1
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
2
|
Qian J, Jiang M, Ding Z, Gu D, Bai H, Cai M, Yao D. Role of Long Non-coding RNA in Nerve Regeneration. Int J Neurosci 2025; 135:18-31. [PMID: 37937941 DOI: 10.1080/00207454.2023.2280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Nerve injury can be caused by a variety of factors. It often takes a long time to repair a nerve injury and severe nerve injury is even difficult to heal. Therefore, increasing attention has focused on nerve injury and repair. Long non-coding RNA (lncRNA) is a newly discovered non-coding RNA with a wide range of biological activities. Numerous studies have shown that a variety of lncRNAs undergo changes in expression after nerve injury, indicating that lncRNAs may be involved in various biological processes of nerve repair and regeneration. Herein, we summarize the biological roles of lncRNAs in neurons, glial cells and other cells during nerve injury and regeneration, which will help lncRNAs to be better applied in nerve injury and regeneration in the future.
Collapse
Affiliation(s)
- Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Min Cai
- Medical School of Nantong University, Nantong, P.R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| |
Collapse
|
3
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
5
|
Plasil SL, Farris SP, Blednov Y, Mayfield RD, Mangieri RA, Nwokeji UJ, Aziz HC, Lambeth PS, Harris RA, Homanics GE. Mutation of novel ethanol-responsive lncRNA Gm41261 impacts ethanol-related behavioral responses in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12886. [PMID: 38373108 PMCID: PMC10876150 DOI: 10.1111/gbb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Chronic alcohol exposure results in widespread dysregulation of gene expression that contributes to the pathogenesis of Alcohol Use Disorder (AUD). Long noncoding RNAs are key regulators of the transcriptome that we hypothesize coordinate alcohol-induced transcriptome dysregulation and contribute to AUD. Based on RNA-Sequencing data of human prefrontal cortex, basolateral amygdala and nucleus accumbens of AUD versus non-AUD brain, the human LINC01265 and its predicted murine homolog Gm41261 (i.e., TX2) were selected for functional interrogation. We tested the hypothesis that TX2 contributes to ethanol drinking and behavioral responses to ethanol. CRISPR/Cas9 mutagenesis was used to create a TX2 mutant mouse line in which 306 base-pairs were deleted from the locus. RNA analysis revealed that an abnormal TX2 transcript was produced at an unchanged level in mutant animals. Behaviorally, mutant mice had reduced ethanol, gaboxadol and zolpidem-induced loss of the righting response and reduced tolerance to ethanol in both sexes. In addition, a male-specific reduction in two-bottle choice every-other-day ethanol drinking was observed. Male TX2 mutants exhibited evidence of enhanced GABA release and altered GABAA receptor subunit composition in neurons of the nucleus accumbens shell. In C57BL6/J mice, TX2 within the cortex was cytoplasmic and largely present in Rbfox3+ neurons and IBA1+ microglia, but not in Olig2+ oligodendrocytes or in the majority of GFAP+ astrocytes. These data support the hypothesis that TX2 mutagenesis and dysregulation impacts ethanol drinking behavior and ethanol-induced behavioral responses in mice, likely through alterations in the GABAergic system.
Collapse
Affiliation(s)
- S. L. Plasil
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - S. P. Farris
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - Y. Blednov
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - R. D. Mayfield
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Mangieri
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - U. J. Nwokeji
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - H. C. Aziz
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - P. S. Lambeth
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
- Department of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - R. A. Harris
- The Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at AustinAustinTexasUSA
| | - G. E. Homanics
- Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Ben-Tov Perry R, Tsoory M, Tolmasov M, Ulitsky I. Silc1 long noncoding RNA is an immediate-early gene promoting efficient memory formation. Cell Rep 2023; 42:113168. [PMID: 37742186 PMCID: PMC10636608 DOI: 10.1016/j.celrep.2023.113168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are expressed in many brain circuits and types of neurons; nevertheless, their functional significance for normal brain functions remains elusive. Here, we study the functions in the central nervous system of Silc1, an lncRNA we have shown previously to be important for neuronal regeneration in the peripheral nervous system. We found that Silc1 is rapidly and strongly induced in the hippocampus upon exposure to novelty and is required for efficient spatial learning. Silc1 production is important for induction of Sox11 (its cis-regulated target gene) throughout the CA1-CA3 regions and proper expression of key Sox11 target genes. Consistent with its role in neuronal plasticity, Silc1 levels decline during aging and in models of Alzheimer's disease. Overall, we describe a plasticity pathway in which Silc1 acts as an immediate-early gene to activate Sox11 and induce a neuronal growth-associated transcriptional program important for learning.
Collapse
Affiliation(s)
- Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Tolmasov
- Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
8
|
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther 2023; 31:1550-1561. [PMID: 36793211 PMCID: PMC10277896 DOI: 10.1016/j.ymthe.2023.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The human genome is pervasively transcribed, producing a majority of short and long noncoding RNAs (lncRNAs) that can influence cellular programs through a variety of transcriptional and post-transcriptional regulatory mechanisms. The brain houses the richest repertoire of long noncoding transcripts, which function at every stage during central nervous system development and homeostasis. An example of functionally relevant lncRNAs is species involved in spatiotemporal organization of gene expression in different brain regions, which play roles at the nuclear level and in transport, translation, and decay of other transcripts in specific neuronal sites. Research in the field has enabled identification of the contributions of specific lncRNAs to certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders, resulting in notions of potential therapeutic strategies that target these RNAs to recover the normal phenotype. Here, we summarize the latest mechanistic findings associated with lncRNAs in the brain, focusing on their dysregulation in neurodevelopmental or neurodegenerative disorders, their use as biomarkers for central nervous system (CNS) diseases in vitro and in vivo, and their potential utility for therapeutic strategies.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, PR, Brazil; Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain; Germans Trias i Pujol Health Science Research Institute, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Talross GJS, Carlson JR. The rich non-coding RNA landscape of the Drosophila antenna. Cell Rep 2023; 42:112482. [PMID: 37167060 PMCID: PMC10431215 DOI: 10.1016/j.celrep.2023.112482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play diverse and critical roles in neural development, function, and disease. Here, we examine neuronal lncRNAs in a model system that offers enormous advantages for deciphering their functions: the Drosophila olfactory system. This system is numerically simple, its neurons are exquisitely well defined, and it drives multiple complex behaviors. We undertake a comprehensive survey of linear and circular lncRNAs in the Drosophila antenna and identify a wealth of lncRNAs enriched in it. We generate an unprecedented lncRNA-to-neuron map, which reveals that olfactory receptor neurons are defined not only by their receptors but also by the combination of lncRNAs they express. We identify species-specific lncRNAs, including many that are expressed primarily in pheromone-sensing neurons and that may act in modulation of pheromonal responses or in speciation. This resource opens many new opportunities for investigating the roles of lncRNAs in the nervous system.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Soutschek M, Schratt G. Non-coding RNA in the wiring and remodeling of neural circuits. Neuron 2023:S0896-6273(23)00341-0. [PMID: 37230080 DOI: 10.1016/j.neuron.2023.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
The brain constantly adapts to changes in the environment, a capability that underlies memory and behavior. Long-term adaptations require the remodeling of neural circuits that are mediated by activity-dependent alterations in gene expression. Over the last two decades, it has been shown that the expression of protein-coding genes is significantly regulated by a complex layer of non-coding RNA (ncRNA) interactions. The aim of this review is to summarize recent discoveries regarding the functional involvement of ncRNAs during different stages of neural circuit development, activity-dependent circuit remodeling, and circuit maladapations underlying neurological and neuropsychiatric disorders. In addition to the intensively studied microRNA (miRNA) family, we focus on more recently added ncRNA classes, such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), and discuss the complex regulatory interactions between these different RNAs. We conclude by discussing the potential relevance of ncRNAs for cell-type and -state-specific regulation in the context of memory formation, the evolution of human cognitive abilities, and the development of new diagnostic and therapeutic tools in brain disorders.
Collapse
Affiliation(s)
- Michael Soutschek
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057 Zurich, Switzerland.
| |
Collapse
|
11
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
12
|
Plasil SL, Collins VJ, Baratta AM, Farris SP, Homanics GE. Hippocampal ceRNA networks from chronic intermittent ethanol vapor-exposed male mice and functional analysis of top-ranked lncRNA genes for ethanol drinking phenotypes. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10831. [PMID: 36908580 PMCID: PMC10004261 DOI: 10.3389/adar.2022.10831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms regulating the development and progression of alcohol use disorder (AUD) are largely unknown. While noncoding RNAs have previously been implicated as playing key roles in AUD, long-noncoding RNA (lncRNA) remains understudied in relation to AUD. In this study, we first identified ethanol-responsive lncRNAs in the mouse hippocampus that are transcriptional network hub genes. Microarray analysis of lncRNA, miRNA, circular RNA, and protein coding gene expression in the hippocampus from chronic intermittent ethanol vapor- or air- (control) exposed mice was used to identify ethanol-responsive competing endogenous RNA (ceRNA) networks. Highly interconnected lncRNAs (genes that had the strongest overall correlation to all other dysregulated genes identified) were ranked. The top four lncRNAs were novel, previously uncharacterized genes named Gm42575, 4930413E15Rik, Gm15767, and Gm33447, hereafter referred to as Pitt1, Pitt2, Pitt3, and Pitt4, respectively. We subsequently tested the hypothesis that CRISPR/Cas9 mutagenesis of the putative promoter and first exon of these lncRNAs in C57BL/6J mice would alter ethanol drinking behavior. The Drinking in the Dark (DID) assay was used to examine binge-like drinking behavior, and the Every-Other-Day Two-Bottle Choice (EOD-2BC) assay was used to examine intermittent ethanol consumption and preference. No significant differences between control and mutant mice were observed in the DID assay. Female-specific reductions in ethanol consumption were observed in the EOD-2BC assay for Pitt1, Pitt3, and Pitt4 mutant mice compared to controls. Male-specific alterations in ethanol preference were observed for Pitt1 and Pitt2. Female-specific increases in ethanol preference were observed for Pitt3 and Pitt4. Total fluid consumption was reduced in Pitt1 and Pitt2 mutants at 15% v/v ethanol and in Pitt3 and Pitt4 at 20% v/v ethanol in females only. We conclude that all lncRNAs targeted altered ethanol drinking behavior, and that lncRNAs Pitt1, Pitt3, and Pitt4 influenced ethanol consumption in a sex-specific manner. Further research is necessary to elucidate the biological mechanisms for these effects. These findings add to the literature implicating noncoding RNAs in AUD and suggest lncRNAs also play an important regulatory role in the disease.
Collapse
Affiliation(s)
- SL Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - VJ Collins
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - AM Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - SP Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - GE Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Chen HS, Wang J, Li HH, Wang X, Zhang SQ, Deng T, Li YK, Zou RS, Wang HJ, Zhu R, Xie WL, Zhao G, Wang F, Chen JG. Long noncoding RNA Gm2694 drives depressive-like behaviors in male mice by interacting with GRP78 to disrupt endoplasmic reticulum homeostasis. SCIENCE ADVANCES 2022; 8:eabn2496. [PMID: 36459549 PMCID: PMC10936050 DOI: 10.1126/sciadv.abn2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in various biological processes and implicated in the regulation of neuronal activity, but the potential role of lncRNAs in depression remains largely unknown. Here, we identified that lncRNA Gm2694 was increased in the medial prefrontal cortex (mPFC) of male mice subjected to chronic social defeat stress (CSDS). The down-regulation of Gm2694 in the mPFC alleviated CSDS-induced depressive-like behaviors through enhanced excitatory synaptic transmission. Furthermore, we found that Gm2694 preferentially interacted with the carboxyl-terminal domain of 78-kilodalton glucose-regulated protein (GRP78), which abrogated GRP78 function and disrupted endoplasmic reticulum homeostasis, resulting in a reduction of the surface expression of AMPA receptors (AMPARs). Overexpression of GRP78 in the mPFC promoted the surface expression of AMPARs and attenuated the CSDS-induced depressive-like behaviors of mice. Together, our results unraveled a previously unknown role of Gm2694 in regulating endoplasmic reticulum homeostasis and excitatory synaptic transmission in depression.
Collapse
Affiliation(s)
- Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tan Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ruo-Si Zou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hua-Jie Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Rui Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wen-Long Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| |
Collapse
|
14
|
Lin Y, Zhang Z, Li Y, Chen Y, Su M, Zhao W. LncRNA DIRC1 is a novel prognostic biomarker and correlated with immune infiltrates in stomach adenocarcinoma. Medicine (Baltimore) 2022; 101:e31839. [PMID: 36401393 PMCID: PMC9678523 DOI: 10.1097/md.0000000000031839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The potential application value of Long non-coding RNA disrupted in renal carcinoma 1 (DIRC1) has not yet been explored, the purpose of this study was to explore the relationship between DIRC1 and stomach adenocarcinoma (STAD) based on the cancer genome atlas database. Wilcoxon rank sum test, Chi-square test, Fisher test and logistic regression were used to evaluate relationships between clinical-pathologic features and DIRC1 expression. Receiver operating characteristic (ROC) curves were used to describe binary classifier value of DIRC1 using area under curve (AUC) score. Kaplan-Meier method was used to assess the impact of DIRC1 on prognosis and the impact of DIRC1-related hub genes on prognosis. Gene oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the function of differentially expressed genes associated with DIRC1. Gene set enrichment analysis (GSEA) was used to predict biological states or processes associated with DIRC1. Immune infiltration analysis was performed to identify the significantly involved functions of DIRC1. Protein-protein interaction (PPI) networks were established and 10 hub genes identified with Cytoscape software. Real time-polymerase chain reaction (RT-PCR) was used to detect the expression of DIRC1 in Gastric Cancer patients and healthy people. Increased DIRC1 expression in STAD was associated with T stage (P = .004), race (P = .045), histologic grade (P = .029) and anatomic neoplasm subdivision (P = .034). ROC curve suggested the significant diagnostic ability of DIRC1 (AUC = 0.779). High DIRC1 expression predicted a poorer Overall survival (P = .004, hazard ratio: 1.63; 95% confidence interval: 1.17-2.27; P = .034). GO and KEGG analysis demonstrated that DIRC1 is related to epidermis, collagen-containing extracellular matrix, receptor-ligand activity, protein digestion and absorption, etc. GSEA demonstrated that E2F target, G2M checkpoint, Myc target, interferon γ reaction were differentially enriched in the high DIRC1 expression phenotype. SsGSEA and Spearman correlation revealed the relationships between DIRC1 and macrophages, dendritic cells, and Th1 cells were the strongest. Coregulatory proteins were included in the PPI network, higher expressions of 4 hub genes were associated with worse prognosis in STAD. RT-PCR showed that the expression of DIRC1 in the serum of Gastric Cancer patients was higher than healthy people (P = .027). DIRC1 expression was significantly correlated with poor survival and immune infiltrations in STAD, and it may be a promising prognostic biomarker in STAD.
Collapse
Affiliation(s)
- Yuning Lin
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zhongying Zhang
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
- * Correspondence: Zhongying Zhang, Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, No.3777 Xianyue Road, Xiamen, Fujian Province 361009, China (e-mail: )
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Meiying Su
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
15
|
Huang J, Jiang B, Li GW, Zheng D, Li M, Xie X, Pan Y, Wei M, Liu X, Jiang X, Zhang X, Yang L, Bao L, Wang B. m6A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation. Cell Rep 2022; 41:111693. [DOI: 10.1016/j.celrep.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
16
|
Lin Y, Li Y, Chen Y, Zhang Z. LncRNA ALMS1-IT1 is a novel prognostic biomarker and correlated with immune infiltrates in colon adenocarcinoma. Medicine (Baltimore) 2022; 101:e31314. [PMID: 36281164 PMCID: PMC9592486 DOI: 10.1097/md.0000000000031314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most serious cancers. It is important to accurately predict prognosis and provide individualized treatment. Evidence suggests that clinicopathological features and immune status of the body are related to the occurrence and development of cancer. Expression of long non-coding RNA (LncRNA) ALMS1 intronic transcript 1 (ALMS1-IT1) is observed in some cancer types, and we believe that it may have the potential to serve as a marker of COAD. Therefore, we used the data obtained from the cancer genome atlas (TCGA) database to prove the relationship between ALMS1-IT1 and COAD. Wilcoxon rank sum test, Chi-square test, Fisher exact test and logistic regression were used to evaluate relationships between clinical-pathologic features and ALMS1-IT1 expression. Receiver operating characteristic curves were used to describe binary classifier value of ALMS1-IT1 using area under curve score. Kaplan-Meier method and Cox regression analysis were used to evaluate factors contributing to prognosis. Gene oncology (GO) and (Kyoto Encyclopedia of Genes and Genomes) KEGG enrichment analysis were used to predict the function of differentially expressed genes associated with ALMS1-IT1. Gene set enrichment analysis (GSEA) was used to predict canonical pathways associated with ALMS1-IT1.Immune infiltration analysis was performed to identify the significantly involved functions of ALMS1-IT1. Starbase database was used to predict miRNAs and RNA binding proteins (RBPs) that may interact with ALMS1-IT1. Increased ALMS1-IT1 expression in COAD was associated with N stage (P < .001), M stage (P = .003), Pathologic stage (P = .002), and Primary therapy outcome (P = .009). Receiver operating characteristic curve suggested the significant diagnostic and prognostic ability of ALMS1-IT1 (area under curve = 0.857). High ALMS1-IT1 expression predicted a poorer overall-survival (P = .005) and poorer progression-free interval (PFI) (P = .012), and ALMS1-IT1 expression was independently correlated with PFI in COAD patients (hazard ratio (HR) :1.468; 95% CI: 1.029-2.093; P =.034) (HR: 1.468; 95% CI: 1.029-2.093; P = .034). GO, KEGG, GSEA, and immune infiltration analysis showed that ALMS1-IT1 expression was correlated with regulating the function of DNA and some types of immune infiltrating cells. ALMS1-IT1 expression was significantly correlated with poor survival and immune infiltrations in COAD, and it may be a promising prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Yuning Lin
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zhongying Zhang
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
- *Correspondence: Zhongying Zhang, Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, No.3777 Xianyue Road, Xiamen, Fujian Province 361009, China (e-mail: )
| |
Collapse
|
17
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
18
|
Wang S, Sun Y, Hu S, Lou C, Pan YB. Construction of a lncRNA-associated competing endogenous RNA regulatory network after traumatic brain injury in mouse. Mol Brain 2022; 15:40. [PMID: 35501920 PMCID: PMC9063179 DOI: 10.1186/s13041-022-00925-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem worldwide which causes high mortality and disability. Functioning as microRNA (miRNA) sponges, long non-coding RNA (lncRNA) regulates the expression of protein-coding genes in a competing endogenous RNA (ceRNA) network. However, the lncRNA-associated ceRNA in TBI remains unclear. In this study, we processed the raw SRR files of mice cortex samples of sham injury (n = 3) and TBI groups (n = 3) to count files. Then, the expression profiles of lncRNAs and mRNAs were identified, and 86 differentially expressed (DE) lncRNAs and 1201 DEmRNAs between sham and TBI groups were identified. The DEmRNAs were used to perform enrichment analyses. Next, a lncRNA-miRNA-mRNA regulatory ceRNA network was constructed. The network consisted of 23 mRNAs, 5 miRNAs and 2 lncRNAs. The expression alternations of the 5 miRNAs were validated via qRT-PCR. The subnetwork of hub lncRNA Neat1 was extracted. We identified a potential inflammatory associated regulatory axis: Neat1/miR-31-5p/Myd88 axis. The PPI network based on DEmRNA involved in ceRNA network was constructed PPI networks to identify the hub genes. Finally, DElncRNAs and DEmRNAs were selected randomly and validated by qRT-PCR. In conclusion, with the lncRNA-miRNA-mRNA ceRNA network provided above, we can improve our understanding of the regulatory mechanisms and interaction among lncRNAs, miRNAs and mRNAs in TBI process.
Collapse
|
19
|
Wei W, Zhao Q, Wang Z, Liau WS, Basic D, Ren H, Marshall PR, Zajaczkowski EL, Leighton LJ, Madugalle SU, Musgrove M, Periyakaruppiah A, Shi J, Zhang J, Mattick JS, Mercer TR, Spitale RC, Li X, Bredy TW. ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3. Cell Rep 2022; 38:110546. [PMID: 35320727 PMCID: PMC9015815 DOI: 10.1016/j.celrep.2022.110546] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China.
| | - Qiongyi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ziqi Wang
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Dean Basic
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Esmi L Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mason Musgrove
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ambika Periyakaruppiah
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jichun Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Timothy R Mercer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
20
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Zhang S, Fu F, Zhen L, Li R, Liao C. Alteration of long non-coding RNAs and mRNAs expression profiles by compound heterozygous ASXL3 mutations in the mouse brain. Bioengineered 2021; 12:6935-6951. [PMID: 34559584 PMCID: PMC8806560 DOI: 10.1080/21655979.2021.1974811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Compound mutations in the additional sex combs-like 3 (ASXL3) gene greatly impact the expression of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in mouse myocardial tissues. Little is known about ASXL3 mutation effects on lncRNAs and mRNAs expression in the cerebrum and cerebellum. This study aims to clarify this point using quantitative real-time polymerase chain reaction and Western blotting. Transcriptome analysis based on RNA-seq followed by bioinformatics analysis were used to compare lncRNA and mRNA expression profiles. Cell proliferation, cell cycle progression, and apoptosis were evaluated after silencing of ASXL3 expression using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2 H-tetrazolium method and flow cytometry. Results showed that ASXL3 gene expression was decreased in the cerebrum and cerebellum of mice with ASXL3 P723R*P1817A mutations. We identified 319 lncRNAs and 252 mRNAs differentially expressed in the cerebrum of ASXL3 P723R*P1817A mutant mice. In the cerebellum of ASXL3 P723R*P1817A mutant mice, 5330 lncRNAs and 2204 mRNAs were differentially expressed. Differentially expressed lncRNAs and mRNAs were widely distributed across the mouse genome and were associated with various biological processes and pathways. ASXL3 silencing by siRNA transfection affected the proliferation, cell cycle progression, and apoptosis of neural cells. Therefore, the ASXL3 P723R*P1817A mutations greatly modify the lncRNA and mRNA expression profiles in the mouse cerebrum and cerebellum.
Collapse
Affiliation(s)
- Songhui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Obstetrics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
22
|
Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 185:107522. [PMID: 34547434 DOI: 10.1016/j.nlm.2021.107522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
A striking proportion of long non-coding RNAs are expressed specifically in the mammalian brain. Advances in genome-wide sequencing detected widespread diversity in neuronal lncRNAs based on their expression pattern, localization and function. A growing body of literature proposes that localization of lncRNAs is a critical determinant of their function. A rising number of recent findings documented distinct cytoplasmic functions of lncRNAs that are linked to activity-induced control of synaptic plasticity. However, the comprehensive role of cytoplasmic lncRNAs in neuronal functions is less understood. This review surveys our current understanding of lncRNAs that regulate the cytoplasmic life of mRNAs. We discuss the necessity of subcellular localization of lncRNAs in neuronal dendrites and the impact of their compartmentalized positioning on localized translation at the synapse. We have highlighted how lncRNAs modify a functional compartment to meet the demand for input-specific control of synaptic plasticity and memory.
Collapse
|
23
|
Wang F, Wang Q, Liu B, Mei L, Ma S, Wang S, Wang R, Zhang Y, Niu C, Xiong Z, Zheng Y, Zhang Z, Shi J, Song X. The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Differ 2021; 28:2634-2650. [PMID: 33762741 PMCID: PMC8408218 DOI: 10.1038/s41418-021-00774-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The brain is known to express many long noncoding RNAs (lncRNAs); however, whether and how these lncRNAs function in modulating synaptic stability remains unclear. Here, we report a cerebellum highly expressed lncRNA, Synage, regulating synaptic stability via at least two mechanisms. One is through the function of Synage as a sponge for the microRNA miR-325-3p, to regulate expression of the known cerebellar synapse organizer Cbln1. The other function is to serve as a scaffold for organizing the assembly of the LRP1-HSP90AA1-PSD-95 complex in PF-PC synapses. Although somewhat divergent in its mature mRNA sequence, the locus encoding Synage is positioned adjacent to the Cbln1 loci in mouse, rhesus macaque, and human, and Synage is highly expressed in the cerebella of all three species. Synage deletion causes a full-spectrum cerebellar ablation phenotype that proceeds from cerebellar atrophy, through neuron loss, on to synapse density reduction, synaptic vesicle loss, and finally to a reduction in synaptic activity during cerebellar development; these deficits are accompanied by motor dysfunction in adult mice, which can be rescued by AAV-mediated Synage overexpression from birth. Thus, our study demonstrates roles for the lncRNA Synage in regulating synaptic stability and function during cerebellar development.
Collapse
Affiliation(s)
- Fei Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Qianqian Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Baowei Liu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Lisheng Mei
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Sisi Ma
- grid.506261.60000 0001 0706 7839National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS and PUMC, Beijing, China
| | - Shujuan Wang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ruoyu Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX USA
| | - Yan Zhang
- grid.59053.3a0000000121679639Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Chaoshi Niu
- grid.59053.3a0000000121679639Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Zhiqi Xiong
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zheng
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhi Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Juan Shi
- grid.506261.60000 0001 0706 7839National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS and PUMC, Beijing, China
| | - Xiaoyuan Song
- grid.59053.3a0000000121679639MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu XA, Raveendra BL, Zucca A, Mediouni S, Sadhu A, Valente S, Page D, Miller K, Puthanveettil SV. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep 2021; 36:109369. [PMID: 34260917 PMCID: PMC8319835 DOI: 10.1016/j.celrep.2021.109369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/16/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yosef Avchalumov
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eddie Grinman
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xin-An Liu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Aya Zucca
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sonia Mediouni
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Abhishek Sadhu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Susana Valente
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Damon Page
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kyle Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
25
|
Cui X, Pertile RAN, Du Z, Wei W, Sun Z, Eyles DW, Kesby JP. Developmental Inhibition of Long Intergenic Non-Coding RNA, HOTAIRM1, Impairs Dopamine Neuron Differentiation and Maturation. Int J Mol Sci 2021; 22:ijms22147268. [PMID: 34298885 PMCID: PMC8306845 DOI: 10.3390/ijms22147268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The dopaminergic (DA) system is important for a range of brain functions and subcortical DA development precedes many cortical maturational processes. The dysfunction of DA systems has been associated with neuropsychiatric disorders such as schizophrenia, depression, and addiction. DA neuron cell fate is controlled by a complex web of transcriptional factors that dictate DA neuron specification, differentiation, and maturation. A growing body of evidence suggests that these transcriptional factors are under the regulation of newly discovered non-coding RNAs. However, with regard to DA neuron development, little is known of the roles of non-coding RNAs. The long non-coding RNA (lncRNA) HOX-antisense intergenic RNA myeloid 1 (HOTAIRM1) is present in adult DA neurons, suggesting it may have a modulatory role in DA systems. Moreover, HOTAIRM1 is involved in the neuronal differentiation in human stem cells suggesting it may also play a role in early DA neuron development. To determine its role in early DA neuron development, we knocked down HOTAIRM1 using RNAi in vitro in a human neuroblastoma cell line, and in vivo in mouse DA progenitors using a novel in utero electroporation technique. HOTAIRM1 inhibition decreased the expression of a range of key DA neuron specification factors and impaired DA neuron differentiation and maturation. These results provide evidence of a functional role for HOTAIRM1 in DA neuron development and differentiation. Understanding of the role of lncRNAs in the development of DA systems may have broader implications for brain development and neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia; (X.C.); (D.W.E.)
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Renata Ap. Nedel Pertile
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Zilong Du
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Wei Wei
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Zichun Sun
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Darryl W. Eyles
- Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia; (X.C.); (D.W.E.)
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - James P. Kesby
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
- QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
- Correspondence: ; Tel.: +61-7-3346-6363; Fax: +61-7-3346-6301
| |
Collapse
|
26
|
Keihani S, Kluever V, Fornasiero EF. Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules 2021; 26:molecules26133951. [PMID: 34203457 PMCID: PMC8272081 DOI: 10.3390/molecules26133951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a 'coding molecule' has been largely surpassed, together with the conception that lncRNAs only represent 'waste material' produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.
Collapse
|
27
|
Puthanveettil S. The emerging RNA-centric world of neurobiology. RNA Biol 2021; 18:933-935. [PMID: 34142924 DOI: 10.1080/15476286.2021.1930367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
29
|
Grinman E, Nakahata Y, Avchalumov Y, Espadas I, Swarnkar S, Yasuda R, Puthanveettil SV. Activity-regulated synaptic targeting of lncRNA ADEPTR mediates structural plasticity by localizing Sptn1 and AnkB in dendrites. SCIENCE ADVANCES 2021; 7:7/16/eabf0605. [PMID: 33863727 PMCID: PMC8051873 DOI: 10.1126/sciadv.abf0605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 05/26/2023]
Abstract
Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.
Collapse
Affiliation(s)
- Eddie Grinman
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | - Yosef Avchalumov
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
30
|
Ghosh P, Saadat A. Neurodegeneration and epigenetics: A review. Neurologia 2021; 38:S0213-4853(21)00034-7. [PMID: 33712337 DOI: 10.1016/j.nrl.2021.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal function and differentiation are tightly regulated by both genome and epigenome. Based on the environmental information the epigenetic changes occur. Neurodegeneration is the consequence of dysregulation of both the genome and epigenome. In this study, we saw different types of alterations of epigenome present in neuronal cells of different model organisms for neurodegenerative disorders. The epigenetic modifications including chromatin modification, DNA methylation, and changes in regulatory RNAs (miRNA) are having a great impact on neurodegenerative disorders as well as memory. The effects of these re-editing in the neuronal cells cause Alzheimer's disease, Parkinson's disease, Huntington's disease but an unusual form of neuroepigenetics has been seen in Prion Disease. Subsequently, for the development of treatment of these diseases, epigenetic modifications should be kept in mind. Although until now many reports came on drug discovery inhibiting histone deacetylases and DNA methyltransferases to reverse the epigenetic change but they lack targeted delivery and sometimes cause a cytotoxic effect on neuronal cells. In future, advancement in targeted and non-cytotoxic drugs should be the main focus for therapeutic treatment of the neurodegenerative disorders.
Collapse
Affiliation(s)
- P Ghosh
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - A Saadat
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
31
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
32
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Abstract
K-mer based comparisons have emerged as powerful complements to BLAST-like alignment algorithms, particularly when the sequences being compared lack direct evolutionary relationships. In this chapter, we describe methods to compare k-mer content between groups of long noncoding RNAs (lncRNAs), to identify communities of lncRNAs with related k-mer contents, to identify the enrichment of protein-binding motifs in lncRNAs, and to scan for domains of related k-mer contents in lncRNAs. Our step-by-step instructions are complemented by Python code deposited in Github. Though our chapter focuses on lncRNAs, the methods we describe could be applied to any set of nucleic acid sequences.
Collapse
Affiliation(s)
- Jessime M Kirk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Daniel Sprague
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Flagship Pioneering, Boston, MA, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Zhang S, You L, Xu Q, Ou J, Wu D, Yuan X, Liu Z, Hong Q, Tong M, Yang L, Chi X. Distinct long non-coding RNA and mRNA expression profiles in the hippocampus of an attention deficit hyperactivity disorder model in spontaneously hypertensive rats and control wistar Kyoto rats. Brain Res Bull 2020; 161:177-196. [DOI: 10.1016/j.brainresbull.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
36
|
Coneys R, Wood IC. Alzheimer's disease: the potential of epigenetic treatments and current clinical candidates. Neurodegener Dis Manag 2020; 10:543-558. [PMID: 32552286 DOI: 10.2217/nmt-2019-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a progressive and fatal neurodegenerative disease affecting 50 million people worldwide, characterized by memory loss and neuronal degeneration. Current treatments have limited efficacy and there is no cure. Alzheimer's is likely caused by a combination of factors, providing several potential therapeutic targets. One area of interest is the epigenetic regulation of gene expression within the brain. Epigenetic marks, including DNA methylation and histone modifications, show consistent changes with age and in those with Alzheimer's. Some epigenetic regulation has been linked to disease pathology and progression and are the focus of current research. Epigenetic regulators might make promising therapeutic targets yet challenges need to be overcome to generate an efficacious drug lacking deleterious side effects.
Collapse
Affiliation(s)
- Rachel Coneys
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
37
|
Abramowicz A, Story MD. The Long and Short of It: The Emerging Roles of Non-Coding RNA in Small Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12061445. [PMID: 32498257 PMCID: PMC7352322 DOI: 10.3390/cancers12061445] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Small extracellular vesicles (EVs) play a significant role in intercellular communication through their non-coding RNA (ncRNA) cargo. While the initial examination of EV cargo identified both mRNA and miRNA, later studies revealed a wealth of other types of EV-related non-randomly packed ncRNAs, including tRNA and tRNA fragments, Y RNA, piRNA, rRNA, and lncRNA. A number of potential roles for these ncRNA species were suggested, with strong evidence provided in some cases, whereas the role for other ncRNA is more speculative. For example, long non-coding RNA might be used as a potential diagnostic tool but might also mediate resistance to certain cancer-specific chemotherapy agents. piRNAs, on the other hand, have a significant role in genome integrity, however, no role has yet been defined for the piRNAs found in EVs. While our knowledgebase for the function of ncRNA-containing EVs is still modest, the potential role that these EV-ensconced ncRNA might play is promising. This review summarizes the ncRNA content of EVs and describes the function where known, or the potential utility of EVs that harbor specific types of ncRNA.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
38
|
hsa_circ_0121582 inhibits leukemia growth by dampening Wnt/β-catenin signaling. Clin Transl Oncol 2020; 22:2293-2302. [PMID: 32472455 DOI: 10.1007/s12094-020-02377-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The prognosis of AML patients with chemotherapy is poor, especially those who are insensitive to and resistant to chemotherapy drugs. To clarify the underlying pathogenesis of AML and provide new therapeutic targets for clinical treatment, we explore the role of circRNA in leukemia. METHODS High-throughput circRNA sequencing analysis was performed in patients with leukemia and healthy donors. RT-qPCR and western blot analysis were used to determine expression of GSK3β. RNA pull-down assay was used to detect miRNAs pulled down by hsa_circ_0121582. RNA immunoprecipitation assay was performed to evaluate the binding capacity between TET1 and hsa_circ_0121582. RESULTS A new and highly stable circRNA was found, which was derived from the reverse splicing of GSK3β exon 1 to exon 7, and hsa_circ_0121582 was down-regulated in leukemia cells. In gain-of-function experiments, the up-regulated hsa_circ_0121582 inhibited the proliferation of leukemia cells in vitro and in vivo. In the cytoplasm, hsa_circ_0121582 could act as a sponge for miR-224, attenuate the inhibiting effect of miR-224 on GSK3β, and thus up-regulate the expression level of GSK3β. In addition, hsa_circ_0121582 could bind to GSK3β promoter in the nucleus, and recruit DNA demethylase TET1 to ensuring the transcription of GSK3β. The upregulated GSK3β inhibited the Wnt/β-catenin signaling pathway, and reduced the aggregation of β-catenin in the nucleus, thus inhibited the proliferation of leukemia cells. CONCLUSIONS This study found that hsa_circ_0121582 was involved in the inhibition of tumor proliferation, and the restoration of hsa_circ_0121582 could be an effective treatment strategy for patients with leukemia.
Collapse
|
39
|
Ross PJ, Mok RSF, Smith BS, Rodrigues DC, Mufteev M, Scherer SW, Ellis J. Modeling neuronal consequences of autism-associated gene regulatory variants with human induced pluripotent stem cells. Mol Autism 2020; 11:33. [PMID: 32398033 PMCID: PMC7218542 DOI: 10.1186/s13229-020-00333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.
Collapse
Affiliation(s)
- P Joel Ross
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Rebecca S F Mok
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon S Smith
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Zhang X, Xu Y, Chen B, Kang L. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 2020; 16:e1008771. [PMID: 32348314 PMCID: PMC7241820 DOI: 10.1371/journal.pgen.1008771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop. The neurotransmitter dopamine is crucial for the neuronal and behavioral response in animals. Phenylalanine hydroxylase (PAH) is involved in dopamine biosynthesis and behavioral regulation in the migratory locust. However, the molecular mechanism for the fine tuning of PAH expression in behavioral response remains ambiguous. Here we discovered a nuclear-enriched lncRNA PAHAL that is transcribed from the coding strand of the PAH gene in the locust (i.e., sense lncRNA). PAHAL positively regulated PAH expression and dopamine production in the brain. In addition, PAHAL modulated behavioral aggregation of the locust. Mechanistically, PAHAL mediated the transcriptional activation of PAH by recruiting SRSF2, a transcription/splicing factor, to the promoter-associated nascent RNA of PAH. These data support a model of feedback modulation of dopamine biosynthesis and behavioral plasticity via a sense lncRNA in the catecholamine metabolic pathway.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya'nan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| |
Collapse
|
41
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
42
|
Keihani S, Kluever V, Mandad S, Bansal V, Rahman R, Fritsch E, Gomes LC, Gärtner A, Kügler S, Urlaub H, Wren JD, Bonn S, Rizzoli SO, Fornasiero EF. The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. SCIENCE ADVANCES 2019; 5:eaay2670. [PMID: 31897430 PMCID: PMC6920028 DOI: 10.1126/sciadv.aay2670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/23/2019] [Indexed: 05/26/2023]
Abstract
The cellular and the molecular mechanisms by which long noncoding RNAs (lncRNAs) may regulate presynaptic function and neuronal activity are largely unexplored. Here, we established an integrated screening strategy to discover lncRNAs implicated in neurotransmitter and synaptic vesicle release. With this approach, we identified neuroLNC, a neuron-specific nuclear lncRNA conserved from rodents to humans. NeuroLNC is tuned by synaptic activity and influences several other essential aspects of neuronal development including calcium influx, neuritogenesis, and neuronal migration in vivo. We defined the molecular interactors of neuroLNC in detail using chromatin isolation by RNA purification, RNA interactome analysis, and protein mass spectrometry. We found that the effects of neuroLNC on synaptic vesicle release require interaction with the RNA-binding protein TDP-43 (TAR DNA binding protein-43) and the selective stabilization of mRNAs encoding for presynaptic proteins. These results provide the first proof of an lncRNA that orchestrates neuronal excitability by influencing presynaptic function.
Collapse
Affiliation(s)
- S. Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
| | - V. Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
| | - S. Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - V. Bansal
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), UKE, 20246 Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - R. Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), UKE, 20246 Hamburg, Germany
| | - E. Fritsch
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
| | - L. Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075 Göttingen, Germany
| | - A. Gärtner
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - S. Kügler
- Department of Neurology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - H. Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - J. D. Wren
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - S. Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), UKE, 20246 Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - S. O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075 Göttingen, Germany
| | - E. F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075 Göttingen, Germany
| |
Collapse
|
43
|
Wang Y, Shao Y, Zhu Y, Wang K, Ma B, Zhou Q, Chen A, Chen H. XRN1-associated long non-coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris. PEST MANAGEMENT SCIENCE 2019; 75:3302-3311. [PMID: 31025499 DOI: 10.1002/ps.5453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Numerous long non-coding RNAs (lncRNAs) identified and characterized in mammals, plants, and fungi have been found to play critical regulatory roles in biological processes. However, little is known about the role of lncRNAs in insect pathogenic fungi. RESULTS By profiling the transcriptomes of sexual and asexual development in the insect-pathogenic fungus Cordyceps militaris, 4140 lncRNAs were identified and found to be dynamically expressed during fungal development. The lncRNAs had shorter transcript lengths and lower numbers of exons compared to protein-coding genes. The expressed target genes (neighboring and cis-regulated) of various expressed lncRNAs were predicted, and these genes showed significant enrichment in energy metabolism and signaling pathways, such as 'Glycolysis/Gluconeogenesis' and "MAPK signaling pathway". To better understand how lncRNAs function in the fungus, xrn1, the final gene of the NMD pathway, which determines the fate of lncRNAs, was disrupted. The Δxrn1 deletion mutant displayed significant (P < 0.05) attenuation of virulence and a lower growth rate in C. militaris. Quantitative RT-PCR results revealed 10 lncRNAs with significantly higher expression, while 8 of these 10 lncRNA target genes (virulence- and sexual development-related) showed significantly lower expression in Δxrn1 compared to in the wild-type, suggesting that lncRNA expression regulates fungal virulence and sexual development by affecting gene expression. CONCLUSION These findings suggest that lncRNAs in C. militaris play important roles in the fungal infection progress and fruiting body production, providing a broad repertoire and resource for further studies of lncRNAs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulong Wang
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Quality Improvement of Anhui Province/Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ying Shao
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yunlan Zhu
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Kun Wang
- Jiangsu KONEN Biological Engineering Co., Ltd, Nanjing, China
| | - Bin Ma
- Jiangsu KONEN Biological Engineering Co., Ltd, Nanjing, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anhui Chen
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Hongwei Chen
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
44
|
Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem 2019; 163:107034. [DOI: 10.1016/j.nlm.2019.107034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
45
|
Abstract
PURPOSE OF REVIEW In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Benedict Atzler
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany.
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
46
|
Wan J, Deng D, Wang X, Wang X, Jiang S, Cui R. LINC00491 as a new molecular marker can promote the proliferation, migration and invasion of colon adenocarcinoma cells. Onco Targets Ther 2019; 12:6471-6480. [PMID: 31496744 PMCID: PMC6698166 DOI: 10.2147/ott.s201233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of multiple tumors. However, the roles of lncRNAs during colon adenocarcinoma and cancer progression remain unclear. This study aimed identify new lncRNAs that act as molecular markers for the prevention and diagnosis of colon adenocarcinoma. Methods RNA sequencing (RNA-Seq) data associated with colon adenocarcinoma were retrieved from the Cancer Genome Atlas (TCGA). Biological processes in Gene Ontology (Go) and the Kyoto Encyclopedia of Genomes (KEGG) were searched for pathways at the significance level. The expression of LINC00491 and its downstream targets were assessed by real-time PCR, Western blotting and dual-luciferase assays. Biological functions of LINC00491 during cell proliferation, migration and invasion were assessed using CCK-8, colony formation assays, wound healing, and transwell invasion assays in colon adenocarcinoma HT-29 and HCT116 cells. Results Bioinformatics analysis with the TCGA colon adenocarcinoma dataset showed that LINC00491 was significantly up-regulated in colon adenocarcinoma. Furthermore, we found that LINC00491 positively regulates SERPINE1 expression through sponging miR-145 and promoting the proliferation, migration, and invasion of colon adenocarcinoma cells, thus playing an oncogenic role during colon adenocarcinoma pathogenesis. Conclusion LINC00491 functions as a ceRNA to promote SERPINE1 expression by sponging miR-145. LINC00491 serves as a therapeutic target and prognostic biomarker in colon adenocarcinoma.
Collapse
Affiliation(s)
- Jiahui Wan
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Daiqian Deng
- Department of Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, Heilongjiang, People's Republic of China
| | - Xiaojin Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Shijun Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, Heilongjiang, People's Republic of China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| |
Collapse
|
47
|
Chen R, Xu X, Huang L, Zhong W, Cui L. The Regulatory Role of Long Noncoding RNAs in Different Brain Cell Types Involved in Ischemic Stroke. Front Mol Neurosci 2019; 12:61. [PMID: 30967760 PMCID: PMC6440499 DOI: 10.3389/fnmol.2019.00061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
Stroke results in high morbidity and high mortality worldwide, with ischemic stroke accounting for 80% to 85%. As effective treatments for ischemic stroke remain limited because of the narrow therapeutic time window, a better understanding of the pathologic mechanism and new therapeutic intervention targets are needed. Due to the development of next-generation sequencing technologies and the genome-wide analysis of eukaryotic transcriptomes, a large amount of evidence to date demonstrates that long noncoding RNAs (lncRNAs) play a vital role in gene regulation and in ischemic stroke. In recent years, many studies have been focused on the clinical significance of lncRNAs in ischemic stroke, and data shows that the pathological processes underlying ischemic stroke are driven by interactions among different brain cell types, including neurons, glial cells, and vascular cells, which actively participate in the mechanisms of tissue injury and repair. In this mini review article, we provide an overview of the characteristics and underlying regulation mechanisms of lncRNAs relevant to different brain cell types during the course of ischemic stroke. Moreover, we reveal the roles of lncRNAs as potential biomarkers and treatment targets in ischemic stroke.
Collapse
Affiliation(s)
- Runsen Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangming Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
48
|
Zampa F, Hartzell AL, Zolboot N, Lippi G. Non-coding RNAs: the gatekeepers of neural network activity. Curr Opin Neurobiol 2019; 57:54-61. [PMID: 30743177 DOI: 10.1016/j.conb.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Non-coding RNAs have emerged as potent regulators of numerous cellular processes. In neurons and circuits, these molecules serve especially critical functions that ensure neural activity is maintained within appropriate physiological parameters. Their targets include synaptic proteins, ion channels, neurotransmitter receptors, and components of essential signaling cascades. Here, we discuss how several species of non-coding RNAs (ncRNAs) regulate intrinsic excitability and synaptic transmission, both during development and in mature circuits. Furthermore, we present the relationships between aberrant ncRNA expression and psychiatric disorders. The research presented here demonstrates how ncRNAs can be useful tools for elucidating fundamental neurobiology mechanisms and identifying the key molecular players.
Collapse
Affiliation(s)
- Federico Zampa
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrea L Hartzell
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Norjin Zolboot
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Giordano Lippi
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|