1
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
2
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Tate EW, Soday L, de la Lastra AL, Wang M, Lin H. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets. Nat Rev Cancer 2024; 24:240-260. [PMID: 38424304 DOI: 10.1038/s41568-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Lior Soday
- Department of Chemistry, Imperial College London, London, UK
| | | | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Zhang B, Yu Y, Fox BW, Liu Y, Thirumalaikumar VP, Skirycz A, Lin H, Schroeder FC. Amino acid and protein specificity of protein fatty acylation in C. elegans. Proc Natl Acad Sci U S A 2024; 121:e2307515121. [PMID: 38252833 PMCID: PMC10835129 DOI: 10.1073/pnas.2307515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Bennett W. Fox
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yinong Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | | | | | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- HHMI, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
5
|
Wortham M, Liu F, Harrington AR, Fleischman JY, Wallace M, Mulas F, Mallick M, Vinckier NK, Cross BR, Chiou J, Patel NA, Sui Y, McGrail C, Jun Y, Wang G, Jhala US, Schüle R, Shirihai OS, Huising MO, Gaulton KJ, Metallo CM, Sander M. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. J Clin Invest 2023; 133:e165208. [PMID: 36821378 PMCID: PMC10104905 DOI: 10.1172/jci165208] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Adaptation of the islet β cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in β cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. β Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Johanna Y. Fleischman
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Martina Wallace
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Medhavi Mallick
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nicholas K. Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Benjamin R. Cross
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nisha A. Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Carolyn McGrail
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Gaowei Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Ulupi S. Jhala
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Roland Schüle
- Department of Urology, University of Freiburg Medical Center, Freiburg, Germany
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, and Physiology and Membrane Biology, School of Medicine, UCD, Davis, California, USA
| | - Kyle J. Gaulton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | | | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| |
Collapse
|
6
|
Azizi SA, Delalande C, Lan T, Qiu T, Dickinson BC. Charting the Chemical Space of Acrylamide-Based Inhibitors of zDHHC20. ACS Med Chem Lett 2022; 13:1648-1654. [PMID: 36262404 PMCID: PMC9575173 DOI: 10.1021/acsmedchemlett.2c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022] Open
Abstract
Protein S-acylation is a dynamic and reversible lipid post-translational modification that can affect the activity, stability, localization, and interactions of target proteins. Lipid modification occurs on cysteine residues via a thioester bond and in humans is mediated by 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). The DHHC-PATs have well-known roles in physiology and disease, but much remains to be discovered about their biological function and therapeutic potential. We recently developed cyanomyracrylamide (CMA), an acrylamide-based DHHC inhibitor with key improvements over existing inhibitors. Here we conduct a structure-activity relationship (SAR) study of CMA and its acrylamide derivatives against zDHHC20, the most structurally characterized member of the human DHHC family, and validate the results against the homologous zDHHC2. This SAR maps out the limitations and potential of the acrylamide scaffold, underscoring the need for a bivalent inhibitor and identifying along the way three molecules with activity on par with CMA but with an improved logP.
Collapse
Affiliation(s)
- Saara-Anne Azizi
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Medical
Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Clémence Delalande
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tong Lan
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tian Qiu
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Pandit R, Singh I, Ansari A, Raval J, Patel Z, Dixit R, Shah P, Upadhyay K, Chauhan N, Desai K, Shah M, Modi B, Joshi M, Joshi C. First report on genome wide association study in western Indian population reveals host genetic factors for COVID-19 severity and outcome. Genomics 2022; 114:110399. [PMID: 35680011 PMCID: PMC9169419 DOI: 10.1016/j.ygeno.2022.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Different human races across the globe responded in a different way to the SARS-CoV-2 infection leading to different disease severity. Therefore, it is anticipated that host genetic factors have a straight association with the COVID-19. We identified a total 6, 7, and 6 genomic loci for deceased-recovered, asymptomatic-recovered, and deceased-asymptomatic group comparison, respectively. Unfavourable alleles of the markers nearby the genes which are associated with lung and heart diseases such as Tumor necrosis factor superfamily (TNFSF4&18), showed noteworthy association with the disease severity and outcome for the COVID-19 patients in the western Indian population. The markers found with significant association with disease prognosis or recovery are of value in determining the individual's response to SARS-CoV-2 infection and can be used for the risk prediction in COVID-19. Besides, GWAS study in other populations from India may help to strengthen the outcome of this study.
Collapse
Affiliation(s)
- Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India
| | - Indra Singh
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India
| | - Afzal Ansari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India
| | - Raghav Dixit
- Commissionerate of Health Medical Services and Medical Education Gandhinagar, Gujarat 382010, India
| | - Pranay Shah
- Department of Microbiology, B.J. Medical College and Civil hospital, Institute of Medical Post-Graduate Studies and Research, Ahmedabad, Gujarat 380016, India
| | - Kamlesh Upadhyay
- Department of Medicine, B.J. Medical College and Civil hospital, Institute of Medical Post-Graduate Studies and Research, Ahmedabad, Gujarat 380016, India
| | - Naresh Chauhan
- Department of Community Medicine, Government Medical College, Surat, Gujarat 395001, India
| | - Kairavi Desai
- Department of Microbiology, Government Medical College, Bhavnagar, Gujarat 364001, India
| | - Meenakshi Shah
- Department of General Medicine, GMERS Medical College & Hospital, Gotri, Vadodara, Gujarat 390021, India
| | - Bhavesh Modi
- Department of Community Medicine, GMERS Medical College, Gandhinagar, Gujarat 382012, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
8
|
Qian Y, Cheng B, Luo J, Hu Y, Gao L, Cheng H. CircRFX3 Up-regulates Its Host Gene RFX3 to Facilitate Tumorigenesis and Progression of Glioma. J Mol Neurosci 2022; 72:1195-1207. [PMID: 35416616 DOI: 10.1007/s12031-022-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glioma is classified as one of the most common types of primary brain tumors. The high expression of CircRFX3 has been found in glioma. However, its functional roles in glioma and underlying mechanism remain unknown. PURPOSE Our study aimed to explore the function and specific mechanism of circRFX3 in glioma. METHODS RT-qPCR or western blot was applied to examine the expression of RNAs or proteins. Functional assays were carried out to evaluate the influence of circRFX3, RFX3 and PROX1 on glioma cells. In vivo experiments were done to ascertain the impact of circRFX3 on glioma growth. Moreover, mechanism assays were conducted to investigate the molecular relation among circRFX3, RFX3, HNRNPK and PROX1. RESULTS CircRFX3 was highly expressed in glioma cells. CircRFX3 knockdown led to the suppression of glioma cell and tumor growth. CircRFX3 overexpression resulted in the opposite outcomes. Mechanism analyses suggested that circRFX3 recruited HNRNPK to enhance RFX3 mRNA stability, thereby facilitating glioma cell malignant behaviors. RFX3 was also unveiled to affect glioma cells via stimulating PROX1 transcription. CONCLUSION CircRFX3, as a tumor promoter, could recruit HNRNPK to stabilize RFX3 mRNA in glioma cells. Additionally, RFX3 could promote PROX1 transcription to promote glioma progression.
Collapse
Affiliation(s)
- Yu Qian
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Baochun Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Luo
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yangchun Hu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Lu Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
9
|
Hu L, Tao Z, Wu X. Insights into auto- S-fatty acylation: targets, druggability, and inhibitors. RSC Chem Biol 2021; 2:1567-1579. [PMID: 34977571 PMCID: PMC8637764 DOI: 10.1039/d1cb00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Posttranslational S-fatty acylation (or S-palmitoylation) modulates protein localization and functions, and has been implicated in neurological, metabolic, and infectious diseases, and cancers. Auto-S-fatty acylation involves reactive cysteine residues in the proteins which directly react with fatty acyl-CoA through thioester transfer reactions, and is the first step in some palmitoyl acyltransferase (PAT)-mediated catalysis reactions. In addition, many structural proteins, transcription factors and adaptor proteins might possess such "enzyme-like" activities and undergo auto-S-fatty acylation upon fatty acyl-CoA binding. Auto-S-fatty acylated proteins represent a new class of potential drug targets, which often harbor lipid-binding hydrophobic pockets and reactive cysteine residues, providing potential binding sites for covalent and non-covalent modulators. Therefore, targeting auto-S-fatty acylation could be a promising avenue to pharmacologically intervene in important cellular signaling pathways. Here, we summarize the recent progress in understanding the regulation and functions of auto-S-fatty acylation in cell signaling and diseases. We highlight the druggability of auto-S-fatty acylated proteins, including PATs and other proteins, with potential in silico and rationalized drug design approaches. We also highlight structural analysis and examples of currently known small molecules targeting auto-S-fatty acylation, to gain insights into targeting this class of proteins, and to expand the "druggable" proteome.
Collapse
Affiliation(s)
- Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| |
Collapse
|
10
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
11
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
12
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
13
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Patir A, Fraser AM, Barnett MW, McTeir L, Rainger J, Davey MG, Freeman TC. The transcriptional signature associated with human motile cilia. Sci Rep 2020; 10:10814. [PMID: 32616903 PMCID: PMC7331728 DOI: 10.1038/s41598-020-66453-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are complex microtubule-based organelles essential to a range of processes associated with embryogenesis and tissue homeostasis. Mutations in components of these organelles or those involved in their assembly may result in a diverse set of diseases collectively known as ciliopathies. Accordingly, many cilia-associated proteins have been described, while those distinguishing cilia subtypes are poorly defined. Here we set out to define genes associated with motile cilia in humans based on their transcriptional signature. To define the signature, we performed network deconvolution of transcriptomics data derived from tissues possessing motile ciliated cell populations. For each tissue, genes coexpressed with the motile cilia-associated transcriptional factor, FOXJ1, were identified. The consensus across tissues provided a transcriptional signature of 248 genes. To validate these, we examined the literature, databases (CilDB, CentrosomeDB, CiliaCarta and SysCilia), single cell RNA-Seq data, and the localisation of mRNA and proteins in motile ciliated cells. In the case of six poorly characterised signature genes, we performed new localisation experiments on ARMC3, EFCAB6, FAM183A, MYCBPAP, RIBC2 and VWA3A. In summary, we report a set of motile cilia-associated genes that helps shape our understanding of these complex cellular organelles.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Amy M Fraser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Lynn McTeir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Joe Rainger
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Megan G Davey
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| |
Collapse
|
15
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020; 45:7. [PMID: 31965985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic complexity and thus their ability to respond to diverse cues are largely driven by varying expression of gene products, qualitatively and quantitatively. Protein adducts in the form of post-translational modifications, most of which are derived from metabolic intermediates, allow fine tuning of gene expression at multiple levels. With the advent of high-throughput and high-resolution mapping technologies there has been an explosion in terms of the kind of modifications on chromatin and other factors that govern gene expression. Moreover, even the classical notion of acetylation and methylation dependent regulation of transcription is now known to be intrinsically coupled to biochemical pathways, which were otherwise regarded as 'mundane'. Here we have not only reviewed some of the recent literature but also have highlighted the dependence of gene regulatory mechanisms on metabolic inputs, both direct and indirect. We have also tried to bring forth some of the open questions, and how our understanding of gene expression has changed dramatically over the last few years, which has largely become metabolism centric. Finally, metabolic regulation of epigenome and gene expression has gained much traction due to the increased incidence of lifestyle and age-related diseases.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
16
|
Parisi LR, Sowlati-Hashjin S, Berhane IA, Galster SL, Carter KA, Lovell JF, Chemler SR, Karttunen M, Atilla-Gokcumen GE. Membrane Disruption by Very Long Chain Fatty Acids during Necroptosis. ACS Chem Biol 2019; 14:2286-2294. [PMID: 31490656 DOI: 10.1021/acschembio.9b00616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necroptosis is a form of regulated cell death which results in loss of plasma membrane integrity, release of intracellular contents, and an associated inflammatory response. We previously found that saturated very long chain fatty acids (VLCFAs), which contain ≥20 carbons, accumulate during necroptosis. Here, we show that genetic knockdown of Fatty Acid (FA) Elongase 7 (ELOVL7) reduces accumulation of specific very long chain FAs during necroptosis, resulting in reduced necroptotic cell death and membrane permeabilization. Conversely, increasing the expression of ELOVL7 increases very long chain fatty acids and membrane permeabilization. In vitro, introduction of the VLCFA C24 FA disrupts bilayer integrity in liposomes to a greater extent than a conventional C16 FA. To investigate the microscopic origin of these observations, atomistic Molecular Dynamics (MD) simulations were performed. MD simulations suggest that fatty acids cause clear differences in bilayers based on length and that it is the interdigitation of C24 FA between the individual leaflets that results in disorder in the region and, consequently, membrane disruption. We synthesized clickable VLCFA analogs and observed that many proteins were acylated by VLCFAs during necroptosis. Taken together, these results confirm the active role of VLCFAs during necroptosis and point to multiple potential mechanisms of membrane disruption including direct permeabilization via bilayer disruption and permeabilization by targeting of proteins to cellular membranes by fatty acylation.
Collapse
Affiliation(s)
- Laura R. Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Ilyas A. Berhane
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Samuel L. Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Roy K, Marin EP. Lipid Modifications in Cilia Biology. J Clin Med 2019; 8:jcm8070921. [PMID: 31252577 PMCID: PMC6678300 DOI: 10.3390/jcm8070921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are specialized cellular structures with distinctive roles in various signaling cascades. Ciliary proteins need to be trafficked to the cilium to function properly; however, it is not completely understood how these proteins are delivered to their final localization. In this review, we will focus on how different lipid modifications are important in ciliary protein trafficking and, consequently, regulation of signaling pathways. Lipid modifications can play a variety of roles, including tethering proteins to the membrane, aiding trafficking through facilitating interactions with transporter proteins, and regulating protein stability and abundance. Future studies focusing on the role of lipid modifications of ciliary proteins will help our understanding of how cilia maintain specific protein pools strictly connected to their functions.
Collapse
Affiliation(s)
- Kasturi Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA.
| | - Ethan P Marin
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA
| |
Collapse
|