1
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ngo VN, Winski DP, Aho B, Kamath PL, King BL, Waters H, Zimmerberg J, Sodt A, Hess ST. Conserved sequence features in intracellular domains of viral spike proteins. Virology 2024; 599:110198. [PMID: 39116647 PMCID: PMC11383743 DOI: 10.1016/j.virol.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
Collapse
Affiliation(s)
- Vinh-Nhan Ngo
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - David P Winski
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Brandon Aho
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Pauline L Kamath
- School of Food and Agriculture, 342 Hitchner Hall, University of Maine, And Maine Center for Genetics in the Environment, Orono, ME, USA.
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME, USA.
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
3
|
Wang Y, Lv H, Teo QW, Lei R, Gopal AB, Ouyang WO, Yeung YH, Tan TJC, Choi D, Shen IR, Chen X, Graham CS, Wu NC. An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies. Immunity 2024; 57:2453-2465.e7. [PMID: 39163866 PMCID: PMC11464180 DOI: 10.1016/j.immuni.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B Gopal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuen-Hei Yeung
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire S Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Paparoditis PCG, Fruehwirth A, Bevc K, Low JS, Jerak J, Terzaghi L, Foglierini M, Fernandez B, Jarrossay D, Corti D, Sallusto F, Lanzavecchia A, Cassotta A. Site-specific serology unveils cross-reactive monoclonal antibodies targeting influenza A hemagglutinin epitopes. Eur J Immunol 2024; 54:e2451045. [PMID: 39031535 DOI: 10.1002/eji.202451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Efficient identification of human monoclonal antibodies targeting specific antigenic sites is pivotal for advancing vaccines and immunotherapies against infectious diseases and cancer. Existing screening techniques, however, limit our ability to discover monoclonal antibodies with desired specificity. In this study, we introduce a novel method, blocking of binding (BoB) enzyme-linked immunoassay (ELISA), enabling the detection of high-avidity human antibodies directed to defined epitopes. Leveraging BoB-ELISA, we analyzed the antibody response to known epitopes of influenza A hemagglutinin (HA) in the serum of vaccinated donors. Our findings revealed that serum antibodies targeting head epitopes were immunodominant, whereas antibodies against the stem epitope, although subdominant, were highly prevalent. Extending our analysis across multiple HA strains, we examined the cross-reactive antibody response targeting the stem epitope. Importantly, employing BoB-ELISA we identified donors harboring potent heterosubtypic antibodies targeting the HA stem. B-cell clonal analysis of these donors revealed three novel, genealogically independent monoclonal antibodies with broad cross-reactivity to multiple HAs. In summary, we demonstrated that BoB-ELISA is a sensitive technique for measuring B-cell epitope immunogenicity, enabling the identification of novel monoclonal antibodies with implications for enhanced vaccine development and immunotherapies.
Collapse
Affiliation(s)
- Philipp C G Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Kajetana Bevc
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laura Terzaghi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Blanca Fernandez
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
- National Institute of Molecular Genetics, Milano, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
5
|
Ouyang WO, Lv H, Liu W, Mou Z, Lei R, Pholcharee T, Wang Y, Dailey KE, Gopal AB, Choi D, Ardagh MR, Talmage L, Rodriguez LA, Dai X, Wu NC. Rapid synthesis and screening of natively paired antibodies against influenza hemagglutinin stem via oPool + display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610421. [PMID: 39257766 PMCID: PMC11383711 DOI: 10.1101/2024.08.30.610421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Antibody discovery is crucial for developing therapeutics and vaccines as well as understanding adaptive immunity. However, the lack of approaches to synthesize antibodies with defined sequences in a high-throughput manner represents a major bottleneck in antibody discovery. Here, we presented oPool+ display, which combines oligo pool synthesis and mRNA display to construct and characterize many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool+ display to rapidly screen the binding activity of >300 natively paired influenza hemagglutinin (HA) antibodies against the conserved HA stem domain. Structural analysis of 16.ND.92, one of the identified HA stem antibodies, revealed a unique binding mode distinct from other known broadly neutralizing HA stem antibodies with convergent sequence features. Yet, despite such differences, 16.ND.92 remained broadly reactive and conferred in vivo protection. Overall, this study not only established an experimental platform that can be applied in both research and therapeutics to accelerate antibody discovery, but also provides molecular insights into antibody responses to the influenza HA stem, which is a major target for universal influenza vaccine development.
Collapse
Affiliation(s)
- Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenkan Liu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tossapol Pholcharee
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katrine E. Dailey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B. Gopal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madison R. Ardagh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lucia A. Rodriguez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Calcraft T, Stanke-Scheffler N, Nans A, Lindemann D, Taylor IA, Rosenthal PB. Integrated cryoEM structure of a spumaretrovirus reveals cross-kingdom evolutionary relationships and the molecular basis for assembly and virus entry. Cell 2024; 187:4213-4230.e19. [PMID: 39013471 DOI: 10.1016/j.cell.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicole Stanke-Scheffler
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Simmons HC, Finney J, Kotaki R, Adachi Y, Park Moseman A, Watanabe A, Song S, Robinson-McCarthy LR, Le Sage V, Kuraoka M, Moseman EA, Kelsoe G, Takahashi Y, McCarthy KR. A protective and broadly binding antibody class engages the influenza virus hemagglutinin head at its stem interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571543. [PMID: 38168412 PMCID: PMC10760138 DOI: 10.1101/2023.12.13.571543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Influenza infection and vaccination impart strain-specific immunity that protects against neither seasonal antigenic variants nor the next pandemic. However, antibodies directed to conserved sites can confer broad protection. Here we identify and characterize a class of human antibodies that engage a previously undescribed, conserved epitope on the influenza hemagglutinin (HA) protein. Prototype antibody S8V1-157 binds at the normally occluded interface between the HA head and stem. Antibodies to this HA head-stem interface epitope are non-neutralizing in vitro but protect against lethal influenza infection in mice. Antibody isotypes that direct clearance of infected cells enhance this protection. Head-stem interface antibodies bind to most influenza A serotypes and seasonal human variants, and are present at low frequencies in the memory B cell populations of multiple human donors. Vaccines designed to elicit these antibodies might contribute to "universal" influenza immunity.
Collapse
Affiliation(s)
- Holly C. Simmons
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joel Finney
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Ryutaro Kotaki
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Annie Park Moseman
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Shengli Song
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
| | - Lindsey R. Robinson-McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Bliss CM, Nachbagauer R, Mariottini C, Cuevas F, Feser J, Naficy A, Bernstein DI, Guptill J, Walter EB, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Coughlan L. A chimeric haemagglutinin-based universal influenza virus vaccine boosts human cellular immune responses directed towards the conserved haemagglutinin stalk domain and the viral nucleoprotein. EBioMedicine 2024; 104:105153. [PMID: 38805853 PMCID: PMC11154122 DOI: 10.1016/j.ebiom.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).
Collapse
Affiliation(s)
- Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Cancer & Genetics and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Mariottini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frans Cuevas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jodi Feser
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Abdi Naficy
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - David I Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Guptill
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Center for Vaccine Development and Global Health (CVD), Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Yang YR, Han J, Perrett HR, Richey ST, Rodriguez AJ, Jackson AM, Gillespie RA, O'Connell S, Raab JE, Cominsky LY, Chopde A, Kanekiyo M, Houser KV, Chen GL, McDermott AB, Andrews SF, Ward AB. Immune memory shapes human polyclonal antibody responses to H2N2 vaccination. Cell Rep 2024; 43:114171. [PMID: 38717904 PMCID: PMC11156625 DOI: 10.1016/j.celrep.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.
Collapse
Affiliation(s)
- Yuhe R Yang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alesandra J Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ankita Chopde
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
12
|
Lederhofer J, Tsybovsky Y, Nguyen L, Raab JE, Creanga A, Stephens T, Gillespie RA, Syeda HZ, Fisher BE, Skertic M, Yap C, Schaub AJ, Rawi R, Kwong PD, Graham BS, McDermott AB, Andrews SF, King NP, Kanekiyo M. Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase. Immunity 2024; 57:574-586.e7. [PMID: 38430907 PMCID: PMC10962683 DOI: 10.1016/j.immuni.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.
Collapse
Affiliation(s)
- Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Z Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Skertic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
do Nascimento GM, de Oliveira PSB, Butt SL, Diel DG. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front Immunol 2024; 15:1322879. [PMID: 38482020 PMCID: PMC10933025 DOI: 10.3389/fimmu.2024.1322879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Sebastian Britto de Oliveira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Salman Latif Butt
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
He Y, Guo Z, Subiaur S, Benegal A, Vahey MD. Antibody inhibition of influenza A virus assembly and release. J Virol 2024; 98:e0139823. [PMID: 38179944 PMCID: PMC10878280 DOI: 10.1128/jvi.01398-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) has been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations 1-20-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking-either on the surface of the infected cell, between the viral and cell membrane, or both-plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines and that can be extended to other viral families and antibody isotypes.IMPORTANCEAntibodies against influenza A virus provide multifaceted protection against infection. Although sensitive and quantitative assays are widely used to measure inhibition of viral attachment and entry, the ability of diverse antibodies to inhibit viral egress is less clear. We address this challenge by developing an imaging-based approach to measure antibody inhibition of virus release across a panel of monoclonal antibodies targeting the influenza A virus surface proteins. Using this approach, we find that inhibition of viral egress is common and can have similar potency to the ability of an antibody to inhibit viral entry. Insights into this understudied aspect of antibody function may help guide the development of improved countermeasures.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zijian Guo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sofie Subiaur
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ananya Benegal
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael D. Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
16
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson MJ, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses. Cell Rep 2023; 42:113553. [PMID: 38096052 PMCID: PMC10801708 DOI: 10.1016/j.celrep.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The receptor-binding domain (RBD) of influenza virus hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies. Here, we evaluate the ability of several immunofocusing techniques to enhance the functional breadth of vaccine-elicited immune responses against the HA RBD. We present a series of "trihead" nanoparticle immunogens that display native-like closed trimeric RBDs from the HAs of several H1N1 influenza viruses. The series includes hyperglycosylated and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the receptor-binding site periphery. Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicit higher hemagglutination inhibition (HAI) and neutralizing activity than the corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation. By contrast, mosaic nanoparticle display and antigen hypervariation do not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Our results yield important insights into antibody responses against the RBD and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Saphire E, Salie ZL, Ke Z, Halfmann P, DeWald LE, McArdle S, Grinyo A, Davidson E, Schendel S, Hariharan C, Norris M, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook M, Doranz B, Crozier I, Hastie K, Kawaoka Y, Branco L, Kuhn J, Briggs J, Worwa G, Davis C, Ahmed R. Anti-Ebola virus mAb 3A6 with unprecedented potency protects highly viremic animals from fatal outcome and physically lifts its glycoprotein target from the virion membrane. RESEARCH SQUARE 2023:rs.3.rs-3722563. [PMID: 38196595 PMCID: PMC10775387 DOI: 10.21203/rs.3.rs-3722563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Moreover, their in vivo efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP1,2 MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP1,2 that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | | | - Michael Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health (NIH)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
19
|
Cisse A, Desfosses A, Stainer S, Kandiah E, Traore DAK, Bezault A, Schachner-Nedherer AL, Leitinger G, Hoerl G, Hinterdorfer P, Gutsche I, Prassl R, Peters J, Kornmueller K. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int J Biol Macromol 2023; 252:126345. [PMID: 37619685 DOI: 10.1016/j.ijbiomac.2023.126345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Low-density lipoprotein (LDL) plays a crucial role in cholesterol metabolism. Responsible for cholesterol transport from the liver to the organs, LDL accumulation in the arteries is a primary cause of cardiovascular diseases, such as atherosclerosis. This work focuses on the fundamental question of the LDL molecular structure, as well as the topology and molecular motions of apolipoprotein B-100 (apo B-100), which is addressed by single-particle cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM). Our results suggest a revised model of the LDL core organization with respect to the cholesterol ester (CE) arrangement. In addition, a high-density region close to the flattened poles could be identified, likely enriched in free cholesterol. The most remarkable new details are two protrusions on the LDL surface, attributed to the protein apo B-100. HS-AFM adds the dimension of time and reveals for the first time a highly dynamic direct description of LDL, where we could follow large domain fluctuations of the protrusions in real time. To tackle the inherent flexibility and heterogeneity of LDL, the cryo-EM maps are further assessed by 3D variability analysis. Our study gives a detailed explanation how to approach the intrinsic flexibility of a complex system comprising lipids and protein.
Collapse
Affiliation(s)
- Aline Cisse
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Sarah Stainer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | | | - Daouda A K Traore
- Institut Laue-Langevin, Grenoble, France; Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali; Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire, UK
| | - Armel Bezault
- Institut Européen de Chimie et Biologie, UAR3033/US001, Université de Bordeaux, CNRS, INSERM 2, Pessac, France; Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Anna-Laurence Schachner-Nedherer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerd Hoerl
- Otto Loewi Research Center, Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Hinterdorfer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France; Institut Universitaire de France, France.
| | - Karin Kornmueller
- Institut Laue-Langevin, Grenoble, France; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria.
| |
Collapse
|
20
|
Aliper ET, Efremov RG. Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain. Int J Mol Sci 2023; 24:16421. [PMID: 38003610 PMCID: PMC10671605 DOI: 10.3390/ijms242216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, Moscow 101000, Russia
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
| |
Collapse
|
21
|
Michalski M, Setny P. Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor. J Phys Chem B 2023; 127:9450-9460. [PMID: 37877534 PMCID: PMC10641832 DOI: 10.1021/acs.jpcb.3c05257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
22
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Nat Commun 2023; 14:7218. [PMID: 37940661 PMCID: PMC10632514 DOI: 10.1038/s41467-023-42097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Junjian Chen
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Immunology, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kaku
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- NeoCura Bio-Medical Technology Co., Ltd., Beijing, China
| | - Luke Donius
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, MA, USA
| | - Rafiq Ahmad Khan
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Li
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mikyung Kim
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
24
|
Meng X, Veit M. Palmitoylation of the hemagglutinin of influenza B virus by ER-localized DHHC enzymes 1, 2, 4, and 6 is required for efficient virus replication. J Virol 2023; 97:e0124523. [PMID: 37792001 PMCID: PMC10617437 DOI: 10.1128/jvi.01245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.
Collapse
Affiliation(s)
- Xiaorong Meng
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| | - Michael Veit
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
25
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Wang Y, Lv H, Lei R, Yeung YH, Shen IR, Choi D, Teo QW, Tan TJ, Gopal AB, Chen X, Graham CS, Wu NC. An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557288. [PMID: 37745338 PMCID: PMC10515799 DOI: 10.1101/2023.09.11.557288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and inaccessibility of datasets for model training. In this study, we curated a dataset of >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM captured key sequence motifs of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of antibody response to influenza virus, but also provides an invaluable resource for applying deep learning to antibody research.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuen-Hei Yeung
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ivana R. Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B. Gopal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire S. Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Cadena-Cruz C, Villarreal Camacho JL, De Ávila-Arias M, Hurtado-Gomez L, Rodriguez A, San-Juan-Vergara H. Respiratory syncytial virus entry mechanism in host cells: A general overview. Mol Microbiol 2023; 120:341-350. [PMID: 37537859 DOI: 10.1111/mmi.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Respiratory syncytial virus (RSV) is a virus that causes acute respiratory infections in neonates and older adults. To infect host cells, the attachment glycoprotein (G) interacts with a cell surface receptor. This interaction determines the specific cell types that are susceptible to infection. RSV possesses a type I fusion protein F. Type I fusion proteins are metastable when rearrangement of the prefusion F occurs; the fusion peptide is exposed transforming the protein into postfusion form. The transition between the prefusion form and its postfusion form facilitates the viral envelope and the host cell membrane to fuse, enabling the virus to enter the host cell. Understanding the entry mechanism employed by RSV is crucial for developing effective antiviral therapies. In this review, we will discuss the various types of viral fusion proteins and explore the potential entry mechanisms utilized by RSV. A deeper understanding of these mechanisms will provide valuable insights for the development of novel approaches to treat RSV infections.
Collapse
Affiliation(s)
- C Cadena-Cruz
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
- Facultad de Ciencias de la Salud, Programa de Medicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - J L Villarreal Camacho
- Facultad de Ciencias de la Salud, Programa de Medicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Marcio De Ávila-Arias
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | - Leidy Hurtado-Gomez
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | - Alexander Rodriguez
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | | |
Collapse
|
28
|
Yang YR, Han J, Perrett HR, Richey ST, Jackson AM, Rodriguez AJ, Gillespie RA, O’Connell S, Raab JE, Cominsky LY, Chopde A, Kanekiyo M, Houser KV, Chen GL, McDermott AB, Andrews SF, Ward AB. Immune memory shapes human polyclonal antibody responses to H2N2 vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554525. [PMID: 37781590 PMCID: PMC10541104 DOI: 10.1101/2023.08.23.554525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase I clinical trial investigating a ferritin nanoparticle displaying H2 hemagglutinin in H2-naïve and H2-exposed adults. Therefore, we could perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited after H2 vaccination. We temporally map the epitopes targeted by serum antibodies after first and second vaccinations and show previous H2 exposure results in higher responses to the variable head domain of hemagglutinin while initial responses in H2-naïve participants are dominated by antibodies targeting conserved epitopes. We use cryo-EM and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the hemagglutinin head including the receptor binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses.
Collapse
Affiliation(s)
- Yuhe R. Yang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E. Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lauren Y. Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ankita Chopde
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Katherine V. Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
29
|
Yuanyuan H, Zijian G, Subiaur S, Benegal A, Vahey MD. Antibody Inhibition of Influenza A Virus Assembly and Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552198. [PMID: 37609131 PMCID: PMC10441363 DOI: 10.1101/2023.08.08.552198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) have been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations one- to twenty-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress, and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking - either on the surface of the infected cell, between the viral and cell membrane, or both - plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines, and that can be extended to other viral families and antibody isotypes.
Collapse
Affiliation(s)
- He Yuanyuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Guo Zijian
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sofie Subiaur
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ananya Benegal
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael D. Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546734. [PMID: 37425731 PMCID: PMC10327024 DOI: 10.1101/2023.06.27.546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace". During natural infection, the flexible hinge of IgG3 partially mitigates steric occlusion of less pliable IgG1 subclass Abs with identical MPER specificity, until affinity maturation refines entry mechanisms. The IgG3 subclass maintains B-cell competitiveness, exploiting bivalent ligation resulting from greater intramolecular Fab arm length, offsetting weak antibody affinity. These findings suggest future immunization strategies.
Collapse
|
31
|
Su R, Zeng J, Marcink TC, Porotto M, Moscona A, O’Shaughnessy B. Host Cell Membrane Capture by the SARS-CoV-2 Spike Protein Fusion Intermediate. ACS CENTRAL SCIENCE 2023; 9:1213-1228. [PMID: 37396856 PMCID: PMC10255576 DOI: 10.1021/acscentsci.3c00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 07/04/2023]
Abstract
Cell entry by SARS-CoV-2 is accomplished by the S2 subunit of the spike S protein on the virion surface by capture of the host cell membrane and fusion with the viral envelope. Capture and fusion require the prefusion S2 to transit to its potent fusogenic form, the fusion intermediate (FI). However, the FI structure is unknown, detailed computational models of the FI are unavailable, and the mechanisms and timing of membrane capture and fusion are not established. Here, we constructed a full-length model of the SARS-CoV-2 FI by extrapolating from known SARS-CoV-2 pre- and postfusion structures. In atomistic and coarse-grained molecular dynamics simulations the FI was remarkably flexible and executed giant bending and extensional fluctuations due to three hinges in the C-terminal base. The simulated configurations and their giant fluctuations are quantitatively consistent with SARS-CoV-2 FI configurations measured recently using cryo-electron tomography. Simulations suggested a host cell membrane capture time of ∼2 ms. Isolated fusion peptide simulations identified an N-terminal helix that directed and maintained binding to the membrane but grossly underestimated the binding time, showing that the fusion peptide environment is radically altered when attached to its host fusion protein. The large configurational fluctuations of the FI generated a substantial exploration volume that aided capture of the target membrane, and may set the waiting time for fluctuation-triggered refolding of the FI that draws the viral envelope and host cell membrane together for fusion. These results describe the FI as machinery that uses massive configurational fluctuations for efficient membrane capture and suggest novel potential drug targets.
Collapse
Affiliation(s)
- Rui Su
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jin Zeng
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Tara C. Marcink
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
| | - Matteo Porotto
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Anne Moscona
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Microbiology & Immunology, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Physiology, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
| | - Ben O’Shaughnessy
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
32
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson M, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin head elicits cross-neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541996. [PMID: 37292967 PMCID: PMC10245820 DOI: 10.1101/2023.05.23.541996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The head domain of influenza hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies during infection and vaccination. Here we evaluated a series of immunogens that combined several immunofocusing techniques for their ability to enhance the functional breadth of vaccine-elicited immune responses. We designed a series of "trihead" nanoparticle immunogens that display native-like closed trimeric heads from the HAs of several H1N1 influenza viruses, including hyperglycosylated variants and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the periphery of the receptor binding site (RBS). Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicited higher HAI and neutralizing activity against vaccine-matched and -mismatched H1 viruses than corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation, indicating that both of these engineering strategies contributed to improved immunogenicity. By contrast, mosaic nanoparticle display and antigen hypervariation did not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Serum competition assays and electron microscopy polyclonal epitope mapping revealed that the trihead immunogens, especially when hyperglycosylated, elicited a high proportion of antibodies targeting the RBS, as well as cross-reactive antibodies targeting a conserved epitope on the side of the head. Our results yield important insights into antibody responses against the HA head and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N. Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
33
|
Komori M, Nogimori T, Morey AL, Sekida T, Ishimoto K, Hassett MR, Masuta Y, Ode H, Tamura T, Suzuki R, Alexander J, Kido Y, Matsuda K, Fukuhara T, Iwatani Y, Yamamoto T, Smith JF, Akahata W. saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern. Nat Commun 2023; 14:2810. [PMID: 37208330 DOI: 10.1038/s41467-023-38457-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Mai Komori
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan
| | - Amber L Morey
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takashi Sekida
- VLP Therapeutics Japan, Inc. 1-16-4 Nishi-Shinbashi, Minato-ku, Tokyo, 100-0003, Japan
| | - Keiko Ishimoto
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Matthew R Hassett
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Jeff Alexander
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-0051, Japan
| | - Kenta Matsuda
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Hokkaido, 060-8638, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Jonathan F Smith
- VLP Therapeutics, Inc. 704 Quince Orchard Rd. #110, Gaithersburg, MD, 20878, USA.
| | - Wataru Akahata
- VLP Therapeutics Japan, Inc. 1-16-4 Nishi-Shinbashi, Minato-ku, Tokyo, 100-0003, Japan.
| |
Collapse
|
34
|
Andrews SF, Cominsky LY, Shimberg GD, Gillespie RA, Gorman J, Raab JE, Brand J, Creanga A, Gajjala SR, Narpala S, Cheung CSF, Harris DR, Zhou T, Gordon I, Holman L, Mendoza F, Houser KV, Chen GL, Mascola JR, Graham BS, Kwong PD, Widge A, Dropulic LK, Ledgerwood JE, Kanekiyo M, McDermott AB. An influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell response in humans. Sci Transl Med 2023; 15:eade4976. [PMID: 37075126 DOI: 10.1126/scitranslmed.ade4976] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Current yearly seasonal influenza vaccines primarily induce an antibody response directed against the immunodominant but continually diversifying hemagglutinin (HA) head region. These antibody responses provide protection against the vaccinating strain but little cross-protection against other influenza strains or subtypes. To focus the immune response on subdominant but more conserved epitopes on the HA stem that might protect against a broad range of influenza strains, we developed a stabilized H1 stem immunogen lacking the immunodominant head displayed on a ferritin nanoparticle (H1ssF). Here, we evaluated the B cell response to H1ssF in healthy adults ages 18 to 70 in a phase 1 clinical trial (NCT03814720). We observed both a strong plasmablast response and sustained elicitation of cross-reactive HA stem-specific memory B cells after vaccination with H1ssF in individuals of all ages. The B cell response was focused on two conserved epitopes on the H1 stem, with a highly restricted immunoglobulin repertoire unique to each epitope. On average, two-thirds of the B cell and serological antibody response recognized a central epitope on the H1 stem and exhibited broad neutralization across group 1 influenza virus subtypes. The remaining third recognized an epitope near the viral membrane anchor and was largely limited to H1 strains. Together, we demonstrate that an H1 HA immunogen lacking the immunodominant HA head produces a robust and broadly neutralizing HA stem-directed B cell response.
Collapse
Affiliation(s)
- Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Suprabhath R Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - LaSonji Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lesia K Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| |
Collapse
|
35
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
36
|
Klein S, Golani G, Lolicato F, Lahr C, Beyer D, Herrmann A, Wachsmuth-Melm M, Reddmann N, Brecht R, Hosseinzadeh M, Kolovou A, Makroczyova J, Peterl S, Schorb M, Schwab Y, Brügger B, Nickel W, Schwarz US, Chlanda P. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 2023; 31:616-633.e20. [PMID: 37003257 DOI: 10.1016/j.chom.2023.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.
Collapse
Affiliation(s)
- Steffen Klein
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gonen Golani
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland
| | - Carmen Lahr
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Beyer
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexia Herrmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Nina Reddmann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Romy Brecht
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehdi Hosseinzadeh
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Androniki Kolovou
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Peterl
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. RESEARCH SQUARE 2023:rs.3.rs-2553619. [PMID: 36824920 PMCID: PMC9949256 DOI: 10.21203/rs.3.rs-2553619/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
38
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
39
|
Einav T, Creanga A, Andrews SF, McDermott AB, Kanekiyo M. Harnessing low dimensionality to visualize the antibody-virus landscape for influenza. NATURE COMPUTATIONAL SCIENCE 2023; 3:164-173. [PMID: 38177625 PMCID: PMC10766546 DOI: 10.1038/s43588-022-00375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2024]
Abstract
Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Anwar F, Altayeb H, Alhayyani S, Kumar V, Al-Abbasi FA, Ashraf GM. Analysis of Interaction Between Odorant Receptors and Flexible Spike of SARS CoV-2- Key to Loss of Smell. Curr Neuropharmacol 2023; 21:151-159. [PMID: 35761501 PMCID: PMC10193757 DOI: 10.2174/1570159x20666220627165846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of a vaccine for SARS-CoV-2 is primarily focused on the structure of the spike (S) protein. The heavy glycosylation of S with flexible hinges at the stalk shields from antibody attachment. OBJECTIVE This study deciphers the flexible nature of hinges responsible for binding the odorant receptor on neurons responsible for the loss of smell in COVID-19 patients. METHODS The 3D structure via EPIK in Maestro, protein docking with ligands via Maestro protein analysis tool, and molecular dynamic simulation at 30 ns run using DESMOND was prepared. RESULTS The data of the study strongly suggest that strong and stable bond formation results from the reaction between R:14: Trp and Phe at the residue, targeting the flexible hinges of SARS-CoV-2. The difference in the conformational structure of the S protein and its binding with the odorant receptor in COVID-19 is the prime factor for the loss of smell and taste in patients, as supported by the concept of Antigen (epitope) Antibody interaction by the stable formation of a hydrogen bond among odorant receptor and the S protein. The flexibility of structural proteins determines the binding potential of antibodies or other defense proteins produced to participate in the antigen-antibody reaction. CONCLUSION Molecular and atomic details potentiate the design and screening of small molecules that can inhibit the fusion at entry level or odorant receptors and potentially be used in the prevention and treatment of infection, particularly when formulated as nasal drops, paving a new approach for pharmacologists in the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Natural Product Discovery Laboratory, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities. ACS CENTRAL SCIENCE 2022; 8:1646-1663. [PMID: 36589893 PMCID: PMC9801513 DOI: 10.1021/acscentsci.2c00981] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from convalescent human donor, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Julia Lederhofer
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Yaroslav Tsybovsky
- Electron
Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research
Sponsored by the National Cancer Institute, Frederick, Maryland21702, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California92037, United States
| | - Masaru Kanekiyo
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
42
|
Keating PM, Pennington HN, Collins SD, Lee J. Purification and characterization of the Lassa virus transmembrane domain. Biochem Biophys Rep 2022; 33:101409. [PMID: 36583076 PMCID: PMC9792740 DOI: 10.1016/j.bbrep.2022.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Lassa virus (LASV) is the most prevalent arenavirus afflicting humans and has high potential to become a threat to global public health. The transmembrane domain (TM) of the LASV glycoprotein complex forms critical interactions with the LASV stable signal peptide that are important for the maturation and fusion activity of the virus. A further study of the structure-based molecular mechanisms is required to understand the role of the TM in the lifecycle of LASV in greater detail. However, it is challenging to obtain the TM in high quantity and purity due to its hydrophobic nature which results in solubility issues that makes it prone to aggregation in typical buffer systems. Here, we designed a purification and detergent screen protocol for the highly insoluble TM to enhance the yield and purity for structural studies. Based on the detergents tested, the TM had the highest incorporation in LMPG. Circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy were utilized to confirm the best detergent system for structural studies. Through CD spectroscopy, we were able to characterize the secondary structure of the TM as largely alpha-helical, while NMR spectroscopy showed a well-structured and stable TM in LMPG. From these results, LMPG was determined to be the optimal detergent for further structural studies.
Collapse
|
43
|
Rashid S, Ng TA, Kwoh CK. Jupytope: computational extraction of structural properties of viral epitopes. Brief Bioinform 2022; 23:6696137. [PMID: 36094101 DOI: 10.1093/bib/bbac362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
Epitope residues located on viral surface proteins are of immense interest in immunology and related applications such as vaccine development, disease diagnosis and drug design. Most tools rely on sequence-based statistical comparisons, such as information entropy of residue positions in aligned columns to infer location and properties of epitope sites. To facilitate cross-structural comparisons of epitopes on viral surface proteins, a python-based extraction tool implemented with Jupyter notebook is presented (Jupytope). Given a viral antigen structure of interest, a list of known epitope sites and a reference structure, the corresponding epitope structural properties can quickly be obtained. The tool integrates biopython modules for commonly used software such as NACCESS, DSSP as well as residue depth and outputs a list of structure-derived properties such as dihedral angles, solvent accessibility, residue depth and secondary structure that can be saved in several convenient data formats. To ensure correct spatial alignment, Jupytope takes a list of given epitope sites and their corresponding reference structure and aligns them before extracting the desired properties. Examples are demonstrated for epitopes of Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) viral strains. The extracted properties assist detection of two Influenza subtypes and show potential in distinguishing between four major clades of SARS-CoV2, as compared with randomized labels. The tool will facilitate analytical and predictive works on viral epitopes through the extracted structural information. Jupytope and extracted datasets are available at https://github.com/shamimarashid/Jupytope.
Collapse
Affiliation(s)
- Shamima Rashid
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Teng Ann Ng
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
44
|
Chimeric Virus-like Particles Co-Displaying Hemagglutinin Stem and the C-Terminal Fragment of DnaK Confer Heterologous Influenza Protection in Mice. Viruses 2022; 14:v14102109. [PMID: 36298664 PMCID: PMC9610613 DOI: 10.3390/v14102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stem is currently regarded as an extremely promising immunogen for designing universal influenza vaccines. The appropriate antigen-presenting vaccine vector would be conducive to increasing the immunogenicity of the HA stem antigen. In this study, we generated chimeric virus-like particles (cVLPs) co-displaying the truncated C-terminal of DnaK from Escherichia coli and H1 stem or full-length H1 antigen using the baculovirus expression system. Transmission electronic micrography revealed the expression and presentation of H1 stem antigens on the surface of VLPs. Vaccinations of mice with the H1 stem cVLPs induced H1-specific immune responses and provided heterologous immune protection in vivo, which was more effective than vaccinations with VLPs displaying H1 stem alone in protecting mice against weight loss as well as increasing survival rates after lethal influenza viral challenge. The results indicate that the incorporation of the truncated C-terminal of DnaK as an adjuvant protein into the cVLPs significantly enhances the H1-specific immunity and immune protection. We have explicitly identified the VLP platform as an effective way of expressing HA stem antigen and revealed that chimeric VLP is an vaccine vector for developing HA stem-based universal influenza vaccines.
Collapse
|
45
|
Reversible structural changes in the influenza hemagglutinin precursor at membrane fusion pH. Proc Natl Acad Sci U S A 2022; 119:e2208011119. [PMID: 35939703 PMCID: PMC9388137 DOI: 10.1073/pnas.2208011119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hemagglutinin (HA) is the receptor binding and membrane fusion glycoprotein of influenza virus. Like other virus fusion glycoproteins such as those of HIV and Ebola, HA is synthesized as a precursor (HA0) that requires cleavage for fusion activity and, for influenza, exposure to low pH. Studies by X-ray and cryogenic electron microscopy (cryo-EM) have characterized conformational changes in HA that occur at membrane fusion pH. Here, using cryo-EM, we report that there are extensive changes to the structure of HA0 at low pH but that, unlike the changes in HA, the changes are reversible on return to neutral pH. The low-pH structure of HA0 is considered an indicator of potential intermediates in the conformational changes in HA at fusion pH. The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface–bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA. To establish the overall contribution of cleavage to the mechanism of HA-mediated membrane fusion, we used cryogenic electron microscopy (cryo-EM) to directly image HA0 at neutral and low pH. We found extensive pH-induced structural changes, some of which were similar to those described for intermediates in the refolding of cleaved HA at low pH. They involve a partial extension of the long central coiled coil formed by melting of the preexisting secondary structure, threading it between the membrane-distal domains, and subsequent refolding as extended helices. The fusion peptide, covalently linked at its N terminus, adopts an amphipathic helical conformation over part of its length and is repositioned and packed against a complementary surface groove of conserved residues. Furthermore, and in contrast to cleaved HA, the changes in HA0 structure at low pH are reversible on reincubation at neutral pH. We discuss the implications of covalently restricted HA0 refolding for the cleaved HA conformational changes that mediate membrane fusion and for the action of antiviral drug candidates and cross-reactive anti-HA antibodies that can block influenza infectivity.
Collapse
|
46
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
47
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
48
|
Nagashima K, Dzimianski JV, Han J, Abbadi N, Gingerich AD, Royer F, O'Rourke S, Sautto GA, Ross TM, Ward AB, DuBois RM, Mousa JJ. The Pre-Existing Human Antibody Repertoire to Computationally Optimized Influenza H1 Hemagglutinin Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:5-15. [PMID: 35697384 PMCID: PMC9246865 DOI: 10.4049/jimmunol.2101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 05/28/2023]
Abstract
Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.
Collapse
Affiliation(s)
- Kaito Nagashima
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA; and
| | - Nada Abbadi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Aaron D Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sara O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA; and
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Jarrod J Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA;
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA
| |
Collapse
|
49
|
Muratore C, Muratore MK, Austin DR, Miesle P, Benton AK, Beagle LK, Motala MJ, Moore DC, Slocik JM, Brothers MC, Kim SS, Krupa K, Back TA, Grant JT, Glavin NR. Laser-Fabricated 2D Molybdenum Disulfide Electronic Sensor Arrays for Rapid, Low-Cost, Ultrasensitive Detection of Influenza A and SARS-Cov-2. ADVANCED MATERIALS INTERFACES 2022; 9:2102209. [PMID: 35538926 PMCID: PMC9073982 DOI: 10.1002/admi.202102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Multiplex electronic antigen sensors for detection of SARS-Cov-2 spike glycoproteins and hemagglutinin from influenza A are fabricated using scalable processes for straightforward transition to economical mass-production. The sensors utilize the sensitivity and surface chemistry of a 2D MoS2 transducer for attachment of antibody fragments in a conformation favorable for antigen binding with no need for additional linker molecules. To make the devices, ultra-thin layers (3 nm) of amorphous MoS2 are sputtered over pre-patterned metal electrical contacts on a glass chip at room temperature. The amorphous MoS2 is then laser annealed to create an array of semiconducting 2H-MoS2 transducer regions between metal contacts. The semiconducting crystalline MoS2 region is functionalized with monoclonal antibody fragments complementary to either SARS-CoV-2 S1 spike protein or influenza A hemagglutinin. Quartz crystal microbalance experiments indicate strong binding and maintenance of antigen avidity for antibody fragments bound to MoS2. Electrical resistance measurements of sensors exposed to antigen concentrations ranging from 2-20 000 pg mL-1 reveal selective responses. Sensor architecture is adjusted to produce an array of sensors on a single chip suited for detection of analyte concentrations spanning six orders of magnitude from pg mL-1 to µg mL-1.
Collapse
Affiliation(s)
- Christopher Muratore
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- m‐nanotech Ltd.DaytonOH45409USA
| | - Melani K. Muratore
- m‐nanotech Ltd.DaytonOH45409USA
- Department of BiologyUniversity of DaytonDaytonOH45469USA
| | - Drake R. Austin
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Paige Miesle
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
- Department of Mechanical EngineeringDaytonOH45469USA
| | - Anna K. Benton
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Lucas K. Beagle
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Michael J. Motala
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - David C. Moore
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Joseph M. Slocik
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Michael C. Brothers
- UES Inc.DaytonOH45432USA
- 711
Human Performance WingAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Steve S. Kim
- 711
Human Performance WingAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Kristen Krupa
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
| | - Tyson A. Back
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | | | - Nicholas R. Glavin
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| |
Collapse
|
50
|
Diwanji D, Trenker R, Jura N, Verba KA. Efficient expression, purification, and visualization by cryo-EM of unliganded near full-length HER3. Methods Enzymol 2022; 667:611-632. [PMID: 35525556 PMCID: PMC9288109 DOI: 10.1016/bs.mie.2022.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Biochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture. The reconstructions reveal previously unappreciated extracellular domain dynamics and glycosylation sites.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, United States
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|