1
|
Cui X, Tang M, Zhu T. A water probe for direct pH measurement of individual particles via micro-Raman spectroscopy. J Environ Sci (China) 2025; 149:200-208. [PMID: 39181634 DOI: 10.1016/j.jes.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 08/27/2024]
Abstract
The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Vejerano EP, Ahn J, Scott GI. Aerosolized algal bloom toxins are not inert. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1113-1128. [PMID: 39169920 PMCID: PMC11331395 DOI: 10.1039/d4ea00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Harmful algal blooms (HABs) are projected to become increasingly prevalent, extending over longer periods and wider geographic regions due to the warming surface ocean water and other environmental factors, including but not limited to nutrient concentrations and runoff for marine and freshwater environments. Incidents of respiratory distress linked to the inhalation of marine aerosols containing HAB toxins have been documented, though the risk is typically associated with the original toxins. However, aerosolized toxins in micrometer and submicrometer particles are vulnerable to atmospheric processing. This processing can potentially degrade HAB toxins and produce byproducts with varying potencies compared to the parent toxins. The inhalation of aerosolized HAB toxins, especially in conjunction with co-morbid factors such as exposure to air pollutants from increased commercial activities in ports, may represent a significant exposure pathway for a considerable portion of the global population. Understanding the chemistry behind the transformation of these toxins can enhance public protection by improving the existing HAB alert systems.
Collapse
Affiliation(s)
- Eric P Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences USA +1-803-777-6360
| | - Jeonghyeon Ahn
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| | - Geoffrey I Scott
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| |
Collapse
|
4
|
Bose S, Mofidfar M, Zare RN. Direct Conversion of N 2 and Air to Nitric Acid in Gas-Water Microbubbles. J Am Chem Soc 2024; 146:27964-27971. [PMID: 39315452 DOI: 10.1021/jacs.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We report a simple, direct, and green conversion of air/N2 to nitric acid by bubbling the gas through an aqueous solution containing 50 μM Fe2+ ions. Air stone, along with ultrasonication, was employed to generate gas microbubbles. H2O2 produced at the water-gas interface undergoes Fenton's reaction with Fe2+ ions to produce OH• that efficiently activates N2, yielding nitric acid as the final product. Nitrate (NO3-) formation occurs without the use of any external electric potential or radiation. The concentration of NO3- increased linearly with time over a period of 132 h. The average NO3- production rate is found to be 12.9 ± 0.05 μM h-1. We envision that this nitrogen fixation strategy that produces nitric acid in an eco-friendly way might open the possibility for the energy-efficient and green production of nitric acid.
Collapse
Affiliation(s)
- Sandeep Bose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Tang J, Zhang B, Zhang M, Yang H. Interfacial Effects of Catalysis in Pickering Emulsions. J Phys Chem Lett 2024; 15:8973-8983. [PMID: 39186038 DOI: 10.1021/acs.jpclett.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Liquid-liquid or gas-liquid interfaces are ubiquitous in nature and in industrial production. Understanding the unique effects arising from the asymmetric interfaces and controlling the catalytic reactions are frontiers of physical chemistry. However, our understanding of the reactivity and selectivity at the interfaces remains scant. Pickering emulsions are emerging as a stable biphasic reaction system, which provides a new opportunity for clarifying the inherent features responsible for prominent interfacial reactivity or selectivity. This Perspective tentatively discusses the unique effects of interfacial adsorption, hydrogen bonding of water molecules, and strong electric field at the interfaces. Additionally, it highlights key insights into the fundamental mechanisms of reaction kinetic and thermodynamic alterations, molecular orientations, and the spontaneous generation of reactive species at the interfaces through representative examples. Finally, we delineate the current challenges and propose future research directions. The perspectives advanced herein may serve as valuable guidance for the design of efficient interfacial catalytic systems.
Collapse
Affiliation(s)
- Jun Tang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, Anhui, People's Republic of China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
6
|
Sano M, Kamei K, Yatsuhashi T, Sakota K. Localization and Orientation of Dye Molecules at the Surface of a Levitated Microdroplet in Air Revealed by Whispering Gallery Mode Resonances. J Phys Chem Lett 2024; 15:8133-8141. [PMID: 39087939 DOI: 10.1021/acs.jpclett.4c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential. Here, we utilized whispering gallery mode (WGM) resonances to investigate the localization and orientation of dissolved rhodamine B (RhB) in a levitated microdroplet (∼3 μm in diameter) in air. Fluorescence enhancement upon resonance with the WGMs revealed the localization and orientation of RhB near the droplet surface. Numerical modeling using Mie theory quantified the RhB orientation at 68° to the surface normal, with a small fraction randomly oriented inside the droplet. Additionally, low RhB concentrations increased surface localization. These results support the significance of surface reactions in the acceleration of microdroplet reactions.
Collapse
Affiliation(s)
- Motoya Sano
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kota Kamei
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kenji Sakota
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
7
|
Zhang P, Feng M, Xu X. Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface. ACS PHYSICAL CHEMISTRY AU 2024; 4:336-346. [PMID: 39069983 PMCID: PMC11274287 DOI: 10.1021/acsphyschemau.3c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 07/30/2024]
Abstract
The acid-base nature of the aqueous interface has long been controversial. Most macroscopic experiments suggest that the air-water interface is basic based on the detection of negative charges at the interface that indicates the enrichment of hydroxides (OH-), whereas microscopic studies mostly support the acidic air-water interface with the observation of hydronium (H3O+) accumulation in the top layer of the interface. It is crucial to clarify the interfacial preference of OH- and H3O+ ions for rationalizing the debate. In this work, we perform deep potential molecular dynamics simulations to investigate the preferential distribution of OH- and H3O+ ions at the aqueous interfaces. The neural network potential energy surface is trained based on density functional theory calculations with the SCAN functional, which can accurately describe the diffusion of these two ions both in the interface and in the bulk water. In contrast to the previously reported single ion enrichment, we show that both OH- and H3O+ surprisingly prefer to accumulate in interfaces but at different interfacial depths, rendering a double-layer ionic distribution within ∼1 nm near the Gibbs dividing surface. The H3O+ preferentially resides in the topmost layer of the interface, but the OH-, which is enriched in the deeper interfacial layer, has a higher equilibrium concentration due to the more negative free energy of interfacial stabilization [-0.90 (OH-) vs -0.56 (H3O+) kcal/mol]. The present finding of the ionic double-layer distribution may qualitatively offer a self-consistent explanation for the long-term controversy about the acid-base nature of the air-water interface.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center
for Combustion Energy, Department of Energy and Power Engineering,
and Key Laboratory for Thermal Science and Power Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Muye Feng
- School
of Mechanical and Power Engineering, Nanjing
Tech University, Nanjing 211816, China
| | - Xuefei Xu
- Center
for Combustion Energy, Department of Energy and Power Engineering,
and Key Laboratory for Thermal Science and Power Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
10
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
11
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
12
|
Spoorthi BK, Debnath K, Basuri P, Nagar A, Waghmare UV, Pradeep T. Spontaneous weathering of natural minerals in charged water microdroplets forms nanomaterials. Science 2024; 384:1012-1017. [PMID: 38815034 DOI: 10.1126/science.adl3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
In this work, we show that particles of common minerals break down spontaneously to form nanoparticles in charged water microdroplets within milliseconds. We transformed micron-sized natural minerals like quartz and ruby into 5- to 10-nanometer particles when integrated into aqueous microdroplets generated via electrospray. We deposited the droplets on a substrate, which allowed nanoparticle characterization. We determined through simulations that quartz undergoes proton-induced slip, especially when reduced in size and exposed to an electric field. This leads to particle scission and the formation of silicate fragments, which we confirmed with mass spectrometry. This rapid weathering process may be important for soil formation, given the prevalence of charged aerosols in the atmosphere.
Collapse
Affiliation(s)
- B K Spoorthi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Koyendrila Debnath
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Pallab Basuri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ankit Nagar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Thalappil Pradeep
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- International Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India
| |
Collapse
|
13
|
Yoo H, Seo D, Shin D, Ro CU. Direct Observation of Particle-To-Particle Variability in Ambient Aerosol pH Using a Novel Analytical Approach Based on Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7977-7985. [PMID: 38664901 DOI: 10.1021/acs.est.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The pH of atmospheric aerosols is a key characteristic that profoundly influences their impacts on climate change, human health, and ecosystems. Despite widely performed aerosol pH research, determining the pH levels of individual atmospheric aerosol particles has been a challenge. This study presents a novel analytical technique that utilizes surface-enhanced Raman spectroscopy to assess the pH of individual ambient PM2.5-10 aerosol particles in conjunction with examining their hygroscopic behavior, morphology, and elemental compositions. The results revealed a substantial pH variation among simultaneously collected aerosol particles, ranging from 3.3 to 5.7. This variability is likely related to each particle's unique reaction and aging states. The extensive particle-to-particle pH variability suggests that atmospheric aerosols present at the same time and location can exhibit diverse reactivities, reaction pathways, phase equilibria, and phase separation properties. This pioneering study paves the way for in-depth investigations into particle-to-particle variability, size dependency, and detailed spatial and temporal variations of aerosol pH, thus deepening our understanding of atmospheric chemistry and its environmental implications.
Collapse
Affiliation(s)
- Hanjin Yoo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| | - Dongkwon Seo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Dongha Shin
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| |
Collapse
|
14
|
Song Z, Zhu C, Gong K, Wang R, Zhang J, Zhao S, Li Z, Zhang X, Xie J. Deciphering the Microdroplet Acceleration Factors of Aza-Michael Addition Reactions. J Am Chem Soc 2024; 146:10963-10972. [PMID: 38567839 DOI: 10.1021/jacs.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Microdroplet chemistry is emerging as a great tool for accelerating reactions by several orders of magnitude. Several unique properties such as extreme pHs, interfacial electric fields (IEFs), and partial solvation have been reported to be responsible for the acceleration; however, which factor plays the key role remains elusive. Here, we performed quantum chemical calculations to explore the underlying mechanisms of an aza-Michael addition reaction between methylamine and acrylamide. We showed that the acceleration in methanol microdroplets results from the cumulative effects of several factors. The acidic surface of the microdroplet plays a dominating role, leading to a decrease of ∼9 kcal/mol in the activation barrier. We speculated that the dissociation of both methanol and trace water contributes to the surface acidity. An IEF of 0.1 V/Å can further decrease the barrier by ∼2 kcal/mol. Partial solvation has a negligible effect on lowering the activation barrier in microdroplets but can increase the collision frequency between reactants. With acidity revealed to be the major accelerating factor for methanol droplets, reactions on water microdroplets should have even higher rates because water is more acidic. Both theoretically and experimentally, we confirmed that water microdroplets significantly accelerate the aza-Michael reaction, achieving an acceleration factor that exceeds 107. This work elucidates the multifactorial influences on the microdroplet acceleration mechanism, and with such detailed mechanistic investigations, we anticipate that microdroplet chemistry will be an avenue rich in opportunities in the realm of green synthesis.
Collapse
Affiliation(s)
- Zhexuan Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jianze Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Supin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Gong K, Meng Y, Zare RN, Xie J. Molecular Mechanism for Converting Carbon Dioxide Surrounding Water Microdroplets Containing 1,2,3-Triazole to Formic Acid. J Am Chem Soc 2024; 146:8576-8584. [PMID: 38488449 DOI: 10.1021/jacs.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Spraying water microdroplets containing 1,2,3-triazole (Tz) has been found to effectively convert gas-phase carbon dioxide (CO2), but not predissolved CO2, into formic acid (FA). Herein, we elucidate the reaction mechanism at the molecular level through quantum chemistry calculations and ab initio molecular dynamics (AIMD) simulations. Computations suggest a multistep reaction mechanism that initiates from the adsorption of CO2 by Tz to form a CO2-Tz complex (named reactant complex (RC)). Then, the RC either is reduced by electrons that were generated at the air-liquid interface of the water microdroplet and then undergoes intramolecular proton transfer (PT) or switches the reduction and PT steps to form a [HCO2-(Tz-H)]- complex (named PC-). Subsequently, PC- undergoes reduction and the C-N bond dissociates to generate COOH- and [Tz-H]- (m/z = 69). COOH- easily converts to HCOOH and is captured at m/z = 45 in mass spectroscopy. Notably, the intramolecular PT step can be significantly lowered by the oriented electric field at the interface and a water-bridge mechanism. The mechanism is further confirmed by testing multiple azoles. The AIMD simulations reveal a novel proton transfer mechanism where water serves as a transporter and is shown to play an important role dynamically. Moreover, the transient •COOH captured by the experiment is proposed to be partly formed by the reaction with H•, pointing again to the importance of the air-water interface. This work provides valuable insight into the important mechanistic, kinetic, and dynamic features of converting gas-phase CO2 to valuable products by azoles or amines dissolved in water microdroplets.
Collapse
Affiliation(s)
- Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Eatoo MA, Mishra H. Busting the myth of spontaneous formation of H 2O 2 at the air-water interface: contributions of the liquid-solid interface and dissolved oxygen exposed. Chem Sci 2024; 15:3093-3103. [PMID: 38425539 PMCID: PMC10901496 DOI: 10.1039/d3sc06534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Recent reports on the spontaneous formation of hydrogen peroxide (H2O2) at the air-water and solid-water interfaces challenge our current understanding of aquatic chemistry and have ramifications on atmosphere chemistry models, surface science, and green chemistry. Suggested mechanisms underlying this chemical transformation include ultrahigh instantaneous electric fields at the air-water interface and the oxidation of water and reduction of the solid at the solid-water interface. Here, we revisit this curious problem with NMR spectroscopy (with an H2O2 detection limit ≥50 nM) and pay special attention to the effects of nebulizing gas, dissolved oxygen content, and the solid-water interface on this chemical transformation in condensed and sprayed water microdroplets. Experiments reveal that the reduction of dissolved oxygen at the solid-water interface predominantly contributes to the H2O2 formation (not the oxidation of hydroxyl ions at the air-water interface or the oxidation of water at the solid-water interface). We find that the H2O2 formation is accompanied by the consumption (i.e., reduction) of dissolved oxygen and the oxidation of the solid surface, i.e., in the absence of dissolved oxygen, the formation of H2O2(aq) is not observed within the detection limit of ≥50 nM. Remarkably, the tendency of the solids investigated in this work towards forming H2O2 in water followed the same order as their positions in the classic Galvanic series. These findings bust the prevailing myths surrounding H2O2 formation due to the air-water interface, the ultrahigh electric fields therein, or the micro-scale of droplets. The hitherto unrealized role of the oxidation of the solid surface due to dissolved oxygen in the formation of H2O2 is exposed. These findings are especially relevant to corrosion science, surface science, and electrochemistry, among others.
Collapse
Affiliation(s)
- Muzzamil Ahmad Eatoo
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Himanshu Mishra
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Rockey NC, Le Sage V, Marr LC, Lakdawala SS. Seasonal influenza viruses decay more rapidly at intermediate humidity in droplets containing saliva compared to respiratory mucus. Appl Environ Microbiol 2024; 90:e0201023. [PMID: 38193683 PMCID: PMC10880610 DOI: 10.1128/aem.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.
Collapse
Affiliation(s)
- Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Zhang S, Li D, Ge S, Wu C, Xu X, Liu X, Li R, Zhang F, Wang G. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic-Catalyzed Oxidation of SO 2 with Implications for Sulfate Formation in Beijing Haze. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2912-2921. [PMID: 38252977 DOI: 10.1021/acs.est.3c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Currently, atmospheric sulfate aerosols cannot be predicted reliably by numerical models because the pathways and kinetics of sulfate formation are unclear. Here, we systematically investigated the synergetic catalyzing role of transition-metal ions (TMIs, Fe3+/Mn2+) in the oxidation of SO2 by O2 on aerosols using chamber experiments. Our results showed that the synergetic effect of TMIs is critically dependent on aerosol pH due to the solubility of Fe(III) species sensitive to the aqueous phase acidity, which is effective only under pH < 3 conditions. The sulfate formation rate on aerosols is 2 orders of magnitude larger than that in bulk solution and increases significantly on smaller aerosols, suggesting that such a synergetic-catalyzed oxidation occurs on the aerosol surface. The kinetic reaction rate can be described as R = k*[H+]-2.95[Mn(II)][Fe(III)][S(IV)] (pH ≤ 3.0). We found that TMI-synergetic-catalyzed oxidation is the dominant pathway of sulfate formation in Beijing when haze particles are very acidic, while heterogeneous oxidation of SO2 by NO2 is the most important pathway when haze particles are weakly acidic. Our work for the first time clarified the role and kinetics of TMI-synergetic-catalyzed oxidation of SO2 by O2 in haze periods, which can be parameterized into models for future studies of sulfate formation.
Collapse
Affiliation(s)
- Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Dapeng Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Energy Construction Group Co., Ltd, Shanghai 200434, China
| | | | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodi Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Fan Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| |
Collapse
|
19
|
Devlin SW, Bernal F, Riffe EJ, Wilson KR, Saykally RJ. Spiers Memorial Lecture: Water at interfaces. Faraday Discuss 2024; 249:9-37. [PMID: 37795954 DOI: 10.1039/d3fd00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Erika J Riffe
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Wang Y, Dong J, Song X, Luo K, Nan ZA, Fan FR, Tian ZQ. Utilization of charged microdroplets for the controlled rapid synthesis of hollow sodium chloride single crystals. Chem Commun (Camb) 2024; 60:980-983. [PMID: 38165770 DOI: 10.1039/d3cc05640f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Charged microdroplets are favored in microfluidic control, biomedicine, chemistry and materials processing due to their unique physicochemical environment, including interface double layers, high electric fields, surface concentration enrichment, and more. Herein, we investigated the crystallization of charged sodium chloride microdroplets and achieved the formation of hollow single crystals in a single-step process lasting only a few seconds, without the use of templates. Additionally, we discussed the plausible crystal growth mechanism, which appears to be an unconventional outward-inward growth process.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Jianing Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Xianmeng Song
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Kai Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Zi-Ang Nan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
21
|
Simons J. An environmental impact statement for molecular anions. Phys Chem Chem Phys 2024; 26:1564-1586. [PMID: 38126406 DOI: 10.1039/d3cp04842j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A molecular anion's (MA's) chemical reactivity and physical behavior can be quite different when it is surrounded by other molecules than when it exists in isolation. This sensitivity to the surrounding environment is especially high for anions because their outermost valence electrons are typically loosely bound and exist in rather spatially diffuse orbitals, allowing even weak intermolecular interactions arising from the environment to have strong effects. This Perspective offers illustrations of such sensitivity for a variety of cases including (i) the effect of solvation on electron binding energies, (ii) how some "well known" anions need to have solvent molecules around to even exist as stable species, (iii) how internal Coulomb repulsions within a multiply charged MA can provide temporary stability toward electron loss, (iv) how MAs arrange themselves spatially near liquid/vapor interfaces in manners that can produce unusual reactivity, (v) how nearby cationic sites can facilitate electron attachment to form a MA site elsewhere, (vi) how internal vibrational or rotational energy can make a MA detach an electron.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
22
|
Li K, You W, Wang W, Gong K, Liu Y, Wang L, Ge Q, Ruan X, Ao J, Ji M, Zhang L. Significantly Accelerated Photochemical Perfluorooctanoic Acid Decomposition at the Air-Water Interface of Microdroplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21448-21458. [PMID: 38047763 DOI: 10.1021/acs.est.3c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 μg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Wenbo You
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqian Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiuyue Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuejun Ruan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
23
|
de la Puente M, Laage D. How the Acidity of Water Droplets and Films Is Controlled by the Air-Water Interface. J Am Chem Soc 2023; 145:25186-25194. [PMID: 37938132 DOI: 10.1021/jacs.3c07506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Acidity is a key determinant of chemical reactivity in atmospheric aqueous aerosols and water microdroplets used for catalysis. However, many fundamental questions about these systems have remained elusive, including how their acidity differs from that of bulk solutions, the degree of heterogeneity between their core and surface, and how the acid-base properties are affected by their size. Here, we perform hybrid density functional theory (DFT)-quality neural network-based molecular simulations with explicit nuclear quantum effects and combine them with an analytic model to describe the pH and self-ion concentrations of droplets and films for sizes ranging from nm to μm. We determine how the acidity of water droplets and thin films is controlled by the properties of the air-water interface and by their surface-to-volume ratio. We show that while the pH is uniform in each system, hydronium and hydroxide ions exhibit concentration gradients that span the two outermost molecular layers, enriching the interface with hydronium cations and depleting it with hydroxide anions. Acidity depends strongly on the surface-to-volume ratio for system sizes below a few tens of nanometers, where the core becomes enriched in hydroxide ions and the pH increases as a result of hydronium stabilization at the interface. These results obtained for pure water systems have important implications for our understanding of chemical reactivity in atmospheric aerosols and for catalysis in aqueous microdroplets.
Collapse
Affiliation(s)
- Miguel de la Puente
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
24
|
Archer AJ, Goddard BD, Roth R. Stability of nanoparticle laden aerosol liquid droplets. J Chem Phys 2023; 159:194503. [PMID: 37982479 DOI: 10.1063/5.0172137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
We develop a model for the thermodynamics and evaporation dynamics of aerosol droplets of a liquid, such as water, surrounded by gas. When the temperature and the chemical potential (or equivalently the humidity) are such that the vapor phase is in the thermodynamic equilibrium state, then, of course, droplets of the pure liquid evaporate over a relatively short time. However, if the droplets also contain nanoparticles or any other non-volatile solute, then the droplets can become thermodynamically stable. We show that the equilibrium droplet size depends strongly on the amount and solubility of the nanoparticles within, i.e., on the nature of the particle interactions with the liquid and, of course, also on the vapor temperature and chemical potential. We develop a simple thermodynamic model for such droplets and compare predictions with results from a lattice density functional theory that takes as input the same particle interaction properties, finding very good agreement. We also use dynamical density functional theory to study the evaporation/condensation dynamics of liquid from/to droplets as they equilibrate with the vapor, thereby demonstrating droplet stability.
Collapse
Affiliation(s)
- A J Archer
- Department of Mathematical Sciences and Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - B D Goddard
- School of Mathematics and the Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - R Roth
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Ju Y, Zhang H, Jiang Y, Wang W, Kan G, Yu K, Wang X, Liu J, Jiang J. Aqueous microdroplets promote C-C bond formation and sequences in the reverse tricarboxylic acid cycle. Nat Ecol Evol 2023; 7:1892-1902. [PMID: 37679455 DOI: 10.1038/s41559-023-02193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
The reverse tricarboxylic acid cycle (rTCA) is a central anabolic network that uses carbon dioxide (CO2) and may have provided complex carbon substrates for life before the advent of RNA or enzymes. However, non-enzymatic promotion of the rTCA cycle, in particular carbon fixation, remains challenging, even with primordial metal catalysis. Here, we report that the fixation of CO2 by reductive carboxylation of succinate and α-ketoglutarate was achieved in aqueous microdroplets under ambient conditions without the use of catalysts. Under identical conditions, the aqueous microdroplets also facilitated the sequences in the rTCA cycle, including reduction, hydration, dehydration and retro-aldol cleavage and linked with the glyoxylate cycle. These reactions of the rTCA cycle were compatible with the aqueous microdroplets, as demonstrated with two-reaction and four-reaction sequences. A higher selectivity giving higher product yields was also observed. Our results suggest that the microdroplets provide an energetically favourable microenvironment and facilitate a non-enzymatic version of the rTCA cycle in prebiotic carbon anabolism.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
| | - Jilin Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China.
| |
Collapse
|
26
|
Yao M, Zhao Y, Chang C, Wang S, Li Z, Li C, Chan AWH, Xiao H. Multiphase Reactions between Organic Peroxides and Sulfur Dioxide in Internally Mixed Inorganic and Organic Particles: Key Roles of Particle Phase Separation and Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15558-15570. [PMID: 37797208 DOI: 10.1021/acs.est.3c04975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.
Collapse
Affiliation(s)
- Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongxuan Chang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Chae S, Kim MS, Kim JH, Fortner JD. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions. ACS ES&T ENGINEERING 2023; 3:1504-1510. [PMID: 37854075 PMCID: PMC10581208 DOI: 10.1021/acsestengg.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 10/20/2023]
Abstract
Nanobubble (NB) generation of reactive oxygen species (ROS), especially hydroxyl radical (·OH), has been controversial. In this work, we extensively characterize NBs in solution, with a focus on ROS generation (as ·OH), through a number of methods including degradation of ·OH-specific target compounds, electron paramagnetic resonance (EPR), and a fluorescence-based indicator. Generated NBs exhibit consistent physical characteristics (size, surface potential, and concentration) when compared with previous studies. For conditions described, which are considered as high O2 NB concentrations, no degradation of benzoic acid (BA), a well-studied ·OH scavenger, was observed in the presence of NBs (over 24 h) and no EPR signal for ·OH was detected. While a positive fluorescence response was measured when using a fluorescence probe for ·OH, aminophenyl fluorescein (APF), we provide an alternate explanation for the result. Gas/liquid interfacial characterization indicates that the surface of a NB is proton-rich and capable of inducing acid-catalyzed hydrolysis of APF, which results in a false (positive) fluorescence response. Given these negative results, we conclude that NB-induced ·OH generation is minimal, if at all, for conditions evaluated.
Collapse
Affiliation(s)
- Seung
Hee Chae
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| | - Min Sik Kim
- Department
of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| | - John D. Fortner
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
29
|
Basuri P, Volmer DA. Detecting Early-Stage Intermediates of Free-Radical Oxidative Degradation in Charged Aqueous Microdroplets. J Phys Chem A 2023; 127:7612-7617. [PMID: 37648376 DOI: 10.1021/acs.jpca.3c04143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We report the detection of early-stage intermediates of spontaneous free-radical oxidation of organic pollutants such as aliphatic amino alcohols and diamines in charged aqueous microdroplets in the ambient atmosphere. We propose that the intrinsic formation of reactive oxygen species at the air-water interface is responsible for the radical oxidation of the sp3 carbon. We suggest that our work will aid the understanding of the degradation mechanisms of organic molecules in the environment.
Collapse
Affiliation(s)
- Pallab Basuri
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Dietrich A Volmer
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
30
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Tong YK, Ye A. Liquid-Liquid Phase Separation in Single Suspended Aerosol Microdroplets. Anal Chem 2023; 95:12200-12208. [PMID: 37556845 DOI: 10.1021/acs.analchem.2c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Liquid-liquid phase separation (LLPS) is ubiquitous in ambient aerosols. This specific morphology exerts substantial impacts on the physicochemical properties and atmospheric processes of aerosols, particularly on the gas-particle mass transfer, the interfacial heterogeneous reaction, and the surface albedo. Although there are many studies on the LLPS of aerosols, a clear picture of LLPS in individual aerosols is scarce due to the experimental difficulties of trapping a single particle and mimicking the suspended state of real aerosols. Here, we investigate the phase separation in individual contactless microdroplets by a self-constructed laser tweezer/Raman spectroscopy system. The dynamic transformation of the morphology of optically trapped droplets over the course of humidity cycles is detected by the time-resolved cavity-enhanced Raman spectra. The impacts of pH and inorganic components on LLPS in aerosols are discussed. The results show that the increasing acidity can enhance the miscibility between the hydrophilic and hydrophobic phases and decrease the separation relative humidity of aerosols. Moreover, the inorganic components also have various impacts on the aerosol phase state, whose influence depends on their different salting-out capabilities. It brings possible implications on the morphology of actual atmospheric particles, particularly for those dominated by internal mixtures of inorganic and organic components.
Collapse
Affiliation(s)
- Yu-Kai Tong
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Pan J, Gmati S, Roper BA, Prussin AJ, Hawks SA, Whittington AR, Duggal NK, Marr LC. Stability of Aerosolized SARS-CoV-2 on Masks and Transfer to Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10193-10200. [PMID: 37399494 PMCID: PMC10358342 DOI: 10.1021/acs.est.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
The potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.7 log10 on a nylon/spandex mask, and was unchanged on a polyester mask and two different cotton masks when recovered by elution in a buffer. SARS-CoV-2 RNA remained stable for 1 h on all masks. We pressed artificial skin against the contaminated masks and detected the transfer of viral RNA but no infectious virus to the skin. The potential for masks contaminated with SARS-CoV-2 in aerosols to act as fomites appears to be less than indicated by studies involving SARS-CoV-2 in very large droplets.
Collapse
Affiliation(s)
- Jin Pan
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Selma Gmati
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Bryce A. Roper
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Aaron J. Prussin
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Seth A. Hawks
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Abby R. Whittington
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Departments
of Chemical Engineering and Macromolecular Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nisha K. Duggal
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Linsey C. Marr
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
33
|
Brown EK, Rovelli G, Wilson KR. pH jump kinetics in colliding microdroplets: accelerated synthesis of azamonardine from dopamine and resorcinol. Chem Sci 2023; 14:6430-6442. [PMID: 37325131 PMCID: PMC10266468 DOI: 10.1039/d3sc01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
Recent studies report the dramatic acceleration of chemical reactions in micron-sized compartments. In the majority of these studies the exact acceleration mechanism is unknown but the droplet interface is thought to play a significant role. Dopamine reacts with resorcinol to form a fluorescent product azamonardine and is used as a model system to examine how droplet interfaces accelerate reaction kinetics. The reaction is initiated by colliding two droplets levitated in a branched quadrupole trap, which allows the reaction to be observed in individual droplets where the size, concentration, and charge are carefully controlled. The collision of two droplets produces a pH jump and the reaction kinetics are quantified optically and in situ by measuring the formation of azamonardine. The reaction was observed to occur 1.5 to 7.4 times faster in 9-35 micron droplets compared to the same reaction conducted in a macroscale container. A kinetic model of the experimental results suggests that the acceleration mechanism arises from both the more rapid diffusion of oxygen into the droplet, as well as increased reagent concentrations at the air-water interface.
Collapse
Affiliation(s)
- Emily K Brown
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| |
Collapse
|
34
|
Dai Y, Chamberlayne CF, Messina MS, Chang CJ, Zare RN, You L, Chilkoti A. Interface of biomolecular condensates modulates redox reactions. Chem 2023; 9:1594-1609. [PMID: 37546704 PMCID: PMC10399281 DOI: 10.1016/j.chempr.2023.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Biomolecular condensates mediate diverse cellular processes. The density transition process of condensate formation results in selective partitioning of molecules, which define a distinct chemical environment within the condensates. However, the fundamental features of the chemical environment and the mechanisms by which such environment can contribute to condensate functions have not been revealed. Here, we report that an electric potential gradient, thereby an electric field, is established at the liquid-liquid interface between the condensate and the bulk environment due to the density transition of ions and molecules brought about by phase separation. We find that the interface of condensates can drive spontaneous redox reactions in vitro and in living cells. Our results uncover a fundamental physicochemical property of the interface of condensates and the mechanism by which the interface can modulate biochemical activities.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705
| | | | - Marco S. Messina
- Department of Chemistry, University of California, Berkeley, CA, 94720
| | | | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705
- Lead Contact
| |
Collapse
|
35
|
Müller S, Giorio C, Borduas-Dedekind N. Tracking the Photomineralization Mechanism in Irradiated Lab-Generated and Field-Collected Brown Carbon Samples and Its Effect on Cloud Condensation Nuclei Abilities. ACS ENVIRONMENTAL AU 2023; 3:164-178. [PMID: 37215437 PMCID: PMC10197166 DOI: 10.1021/acsenvironau.2c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 05/24/2023]
Abstract
Organic aerosols affect the planet's radiative balance by absorbing and scattering light as well as by activating cloud droplets. These organic aerosols contain chromophores, termed brown carbon (BrC), and can undergo indirect photochemistry, affecting their ability to act as cloud condensation nuclei (CCN). Here, we investigated the effect of photochemical aging by tracking the conversion of organic carbon into inorganic carbon, termed the photomineralization mechanism, and its effect on the CCN abilities in four different types of BrC samples: (1) laboratory-generated (NH4)2SO4-methylglyoxal solutions, (2) dissolved organic matter isolate from Suwannee River fulvic acid (SRFA), (3) ambient firewood smoke aerosols, and (4) ambient urban wintertime particulate matter in Padua, Italy. Photomineralization occurred in all BrC samples albeit at different rates, evidenced by photobleaching and by loss of organic carbon up to 23% over a simulated 17.6 h of sunlight exposure. These losses were correlated with the production of CO up to 4% and of CO2 up to 54% of the initial organic carbon mass, monitored by gas chromatography. Photoproducts of formic, acetic, oxalic and pyruvic acids were also produced during irradiation of the BrC solutions, but at different yields depending on the sample. Despite these chemical changes, CCN abilities did not change substantially for the BrC samples. In fact, the CCN abilities were dictated by the salt content of the BrC solution, trumping a photomineralization effect on the CCN abilities for the hygroscopic BrC samples. Solutions of (NH4)2SO4-methylglyoxal, SRFA, firewood smoke, and ambient Padua samples had hygroscopicity parameters κ of 0.6, 0.1, 0.3, and 0.6, respectively. As expected, the SRFA solution with a κ of 0.1 was most impacted by the photomineralization mechanism. Overall, our results suggest that the photomineralization mechanism is expected in all BrC samples and can drive changes in the optical properties and chemical composition of aging organic aerosols.
Collapse
Affiliation(s)
- Silvan Müller
- Department
of Environmental Systems Science, ETH Zurich, Zurich 8092, Switzerland
| | - Chiara Giorio
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Nadine Borduas-Dedekind
- Department
of Environmental Systems Science, ETH Zurich, Zurich 8092, Switzerland
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| |
Collapse
|
36
|
Gong K, Ao J, Li K, Liu L, Liu Y, Xu G, Wang T, Cheng H, Wang Z, Zhang X, Wei H, George C, Mellouki A, Herrmann H, Wang L, Chen J, Ji M, Zhang L, Francisco JS. Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. Proc Natl Acad Sci U S A 2023; 120:e2219588120. [PMID: 37155894 PMCID: PMC10193990 DOI: 10.1073/pnas.2219588120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-μm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.
Collapse
Affiliation(s)
- Kedong Gong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, Peoples’ Republic of China
- Academy for Engineering and Technology, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Le Liu
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Guanjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Zimeng Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, Peoples’ Republic of China
| | - Haoran Wei
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Christian George
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Abdelwahid Mellouki
- Institut de Combustion, Réactivité et Environnement (ICARE), Centre National de la Recherche Scientifique/The Observatory of Sciences of the Universe in the Center (CNRS/OSUC), Orléans Cedex 2, 45071, France
- Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150Benguerir, Morocco
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department, Leipzig04318, Germany
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, Peoples’ Republic of China
- Academy for Engineering and Technology, Fudan University, Shanghai200433, Peoples’ Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples’ Republic of China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai200433, People’s Republic of China
- Integrated Research on Disaster Risk, and RDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People’s Republic of China
| | - Joseph S. Francisco
- Department of Earth and Environmental, Sciences, University of Pennsylvania, Philadelphia, PA19104
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
37
|
Li M, Kan Y, Su H, Pöschl U, Parekh SH, Bonn M, Cheng Y. Spatial homogeneity of pH in aerosol microdroplets. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
38
|
Wang L, Li K, Liu Y, Gong K, Liu J, Ao J, Ge Q, Wang W, Ji M, Zhang L. Significantly Accelerated Hydroxyl Radical Generation by Fe(III)-Oxalate Photochemistry in Aerosol Droplets. J Phys Chem A 2023; 127:250-260. [PMID: 36595358 DOI: 10.1021/acs.jpca.2c05919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.
Collapse
Affiliation(s)
- Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Kedong Gong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| |
Collapse
|
39
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
40
|
Estefany C, Sun Z, Hong Z, Du J. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114405. [PMID: 36508807 DOI: 10.1016/j.ecoenv.2022.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Atmosphere aerosols have significant impact on human health and the environment. Aerosol particles have a number of characteristics that influence their health and environmental effects, including their size, shape, and chemical composition. A great deal of difficulty is associated with quantifying and identifying atmospheric aerosols because these parameters are highly variable on a spatial and temporal scale. An important component of understanding aerosol fate is Raman Spectroscopy (RS), which is capable of resolving chemical compositions of individual particles. This review presented strategic techniques, especially RS methods for characterizing atmospheric aerosols. The nature and properties of atmospheric aerosols and their influence on environment and human health were briefly described. Analytical methodologies that offer insight into the chemistry and multidimensional properties of aerosols were discussed. In addition, perspectives for practical applications of atmospheric aerosols using RS are featured.
Collapse
Affiliation(s)
- Cedeño Estefany
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zijin Hong
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
41
|
Xing K, Bao H, Ding N, Xiong Y, Peng J, Lai W. Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Benjamin SE, LaVerne JA, Sigmon GE, Burns PC. Ozone-Facilitated Formation of Uranyl Peroxide in Humid Conditions. Inorg Chem 2022; 61:20977-20985. [PMID: 36519839 DOI: 10.1021/acs.inorgchem.2c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metaschoepite, [(UO2)8O2(OH)12](H2O)10, maintained in a high relative humidity (RH) environment with air initially transformed into an intermediate phase that subsequently was replaced by the peroxide phase studtite, [(UO2)(O2)(H2O)2](H2O)2, over the course of 42 days, as observed using Raman and infrared spectroscopy and powder X-ray diffraction. Addition of atmospheric ozone vastly increased the rate and extent of the transformation to studtite but only in a high-RH atmosphere. Owing to its strong affinity for peroxide, uranyl reacted with hydrogen peroxide as it formed and precipitated stable studtite. In this work, we provide a previously unidentified source of hydrogen peroxide and make a case for the re-examination of storage systems where the consequences of atmospheric ozone are not considered.
Collapse
Affiliation(s)
- Savannah E Benjamin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
43
|
Lee S, Park HJ, Lee EB, Lee DH, Choi D, Lim KM. Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT. TOXICS 2022; 10:770. [PMID: 36548604 PMCID: PMC9785571 DOI: 10.3390/toxics10120770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Biocides are widely used in everyday life, and accordingly, human exposure to them is inevitable. Especially, the inhalational exposure of humans to biocides and resultant respiratory toxicity are gaining public interest due to the recent catastrophe associated with humidifier disinfectants. Aerosolized chemicals are subject to gravitational deposition and chemical degradation. Therefore, the characterization of the disposition of aerosols is essential to estimate the inhalational exposure to biocides. Here, we compared the disposition of aerosols of one of the commonly used biocide classes, isothiazolinone-based biocides, BIT, MIT, and OIT. An acrylic chamber (40 cm × 40 cm × 50 cm) was created to simulate the indoor environment, and a vacuum pump was used to create airflow (1 LPM). Biocides were sprayed from a vertical nebulizer placed on the ceiling of the chamber, and the distribution of particle sizes and volume was measured using the Optical Particle Sizer (OPS) 3330 device. During and after the aerosol spraying, airborne biocides and those deposited on the surface of the chamber were sampled to measure the deposition using LC-MS/MS. As a result, the broad particle size distribution was observed ranging from 0.3 to 8 μm during the nebulization. The inhalable particle faction (>2 μm) of the isothiazolinones was 32−67.9% in number but 1.2 to 6.4% in volume. Most of the aerosolized biocides were deposited on the chamber’s surface while only a minimal portion was airborne (<1%) after the nebulization. More importantly, significant amounts of MIT and OIT were degraded during aerosolization, resulting in poor total recovery compared to BIT (31%, 71% vs. 97% BIT). This result suggests that some isothiazolinones may become unstable during nebulization, affecting their disposition and human exposure significantly.
Collapse
Affiliation(s)
- Seungmi Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heui-Jin Park
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunice B. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Do Hyeon Lee
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Republic of Korea
| | - Dalwoong Choi
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
44
|
Basuri P, Chakraborty A, Ahuja T, Mondal B, Kumar JS, Pradeep T. Spatial reorganization of analytes in charged aqueous microdroplets. Chem Sci 2022; 13:13321-13329. [PMID: 36507174 PMCID: PMC9682915 DOI: 10.1039/d2sc04589c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Imprinted charged aqueous droplets of micrometer dimensions containing spherical gold and silver nanoparticles, gold nanorods, proteins and simple molecules were visualized using dark-field and transmission electron microscopies. With such studies, we hoped to understand the unusual chemistry exhibited by microdroplets. These droplets with sizes in the range of 1-100 μm were formed using a home-built electrospray source with nitrogen as the nebulization gas. Several remarkable features such as mass/size-selective segregation and spatial localization of solutes in nanometer-thin regions of microdroplets were visualized, along with the formation of micro-nano vacuoles. Electrospray parameters such as distance between the spray tip and surface, voltage and nebulization gas pressure influenced particle distribution within the droplets. We relate these features to unusual phenomena such as the enhancement of rates of chemical reactions in microdroplets.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amrita Chakraborty
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Tripti Ahuja
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Biswajit Mondal
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Thalappil Pradeep
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
- International Centre for Clean Water Chennai Tamil Nadu 600113 India
| |
Collapse
|
45
|
Bogler S, Daellenbach KR, Bell DM, Prévôt ASH, El Haddad I, Borduas-Dedekind N. Singlet Oxygen Seasonality in Aqueous PM 10 is Driven by Biomass Burning and Anthropogenic Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15389-15397. [PMID: 36306277 DOI: 10.1021/acs.est.2c04554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.
Collapse
Affiliation(s)
- Sophie Bogler
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Nadine Borduas-Dedekind
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| |
Collapse
|
46
|
Jing X, Chen Z, Huang Q, Liu P, Zhang YH. Spatiotemporally Resolved pH Measurement in Aerosol Microdroplets Undergoing Chloride Depletion: An Application of In Situ Raman Microspectrometry. Anal Chem 2022; 94:15132-15138. [PMID: 36251492 DOI: 10.1021/acs.analchem.2c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acidity is a defining property of atmospheric aerosols that profoundly affects environmental systems, human health, and climate. However, directly measuring the pH of aerosol microdroplets remains a challenge, especially when the microdroplets' composition is nonhomogeneous or dynamically evolving or both. As a result, a pH measurement technique with high spatiotemporal resolution is needed. Here, we report a spatiotemporally resolved pH measurement technique in microdroplets using spontaneous Raman spectroscopy. Our target sample was the microdroplets comprising sodium chloride and oxalic acid─laboratory surrogates of sea spray aerosols and water-soluble organic compounds, respectively. Our measurements show that the chloride depletion from the microdroplets caused a continuous increase in pH by ∼0.5 units in 2 hours. Meanwhile, the surface propensity of chloride anions triggers a stable pH gradient inside a single droplet, with the pH at the droplet surface lower than that at the core by ∼ 0.4 units. The uncertainties arising from the Raman detection limit (±0.08 pH units) and from the nonideal solution conditions (-0.06 pH units) are constrained. Our findings indicate that spontaneous Raman spectroscopy is a simple yet robust technique for precise pH measurement in aerosols with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Xinbo Jing
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
47
|
Li M, Su H, Zheng G, Kuhn U, Kim N, Li G, Ma N, Pöschl U, Cheng Y. Aerosol pH and Ion Activities of HSO 4- and SO 42- in Supersaturated Single Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12863-12872. [PMID: 36047919 PMCID: PMC9494740 DOI: 10.1021/acs.est.2c01378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Accurate determination of acidity (pH) and ion activities in aqueous droplets is a major experimental and theoretical challenge for understanding and simulating atmospheric multiphase chemistry. Here, we develop a ratiometric Raman spectroscopy method to measure the equilibrium concentration of sulfate (SO42-) and bisulfate (HSO4-) in single microdroplets levitated by aerosol optical tweezers. This approach enables determination of ion activities and pH in aqueous sodium bisulfate droplets under highly supersaturated conditions. The experimental results were compared against aerosol thermodynamic model calculations in terms of simulating aerosol ion concentrations, ion activity coefficients, and pH. We found that the Extended Aerosol Inorganics Model (E-AIM) can well reproduce the experimental results. The alternative model ISORROPIA, however, exhibits substantial deviations in SO42- and HSO4- concentrations and up to a full unit of aerosol pH under acidic conditions, mainly due to discrepancies in simulating ion activity coefficients of SO42--HSO4- equilibrium. Globally, this may cause an average deviation of ISORROPIA from E-AIM by 25 and 65% in predicting SO42- and HSO4- concentrations, respectively. Our results show that it is important to determine aerosol pH and ion activities in the investigation of sulfate formation and related aqueous phase chemistry.
Collapse
Affiliation(s)
- Meng Li
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Guangjie Zheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Najin Kim
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Guo Li
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Nan Ma
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
- Institute
for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Yafang Cheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| |
Collapse
|
48
|
Li K, Wang L, Liu J, Gong K, Wang W, Ge Q, Liu Y, Zhang L. A protocol to study microdroplet photoreaction at an individual droplet level using in situ micro-Raman spectroscopy. STAR Protoc 2022; 3:101704. [PMID: 36129823 PMCID: PMC9494287 DOI: 10.1016/j.xpro.2022.101704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Photochemical synthesis and photocatalysis in droplet microreactors represent promising approaches to relieve the global energy and environmental crises. Here, we describe a protocol for studying microdroplet photoreaction at an individual droplet level based on in situ micro-Raman spectroscopy. We provide details of superhydrophobic substrate preparation, microdroplets generation, photoreactions performing, and data analyses. In addition, we show the operational details of preliminary scale-up tests of microdroplet photoreaction for practical application. For complete details on the use and execution of this protocol, please refer to Li et al. (2022).
Collapse
Affiliation(s)
- Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
49
|
Alexander RW, Tian J, Haddrell AE, Oswin HP, Neal E, Hardy DA, Otero-Fernandez M, Mann JFS, Cogan TA, Finn A, Davidson AD, Hill DJ, Reid JP. Mucin Transiently Sustains Coronavirus Infectivity through Heterogenous Changes in Phase Morphology of Evaporating Aerosol. Viruses 2022; 14:1856. [PMID: 36146663 PMCID: PMC9503081 DOI: 10.3390/v14091856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds. Here, we report the airborne survival of mouse hepatitis virus (MHV) and determine a comparable loss of infectivity in the aerosol phase to our previous observations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the addition of clinically relevant concentrations of mucin to the bioaerosol, there is a transient mitigation of the loss of viral infectivity at 40% RH. Increased concentrations of mucin promoted heterogenous phase change during aerosol evaporation, characterised as the formation of inclusions within the host droplet. This research demonstrates the role of mucus in the aerosol phase and its influence on short-term airborne viral stability.
Collapse
Affiliation(s)
- Robert W. Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jianghan Tian
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Allen E. Haddrell
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Henry P. Oswin
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Edward Neal
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Daniel A. Hardy
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Mara Otero-Fernandez
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Tristan A. Cogan
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jonathan P. Reid
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
50
|
Klebl DP, Wang Y, Sobott F, Thompson RF, Muench SP. It started with a Cys: Spontaneous cysteine modification during cryo-EM grid preparation. Front Mol Biosci 2022; 9:945772. [PMID: 35992264 PMCID: PMC9389043 DOI: 10.3389/fmolb.2022.945772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 12/31/2022] Open
Abstract
Advances in single particle cryo-EM data collection and processing have seen a significant rise in its use. However, the influences of the environment generated through grid preparation, by for example interactions of proteins with the air-water interface are poorly understood and can be a major hurdle in structure determination by cryo-EM. Initial interactions of proteins with the air-water interface occur quickly and proteins can adopt preferred orientation or partially unfold within hundreds of milliseconds. It has also been shown previously that thin-film layers create hydroxyl radicals. To investigate the potential this might have in cryo-EM sample preparation, we studied two proteins, HSPD1, and beta-galactosidase, and show that cysteine residues are modified in a time-dependent manner. In the case of both HSPD1 and beta-galactosidase, this putative oxidation is linked to partial protein unfolding, as well as more subtle structural changes. We show these modifications can be alleviated through increasing the speed of grid preparation, the addition of DTT, or by sequestering away from the AWI using continuous support films. We speculate that the modification is oxidation by reactive oxygen species which are formed and act at the air-water interface. Finally, we show grid preparation on a millisecond timescale outruns cysteine modification, showing that the reaction timescale is in the range of 100s to 1,000s milliseconds and offering an alternative approach to prevent spontaneous cysteine modification and its consequences during cryo-EM grid preparation.
Collapse
Affiliation(s)
- David P. Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Yiheng Wang
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Rebecca F. Thompson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Rebecca F. Thompson, ; Stephen P. Muench,
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Rebecca F. Thompson, ; Stephen P. Muench,
| |
Collapse
|