absence of GLS protein and minimal enzyme activity. Furthermore, spherical GLS-/- conceptuses had increased abundance of transcripts related to glutamine and glutamate metabolism and transport compared to filamentous conceptuses of either genotype. Differences in phosphorylation of mTORC1 components and targets were not detected regarding conceptus genotype or morphology, but abundance of two transcriptional targets of mTORC1, cyclin D1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was increased in spherical conceptuses. Therefore, porcine GLS is not essential for conceptus elongation and is not required for mTORC1 activation at this developmental timepoint.
Collapse
Affiliation(s)
- Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
20
|
Johns DN, Lucas CG, Pfeiffer CA, Chen PR, Meyer AE, Perry SD, Spate LD, Cecil RF, Fudge MA, Samuel MS, Spinka CM, Liu H, Lucy MC, Wells KD, Prather RS, Spencer TE, Geisert RD. Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Biol Reprod 2021; 105:1577-1590. [PMID: 34608481 DOI: 10.1093/biolre/ioab186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1) and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.
Collapse
Affiliation(s)
- Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
21
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
22
|
Pfeiffer CA, Meyer AE, Brooks KE, Chen PR, Milano-Foster J, Spate LD, Benne JA, Cecil RF, Samuel MS, Ciernia LA, Spinka CM, Smith MF, Wells KD, Spencer TE, Prather RS, Geisert RD. Ablation of conceptus PTGS2 expression does not alter early conceptus development and establishment of pregnancy in the pig†. Biol Reprod 2021; 102:475-488. [PMID: 31616930 DOI: 10.1093/biolre/ioz192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pig conceptuses secrete estrogens (E2), interleukin 1 beta 2 (IL1B2), and prostaglandins (PGs) during the period of rapid trophoblast elongation and establishment of pregnancy. Previous studies established that IL1B2 is essential for rapid conceptus elongation, whereas E2 is not essential for conceptus elongation or early maintenance of the corpora lutea. The objective of the present study was to determine if conceptus expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and release of PG are important for early development and establishment of pregnancy. To understand the role of PTGS2 in conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing PTGS2 using CRISPR/Cas9 technology. Wild-type (PTGS2+/+) and null (PTGS2-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. Immunolocalization of PTGS2 and PG production was absent in cultured PTGS2-/- blastocysts on day 7. PTGS2+/+ and PTGS2-/- blastocysts were transferred into surrogate gilts, and the reproductive tracts were collected on either days 14, 17, or 35 of pregnancy. After flushing the uterus on days 14 and 17, filamentous conceptuses were cultured for 3 h to determine PG production. Conceptus release of total PG, prostaglandin F2⍺ (PGF2α), and PGE in culture media was lower with PTGS2-/- conceptuses compared to PTGS2+/+ conceptuses. However, the total PG, PGF2α, and PGE content in the uterine flushings was not different. PTGS2-/- conceptus surrogates allowed to continue pregnancy were maintained beyond 30 days of gestation. These results indicate that pig conceptus PTGS2 is not essential for early development and establishment of pregnancy in the pig.
Collapse
Affiliation(s)
- Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kelsey E Brooks
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lauren A Ciernia
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Christine M Spinka
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
23
|
Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021; 48:347-360. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing technology has dramatically influenced swine research by enabling the production of high-quality disease-resistant pig breeds, thus improving yields. In addition, CRISPR/Cas9 has been used extensively in pigs as one of the tools in biomedical research. In this review, we present the advancements of the CRISPR/Cas9 system in swine research, such as animal breeding, vaccine development, xenotransplantation, and disease modeling. We also highlight the current challenges and some potential applications of the CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Erwei Zuo
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China.
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
25
|
Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, Koren L, Romero R, Wagner GP. Evolution of Embryo Implantation Was Enabled by the Origin of Decidual Stromal Cells in Eutherian Mammals. Mol Biol Evol 2021; 38:1060-1074. [PMID: 33185661 PMCID: PMC7947829 DOI: 10.1093/molbev/msaa274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.
Collapse
Affiliation(s)
- Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
26
|
Liu T, Li J, Yu L, Sun HX, Li J, Dong G, Hu Y, Li Y, Shen Y, Wu J, Gu Y. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discov 2021; 7:8. [PMID: 33531465 PMCID: PMC7854681 DOI: 10.1038/s41421-020-00238-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Interspecies blastocyst complementation enables organ-specific enrichment of xenogeneic pluripotent stem cell (PSC) derivatives, which raises an intriguing possibility to generate functional human tissues/organs in an animal host. However, differences in embryo development between human and host species may constitute the barrier for efficient chimera formation. Here, to understand these differences we constructed a complete single-cell landscape of early embryonic development of pig, which is considered one of the best host species for human organ generation, and systematically compared its epiblast development with that of human and monkey. Our results identified a developmental coordinate of pluripotency spectrum among pigs, humans and monkeys, and revealed species-specific differences in: (1) pluripotency progression; (2) metabolic transition; (3) epigenetic and transcriptional regulations of pluripotency; (4) cell surface proteins; and (5) trophectoderm development. These differences may prevent proper recognition and communication between donor human cells and host pig embryos, resulting in low integration and survival of human cells. These results offer new insights into evolutionary conserved and divergent processes during mammalian development and may be helpful for developing effective strategies to overcome low human-pig chimerism, thereby enabling the generation of functional human organs in pigs in the future.
Collapse
Affiliation(s)
- Tianbin Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China.,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Jie Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China.,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Jing Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China.,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Guoyi Dong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China.,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Yingying Hu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Yong Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ying Gu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China. .,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China. .,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Wang F, Zhao S, Deng D, Wang W, Xu X, Liu X, Zhao S, Yu M. Integrating LCM-Based Spatio-Temporal Transcriptomics Uncovers Conceptus and Endometrial Luminal Epithelium Communication that Coordinates the Conceptus Attachment in Pigs. Int J Mol Sci 2021; 22:ijms22031248. [PMID: 33513863 PMCID: PMC7866100 DOI: 10.3390/ijms22031248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Attachment of conceptus to the endometrial luminal epithelium (LE) is a critical event for early placentation in Eutheria. Since the attachment occurs at a particular site within the uterus, a coordinated communication between three spatially distinct compartments (conceptus and endometrial LE from two anatomical regions of the uterus to which conceptus attaches and does not attach) is essential but remains to be fully characterized. Using the laser capture microdissection (LCM) technique, we firstly developed an approach that can allow us to pair the pig conceptus sample with its nearby endometrial epithelium sample without losing the native spatial information. Then, a comprehensive spatio-temporal transcriptomic profile without losing the original conceptus-endometrium coordinates was constructed. The analysis shows that an apparent difference in transcriptional responses to the conceptus exists between the endometrial LE from the two anatomically distinct regions in the uterus. In addition, we identified the communication pathways that link the conceptus and endometrial LE and found that these pathways have important roles in conceptus attachment. Furthermore, a number of genes whose expression is spatially restricted in the two different anatomical regions within the uterus were characterized for the first time and two of them (SULT2A1 and MEP1B) may cooperatively contribute to establish conceptus attachment in pigs. The results from our study have implications in understanding of conceptus/embryo attachment in pigs and other large polytocous species.
Collapse
|
28
|
Johnson GA, Bazer FW, Seo H. The Early Stages of Implantation and Placentation in the Pig. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:61-89. [PMID: 34694478 DOI: 10.1007/978-3-030-77360-1_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Pregnancy in pigs includes the events of conceptus (embryo/fetus and placental membranes) elongation, implantation, and placentation. Placentation in pigs is defined microscopically as epitheliochorial and macroscopically as diffuse. In general, placentation can be defined as the juxtapositioning of the endometrial/uterine microvasculature to the chorioallantoic/placental microvasculature to facilitate the transport of nutrients from the mother to the fetus to support fetal development and growth. Establishment of epitheliochorial placentation in the pig is achieved by: (1) the secretions of uterine glands prior to conceptus attachment to the uterus; (2) the development of extensive folding of the uterine-placental interface to maximize the surface area for movement of nutrients across this surface; (3) increased angiogenesis of the vasculature that delivers both uterine and placental blood and, with it, nutrients to this interface; (4) the minimization of connective tissue that lies between these blood vessels and the uterine and placental epithelia; (5) interdigitation of microvilli between the uterine and placental epithelia; and (6) the secretions of the uterine glands, called histotroph, that accumulate in areolae for transport though the placenta to the fetus. Placentation in pigs is not achieved by invasive growth of the placenta into the uterus. In this chapter, we summarize current knowledge about the major events that occur during the early stages of implantation and placentation in the pig. We will focus on the microanatomy of porcine placentation that builds off the excellent histological work of Amoroso and others and provide a brief review of some of the key physiological, cellular, and molecular events that accompany the development of "implantation" in pigs.
Collapse
Affiliation(s)
- Gregory A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
29
|
Comparative analysis of immune related genes between domestic pig and germ-free minipig. Lab Anim Res 2020; 36:44. [PMID: 33292811 PMCID: PMC7709342 DOI: 10.1186/s42826-020-00077-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
Recently, minipig has been considered as an animal model that is appropriate for human disease model to study toxicology, pharmacology, and xenotransplantation. Nevertheless, minipigs are bred in various environment according to their use. Here, we suggest that minipigs used for research should be bred in well-controlled facility, comparing immune status of pigs raised in different breeding environment. DNA microarray was performed with ear skin and placenta of Landrace domestic pigs (DPs) and Minnesota germ-free minipigs (GPs). Their immune transcriptome was analyzed by gene ontology (GO) annotation database, based on criteria of |log2 fold change| ≥1 with P ≤ 0.05. As a result, we found that immune related genes in the ear skin of DPs were highly activated, compared to GPs. On the other hand, no significant s were found in the placenta. Quantitative real-time PCR (qRT-PCR) was performed in five candidate immune genes. Their fold changes were consistent with the results from DNA microarray (P ≤ 0.05). In conclusion, we experimentally proved that porcine immune system was affected by different breeding environment, suggesting the importance of controlling microbes in animal room for the qualified research.
Collapse
|
30
|
Meyer AE, Pfeiffer CA, Brooks KE, Spate LD, Benne JA, Cecil R, Samuel MS, Murphy CN, Behura S, McLean MK, Ciernia LA, Smith MF, Whitworth KM, Wells KD, Spencer TE, Prather RS, Geisert RD. New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pig†. Biol Reprod 2020; 101:148-161. [PMID: 31066888 DOI: 10.1093/biolre/ioz058] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The proposed signal for maternal recognition of pregnancy in pigs is estrogen (E2), produced by the elongating conceptuses between days 11 to 12 of pregnancy with a more sustained increase during conceptus attachment and placental development on days 15 to 30. To understand the role of E2 in porcine conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing aromatase (CYP19A1) using CRISPR/Cas9 technology. Wild-type (CYP19A1+/+) and (CYP19A1-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer, which were transferred into recipient gilts. Elongated and attaching conceptuses were recovered from gilts containing CYP19A1+/+ or CYP19A1-/- embryos on day 14 and 17 of pregnancy. Total E2 in the uterine flushings of gilts with CYP19A1-/- embryos was lower than recipients containing CYP19A1+/+ embryos with no difference in testosterone, PGF2α, or PGE2 on either day 14 or 17. Despite the loss of conceptus E2 production, CYP19A1-/- conceptuses were capable of maintaining the corpora lutea. However, gilts gestating CYP19A1-/- embryos aborted between days 27 and 31 of gestation. Attempts to rescue the pregnancy of CYP19A1-/- gestating gilts with exogenous E2 failed to maintain pregnancy. However, CYP19A1-/- embryos could be rescued when co-transferred with embryos derived by in vitro fertilization. Endometrial transcriptome analysis revealed that ablation of conceptus E2 resulted in disruption of a number biological pathways. Results demonstrate that intrinsic E2 conceptus production is not essential for pre-implantation development, conceptus elongation, and early CL maintenance, but is essential for maintenance of pregnancy beyond 30 days .
Collapse
Affiliation(s)
- Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kelsey E Brooks
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Raissa Cecil
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Clifton N Murphy
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Megan K McLean
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lauren A Ciernia
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kristin M Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
31
|
Ealy AD. Pregnancy Losses in Livestock: An Overview of the Physiology and Endocrinology Symposium for the 2020 ASAS-CSAS-WSASAS Virtual Meeting. J Anim Sci 2020; 98:5906046. [PMID: 32931570 DOI: 10.1093/jas/skaa277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Affiliation(s)
- Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
32
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
33
|
Llobat L. Embryo gene expression in pig pregnancy. Reprod Domest Anim 2020; 55:523-529. [PMID: 31986225 DOI: 10.1111/rda.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Pregnancy is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of the females and varies depending on the embryonic, pre-implantation or foetal stages. In the embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In contrast, the implantation consists of three phases: elongation of the conceptus, adhesion and union of the embryo to the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that facilitate adhesion and cytokines. All these changes are ultimately regulated by different lipid and hormonal substances, specifically by progesterone, oestradiol and prostaglandins, which regulate the expression of many proteins necessary for the development of the embryo, endometrial remodelling and embryo-maternal communication. This paper is a review of primary gene regulatory mechanisms in pigs during different stages of implantation.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
34
|
Balogh EE, Gábor G, Bodó S, Rózsa L, Rátky J, Zsolnai A, Anton I. Effect of single-nucleotide polymorphisms on specific reproduction parameters in Hungarian Large White sows. Acta Vet Hung 2019; 67:256-273. [PMID: 31238725 DOI: 10.1556/004.2019.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to reveal the effect of single-nucleotide polymorphisms (SNPs) on the total number of piglets born (TNB), the litter weight born alive (LWA), the number of piglets born dead (NBD), the average litter weight on the 21st day (M21D) and the interval between litters (IBL). Genotypes were determined on a high-density Illumina Porcine SNP 60K BeadChip. Data screening and data identification were performed by a multi-locus mixed-model. Statistical analyses were carried out to find associations between individual genotypes of 290 Hungarian Large White sows and the investigated reproduction parameters. According to the analysis outcome, three SNPs were identified to be associated with TNB. These loci are located on chromosomes 1, 6 and 13 (-log10P = 6.0, 7.86 and 6.22, the frequencies of their minor alleles, MAF, were 0.298, 0.299 and 0.364, respectively). Two loci showed considerable association (-log10P = 10.35 and 10.46) with LWA on chromosomes 5 and X, the MAF were 0.425 and 0.446, respectively. Seven loci were found to be associated with NBD. These loci are located on chromosomes 5, 6, 13, 14, 15, 16 and 18 (-log10P = 10.95, 5.43, 8.29, 6.72, 6.81, 5.90, and 5.15, respectively). One locus showed association (-log10P = 5.62) with M21D on chromosome 1 (the MAF was 0.461). Another locus was found to be associated with IBL on chromosome 8 (-log10P = 7.56; the MAF was 0.438). The above-mentioned loci provide a straightforward possibility to assist selection by molecular tools and, consequently, to improve the competitiveness of the Hungarian Large White (HLW) breed.
Collapse
Affiliation(s)
- Eszter Erika Balogh
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - György Gábor
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - Szilárd Bodó
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - László Rózsa
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - József Rátky
- 2Department of Obstetrics and Reproduction, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsolnai
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - István Anton
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| |
Collapse
|
35
|
Han J, Yoo I, Lee S, Jung W, Kim HJ, Hyun SH, Lee E, Ka H. Atypical chemokine receptors 1, 2, 3 and 4: Expression and regulation in the endometrium during the estrous cycle and pregnancy and with somatic cell nucleus transfer-cloned embryos in pigs. Theriogenology 2019; 129:121-129. [PMID: 30844653 DOI: 10.1016/j.theriogenology.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Atypical chemokine receptor (ACKR) 1, ACKR2, ACKR3, and ACKR4, chemokine decoy receptors that lack G-protein-mediated signaling pathways, internalize and degrade chemokines to control their availability and function. Chemokines play important roles in the endometrium during the estrous cycle and pregnancy, but the expression and regulation of ACKRs have not been determined in pigs. Therefore, we examined the expression of ACKRs in the endometrium throughout the estrous cycle and pregnancy and in conceptus tissues in pigs. ACKR1, ACKR2, ACKR3, and ACKR4 mRNA was expressed in the endometrium, with higher levels of ACKR3 on day 12 of the estrous cycle than in pregnancy and higher levels of ACKR4 on day 15 of pregnancy than in the estrous cycle. ACKR1, ACKR2, and ACKR3, but not ACKR4, mRNA was detected in conceptus and chorioallantoic tissues during pregnancy. ACKR2 and ACKR3 mRNA and ACKR4 protein were mainly localized to luminal epithelial cells and weakly to glandular epithelial cells in the endometrium. Increasing doses of progesterone increased the expression of ACKR2 and ACKR4 and decreased the expression of ACKR3 in endometrial tissues. On day 12 of pregnancy, the expression of ACKR4 mRNA was lower in the endometria of gilts with somatic cell nucleus transfer-derived conceptuses than in the endometria of gilts carrying conceptuses derived from natural mating. These results indicate that the expression of ACKRs is dynamically regulated at the maternal-conceptus interface, suggesting that ACKR proteins might play critical roles in regulating endometrial chemokines to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hyun Jong Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Gangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
36
|
Vélez C, Clauzure M, Williamson D, Koncurat MA, Santa-Coloma TA, Barbeito C. IL-1β, IL-2 and IL-4 concentration during porcine gestation. Theriogenology 2019; 128:133-139. [PMID: 30743102 DOI: 10.1016/j.theriogenology.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/13/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
In pigs, given the type of epitheliochorial and non-invasive placenta, the trophoblast is in intimate contact with maternal tissues. The dialogue established between the conceptus and the endometrium involves, among others, the immune system, which minimizes the chances of rejection of the embryo and promotes the establishment of pregnancy. The aim of this work was to determine the concentration of IL-1β, IL-2 and IL-4 in sera and in extracts of maternal and fetal placenta from sows of different gestational periods. Reproductive tracts from 23 crossbreed sows, between 30 and 114 days of gestation (dg), and from 8 non-pregnant sows were used. The concentration of the cytokines was determined by ELISA. IL-1β, IL-2 and IL-4 demonstrated a similar pattern of concentration at the placental interface and serum; they were found elevated in tissues at 30 and 60-70 dg, and significantly decreased at term, period in which the cytokines were significantly increased in serum. These results show that IL-1β, IL-2, and IL-4 are differentially modulated during pregnancy and at term, and suggest an important role of these cytokines in defining the proinflammatory stage of these periods.
Collapse
Affiliation(s)
- Carolina Vélez
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina; National Scientific and Technical Research Council (CONICET), Argentina.
| | - Mariángeles Clauzure
- National Scientific and Technical Research Council (CONICET), Argentina; Institute for Biomedical Research (BIOMED, CONICET-UCA), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Delia Williamson
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
| | - Mirta A Koncurat
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
| | - Tomás A Santa-Coloma
- National Scientific and Technical Research Council (CONICET), Argentina; Institute for Biomedical Research (BIOMED, CONICET-UCA), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Claudio Barbeito
- National Scientific and Technical Research Council (CONICET), Argentina; Laboratory of Descriptive, Comparative and Experimental Histology and Embryology, School of Veterinary Sciences, National University of La Plata (UNLP), Argentina
| |
Collapse
|
37
|
Smith MF, Geisert RD, Parrish JJ. Reproduction in domestic ruminants during the past 50 yr: discovery to application. J Anim Sci 2018; 96:2952-2970. [PMID: 29684167 PMCID: PMC6095338 DOI: 10.1093/jas/sky139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
The study of reproductive physiology in domestic ruminants has progressed from the whole animal to the molecular level in an amazingly short period of time. The volume of information on this subject is enormous; therefore, we have focused on domestic ruminants, with an emphasis on cattle. To date, artificial insemination (AI) is perhaps the most powerful technique that reproductive physiologists and geneticists have provided the livestock industry for genetic improvement. Early efforts to establish AI as a tool were initiated in Russia around 1899 and since that time major advances in methods of semen collection, evaluation of male fertility, cryopreservation of sperm, sex-sorted semen, and estrous cycle control have occurred. The preceding advances not only led to the widespread use of AI, but also contributed to our fundamental understanding of ovulation control, timing of insemination, gamete biology, and cryopreservation. In regards to anestrus, our understanding of the concept of neuroendocrine control of the pituitary gland and the role of steroid feedback led to the Gonadostat Theory, which proposes that onset of puberty is due to a decrease in the negative feedback of gonadal steroids over time. Subsequent studies in prepuberal and postpartum sheep and cattle established that a short luteal phase frequently precedes the first normal length cycle that is accompanied by estrous expression. This observation led to the common practice of treating prepuberal heifers and anestrous postpartum cows with a short-term progestin treatment (e.g., Controlled Internal Drug Release) to induce normal estrous cycles. In domestic ruminants, fertilization rate is high (85% to 95%); however, significant embryonic mortality before or around the time of maternal recognition of pregnancy (MRP) reduces the pregnancy rate to a single breeding. Significant effort has been directed at determining the time of MRP, the signal for MRP, as well as elucidating the physiological, cellular, and molecular dialogue between the conceptus and uterine environment. Advancements have now led us to the ability to edit the genome to alleviate disease and possibly improve production traits. In summary, major advancements in our understanding of reproductive biology have stemmed from efforts to establish the AI and embryo transfer technique and reduce the negative impact of anestrus and embryonic mortality in domestic ruminants.
Collapse
Affiliation(s)
- Michael F Smith
- Division of Animal Science, University of Missouri, Columbia, MO
| | - Rodney D Geisert
- Division of Animal Science, University of Missouri, Columbia, MO
| | - John J Parrish
- Department of Animal Science, University of Wisconsin, Madison, WI
| |
Collapse
|
38
|
|