1
|
Duarte LF, Villalobos V, Farías MA, Rangel-Ramírez MA, González-Madrid E, Navarro AJ, Carbone-Schellman J, Domínguez A, Alvarez A, Riedel CA, Bueno SM, Kalergis AM, Cáceres M, González PA. Asymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease. Commun Biol 2024; 7:811. [PMID: 38965360 PMCID: PMC11224417 DOI: 10.1038/s42003-024-06486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
Collapse
MESH Headings
- Animals
- Cellular Senescence
- Mice
- Brain/virology
- Brain/pathology
- Brain/metabolism
- Multiple Sclerosis/virology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/pathogenicity
- Herpes Simplex/virology
- Herpes Simplex/pathology
- Female
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/virology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Phenotype
- Central Nervous System/virology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Spinal Cord/virology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Biomarkers/metabolism
- Encephalitis, Herpes Simplex/virology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/metabolism
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Verónica Villalobos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma Andreina Rangel-Ramírez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enrique González-Madrid
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Domínguez
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Alvarez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
3
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
4
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
5
|
Lucas RM, Lay MLJ, Grant J, Cherbuin N, Toi CS, Dear K, Taylor BV, Dwyer DE, Ponsonby AL. Risk of a first clinical diagnosis of central nervous system demyelination in relation to human herpesviruses in the context of Epstein-Barr virus. Eur J Neurol 2023; 30:2752-2760. [PMID: 37306550 DOI: 10.1111/ene.15919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Epstein-Barr virus (EBV) is implicated in multiple sclerosis (MS) risk; evidence for other herpesviruses is inconsistent. Here, we test blood markers of infection with human herpesvirus 6 (HHV-6), varicella zoster virus (VZV), and cytomegalovirus (CMV) as risk factors for a first clinical diagnosis of central nervous system demyelination (FCD) in the context of markers of EBV infection. METHODS In the Ausimmune case-control study, cases had an FCD, and population controls were matched on age, sex, and study region. We quantified HHV-6- and VZV-DNA load in whole blood and HHV-6, VZV, and CMV antibodies in serum. Conditional logistic regression tested associations with FCD risk, adjusting for Epstein-Barr nuclear antigen (EBNA) IgG, EBV-DNA load, and other covariates. RESULTS In 204 FCD cases and 215 matched controls, only HHV-6-DNA load (positive vs. negative) was associated with FCD risk (adjusted odds ratio = 2.20, 95% confidence interval = 1.08-4.46, p = 0.03). Only EBNA IgG and HHV-6-DNA positivity were retained in a predictive model of FCD risk; the combination had a stronger association than either alone. CMV-specific IgG concentration modified the association between an MS risk-related human leucocyte antigen gene and FCD risk. Six cases and one control had very high HHV-6-DNA load (>1.0 × 106 copies/mL). CONCLUSIONS HHV-6-DNA positivity and high load (possibly due to inherited HHV-6 chromosomal integration) were associated with increased FCD risk, particularly in association with markers of EBV infection. With growing interest in prevention/management of MS through EBV-related pathways, there should be additional consideration of the role of HHV-6 infection.
Collapse
Affiliation(s)
- Robyn M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Meav-Lang J Lay
- Clinical Virology Department, Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - James Grant
- ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cheryl S Toi
- Clinical Virology Department, Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Keith Dear
- University of Adelaide, Adelaide, South Australia, Australia
| | - Bruce V Taylor
- Menzies Research Institute Tasmania, Hobart, Tasmania, Australia
| | - Dominic E Dwyer
- Clinical Virology Department, Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | | |
Collapse
|
6
|
Chakravarty S, Chakravarti R, Chattopadhyay S. Inflammatory Control of Viral Infection. Viruses 2023; 15:1579. [PMID: 37515265 PMCID: PMC10383133 DOI: 10.3390/v15071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory responses during virus infection differentially impact the host. Managing inflammatory responses is essential in controlling viral infection and related diseases. Recently, we identified a cellular anti-inflammatory mechanism, RIKA (Repression of IRF3-mediated inhibition of NF-κB activity), which controls viral inflammation and pathogenesis. The RIKA function of IRF3 may be explored further in other inflammatory diseases beyond viral infection.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ritu Chakravarti
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
7
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
8
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Khalesi Z, Tamrchi V, Razizadeh MH, Letafati A, Moradi P, Habibi A, Habibi N, Heidari J, Noori M, Nahid Samiei M, Azarash Z, Hoseini M, Saadati H, Bahavar A, Farajzade M, Saeb S, Hadadi M, Sorouri Majd M, Mothlaghzadeh S, Fazli P, Asgari K, Kiani SJ, Ghorbani S. Association between human herpesviruses and multiple sclerosis: A systematic review and meta-analysis. Microb Pathog 2023; 177:106031. [PMID: 36775211 DOI: 10.1016/j.micpath.2023.106031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
AIM The aim of this study was to investigate the prevalence and potential association between infection with different herpes viruses and multiple sclerosis (MS). METHODS A systematic literature search was performed by finding relevant cross-sectional and case-control studies from a large online database. Heterogeneity, Odds ratio (OR), and corresponding 95% Confidence interval (CI) were applied to all studies by meta-analysis and forest plots. The analysis was performed using Stata Software v.14. RESULTS One hundred and thirty-four articles (289 datasets) were included in the meta-analysis, 128 (245 datasets) of which were case/control and the rest were cross-sectional. The pooled prevalence of all human herpes viruses among MS patients was 50% (95% CI: 45-55%; I2 = 96.91%). In subgroup analysis, the pooled prevalence of Herpes simplex virus (HSV), Varicella-zoster virus (VZV), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), Human herpes virus 6 (HHV-6), Human herpes virus 7 (HHV-7), and Human herpes virus 8 (HHV-8) was 32%, 52%, 74%, 41%, 39% 28%, and 28%, respectively. An association was found between infection with human herpes viruses and MS [summary OR 2.07 (95% CI (1.80-2.37); I2 = 80%)]. CONCLUSION The results of the present study showed that EBV, VZV, and HHV-6 infection are associated with multiple sclerosis and can be considered as potential risk factors for MS. Although the exact molecular mechanism of the role of herpes viruses in the development of MS is still unknown, it seems that molecular mimicry, the release of autoreactive antibodies, and inflammation in the CNS following viral infection can be important factors in the induction of MS.
Collapse
Affiliation(s)
- Zohreh Khalesi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Tamrchi
- Department of Microbiology of Golestan University of Medical Sciences, Golesatn, Iran
| | | | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezoo Habibi
- Department of Biochemistry, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Negar Habibi
- Department of Biochemistry, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Jafar Heidari
- Department of Microbiology, Faculty of Veterinary Medical, Urmia University, Urmia, West Azarbaijan, Iran
| | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Nahid Samiei
- Faculty of Medicine, Islamic Azad University, Shiraz University of Medical Science, Shiraz, Iran
| | - Ziba Azarash
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Hoseini
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Saadati
- Department of Epidemiology and Biostatistics, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Atefeh Bahavar
- Department of Microbiology of Golestan University of Medical Sciences, Golesatn, Iran
| | - Maryam Farajzade
- Faculty of Paramedicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Sepideh Saeb
- Medical Virology Student, Department of Virology, Lorestan University of Medical Science, Khorramabad, Iran
| | - Mohammad Hadadi
- Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mahdieh Sorouri Majd
- Department of Medical Sciences, Faculty of Paramedicl, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeed Mothlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Fazli
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Katayoon Asgari
- Department of Clinical Biochemistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Olmez O, Baba C, Abasiyanik Z, Ozakbas S. Epstein-Barr virus antibody in newly diagnosed multiple sclerosis patients and its association with relapse severity and lesion location. Mult Scler Relat Disord 2022; 68:104149. [PMID: 36096010 DOI: 10.1016/j.msard.2022.104149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Epstein-Barr virus is considered a risk factor for the development of multiple sclerosis, and recent findings reveal infected plasma -cells in meningeal ectopic lymphoid deposits. Activation of the dormant virus could be responsible for the multiple sclerosis exacerbation AIMS: To compare Epstein-Barr nuclear IgG (EBNA IgG) titer in newly diagnosed treatment-naive multiple sclerosis patients regarding the diagnoses date, clinical and radiological activity. METHODS Treatment-naive multiple sclerosis patients were divided into two groups according to Poser (late group) and McDonald2017(early group) diagnostic criteria. EBNA IgG, EDSS, physical (Timed 25 Foot Walk test, Nine-hole Peg test), and cognitive tests (Brief International Cognitive Assessment for Multiple Sclerosis) were done before the methylprednisolone infusion. The lesion location was evaluated by an MRI. Myelitis was considered a severe attack, and optic neuritis a mild relapse. RESULTS In total, 69 patients were enrolled. 44 (63.8%) of them were diagnosed by McDonald2017, and 25 (36.2%) were diagnosed with Poser criteria. There was a significant difference (p = 0.049) between the EBNA IgG titer of the late (median:238 U/ml, IQR: 154-362) and early (median: 154 U/ml, IQR:100.25-293.25). Severe relapse, having a spinal cord lesion, and not being treated with methylprednisolone was associated with higher EBNA IgG titer. CONCLUSION Study results show that EBNA IgG was significantly associated with disease activity regarding relapse severity and lesion location and could be a potential biomarker for predicting disease exacerbation.
Collapse
Affiliation(s)
- Onder Olmez
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Cavid Baba
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Zuhal Abasiyanik
- Physical Therapy and Rehabilitation, Graduate School of Health Sciences, Dokuz Eylül University, Inciraltı mah. Mithatpaşa cad., Izmir 35340, Turkey; Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Katip Celebi University, Izmir, Turkey.
| | - Serkan Ozakbas
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
11
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
12
|
Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Viruses 2022; 14:v14020281. [PMID: 35215874 PMCID: PMC8879583 DOI: 10.3390/v14020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein–Barr virus, human herpesvirus 6, cytomegalovirus, varicella–zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.
Collapse
|
13
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Jain N, Smirnovs M, Strojeva S, Murovska M, Skuja S. Chronic Alcoholism and HHV-6 Infection Synergistically Promote Neuroinflammatory Microglial Phenotypes in the Substantia Nigra of the Adult Human Brain. Biomedicines 2021; 9:biomedicines9091216. [PMID: 34572401 PMCID: PMC8472392 DOI: 10.3390/biomedicines9091216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/25/2022] Open
Abstract
Both chronic alcoholism and human herpesvirus-6 (HHV-6) infection have been identified as promoters of neuroinflammation and known to cause movement-related disorders. Substantia Nigra (SN), the dopaminergic neuron-rich region of the basal ganglia, is involved in regulating motor function and the reward system. Hence, we hypothesize the presence of possible synergism between alcoholism and HHV-6 infection in the SN region and report a comprehensive quantification and characterization of microglial functions and morphology in postmortem brain tissue from 44 healthy, age-matched alcoholics and chronic alcoholics. A decrease in the perivascular CD68+ microglia in alcoholics was noted in both the gray and white matter. Additionally, the CD68+/Iba1− microglial subpopulation was found to be the dominant type in the controls. Conversely, in alcoholics, dystrophic changes in microglia were seen with a significant increase in Iba1 expression and perivascular to diffuse migration. An increase in CD11b expression was noted in alcoholics, with the Iba1+/CD11b− subtype promoting inflammation. All the controls were found to be negative for HHV-6 whilst the alcoholics demonstrated HHV-6 positivity in both gray and white matter. Amongst HHV-6 positive alcoholics, all the above-mentioned changes were found to be heightened when compared with HHV-6 negative alcoholics, thereby highlighting the compounding relationship between alcoholism and HHV-6 infection that promotes microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nityanand Jain
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| | - Marks Smirnovs
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
| | - Samanta Strojeva
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| |
Collapse
|
15
|
Theodore WH, Leibovitch E, Billioux BJ, Inati SK, Zaghloul K, Heiss J, Gaillard WD, Jacobson S. Human herpesvirus 6 and epilepsy. Epilepsia Open 2021; 6:777-780. [PMID: 34324277 PMCID: PMC8633468 DOI: 10.1002/epi4.12531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/12/2023] Open
Abstract
We investigated the association between human herpesvirus 6 (HHV‐6) and mesial temporal sclerosis (MTS) in 87 patients who had surgery for drug‐resistant epilepsy. Fifty‐four had MTS, 22 focal cortical dysplasia (FCD), four tumors, three vascular malformations, and three a history of encephalitis. We extracted DNA from fresh brain tissue immediately after surgery and performed viral detection with quantitative real‐time polymerase chain reaction (PCR) or digital droplet PCR specific for HHV‐6A and HHV‐6B. Tissue was studied with standard clinical techniques, including hematoxylin and eosin, glial fibrillary acidic protein, and NeuN stains. Twenty‐nine of 54 patients with MTS, six of 23 with focal cortical dysplasia (FCD), and one of three with a history of encephalitis were positive for HHV‐6 (P < .02). Febrile seizure history was not associated with HHV‐6 detection. Patients with MTS had significantly lower seizure onset age than those with other pathologies. Thirteen patients had positron emission tomography with [11C]PBR28, a marker for reactive astrocytes and activated microglia; there was a trend for HHV‐6‐positive patients to have higher binding in their seizure foci, suggesting inflammation. Our study supports a potential role for HHV‐6 in the etiology of MTS.
Collapse
Affiliation(s)
- William H Theodore
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Emily Leibovitch
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bridgette J Billioux
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sara K Inati
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kareem Zaghloul
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - John Heiss
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - William D Gaillard
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Steven Jacobson
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
16
|
Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol 2021; 12:698169. [PMID: 34248921 PMCID: PMC8260991 DOI: 10.3389/fmicb.2021.698169] [Citation(s) in RCA: 479] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of coronavirus disease 2019 (COVID-19). Across the globe, a subset of patients who sustain an acute SARS-CoV-2 infection are developing a wide range of persistent symptoms that do not resolve over the course of many months. These patients are being given the diagnosis Long COVID or Post-acute sequelae of COVID-19 (PASC). It is likely that individual patients with a PASC diagnosis have different underlying biological factors driving their symptoms, none of which are mutually exclusive. This paper details mechanisms by which RNA viruses beyond just SARS-CoV-2 have be connected to long-term health consequences. It also reviews literature on acute COVID-19 and other virus-initiated chronic syndromes such as post-Ebola syndrome or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) to discuss different scenarios for PASC symptom development. Potential contributors to PASC symptoms include consequences from acute SARS-CoV-2 injury to one or multiple organs, persistent reservoirs of SARS-CoV-2 in certain tissues, re-activation of neurotrophic pathogens such as herpesviruses under conditions of COVID-19 immune dysregulation, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation issues, dysfunctional brainstem/vagus nerve signaling, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage care for specific patients with the diagnosis.
Collapse
Affiliation(s)
- Amy D. Proal
- PolyBio Research Foundation, Kenmore, WA, United States
| | - Michael B. VanElzakker
- PolyBio Research Foundation, Kenmore, WA, United States
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Napoletani G, Protto V, Marcocci ME, Nencioni L, Palamara AT, De Chiara G. Recurrent Herpes Simplex Virus Type 1 (HSV-1) Infection Modulates Neuronal Aging Marks in In Vitro and In Vivo Models. Int J Mol Sci 2021; 22:6279. [PMID: 34208020 PMCID: PMC8230621 DOI: 10.3390/ijms22126279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegenerative processes related to age-related disorders such as Alzheimer's disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins. By exploiting both in vitro and in vivo models of recurrent HSV-1 infection, we found a significant increase in H4K16ac, Sin3, and HDAC1 levels, suggesting that the neuronal response to virus latency and reactivation includes the upregulation of these aging markers. On the contrary, we found a significant decrease in H3K56ac that was specifically linked to viral reactivation and apparently not related to aging-related markers. A complex modulation of HIRA expression and localization was found in the brain from HSV-1 infected mice suggesting a specific role of this protein in viral latency and reactivation. Overall, our results pointed out novel molecular mechanisms through which recurrent HSV-1 infection may affect neuronal aging, likely contributing to neurodegeneration.
Collapse
Affiliation(s)
- Giorgia Napoletani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; (G.N.); (V.P.); (M.E.M.); (L.N.); (A.T.P.)
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; (G.N.); (V.P.); (M.E.M.); (L.N.); (A.T.P.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; (G.N.); (V.P.); (M.E.M.); (L.N.); (A.T.P.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; (G.N.); (V.P.); (M.E.M.); (L.N.); (A.T.P.)
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; (G.N.); (V.P.); (M.E.M.); (L.N.); (A.T.P.)
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
18
|
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People. Int J Mol Sci 2021; 22:ijms22052364. [PMID: 33673426 PMCID: PMC7956495 DOI: 10.3390/ijms22052364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.
Collapse
|
19
|
Duarte LF, Altamirano-Lagos MJ, Tabares-Guevara JH, Opazo MC, Díaz M, Navarrete R, Muza C, Vallejos OP, Riedel CA, Bueno SM, Kalergis AM, González PA. Asymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:635257. [PMID: 33679788 PMCID: PMC7928309 DOI: 10.3389/fimmu.2021.635257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an increasingly prevalent progressive autoimmune and debilitating chronic disease that involves the detrimental recognition of central nervous system (CNS) antigens by the immune system. Although significant progress has been made in the last decades on the biology of MS and the identification of novel therapies to treat its symptoms, the etiology of this disease remains unknown. However, recent studies have suggested that viral infections may contribute to disease onset. Interestingly, a potential association between herpes simplex virus type 1 (HSV-1) infection and MS has been reported, yet a direct relationship among both has not been conclusively demonstrated. Experimental autoimmune encephalomyelitis (EAE) recapitulates several aspects of MS in humans and is widely used to study this disease. Here, we evaluated the effect of asymptomatic brain infection by HSV-1 on the onset and severity of EAE in C57BL/6 mice. We also evaluated the effect of infection with an HSV-1-mutant that is attenuated in neurovirulence and does not cause encephalitis. Importantly, we observed more severe EAE in mice previously infected either, with the wild-type (WT) or the mutant HSV-1, as compared to uninfected control mice. Also, earlier EAE onset was seen after WT virus inoculation. These findings support the notion that a previous exposure to HSV-1 can accelerate and enhance EAE, which suggests a potential contribution of asymptomatic HSV-1 to the onset and severity of MS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Asymptomatic Diseases
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/virology
- Capillary Permeability
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Mutation
- Severity of Illness Index
- Time Factors
- Virulence
- Mice
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge H. Tabares-Guevara
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Máximo Díaz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Romina Navarrete
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Muza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Herpesvirus Antibodies, Vitamin D and Short-Chain Fatty Acids: Their Correlation with Cell Subsets in Multiple Sclerosis Patients and Healthy Controls. Cells 2021; 10:cells10010119. [PMID: 33435197 PMCID: PMC7826528 DOI: 10.3390/cells10010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although the etiology of multiple sclerosis (MS) is still unknown, it is commonly accepted that environmental factors could contribute to the disease. The objective of this study was to analyze the humoral response to Epstein-Barr virus, human herpesvirus 6A/B and cytomegalovirus, and the levels of 25-hydroxyvitamin D (25(OH)D) and the three main short-chain fatty acids (SCFA), propionate (PA), butyrate (BA) and acetate (AA), in MS patients and healthy controls (HC) to understand how they could contribute to the pathogenesis of the disease. With this purpose, we analyzed the correlations among them and with different clinical variables and a wide panel of cell subsets. We found statistically significant differences for most of the environmental factors analyzed when we compared MS patients and HC, supporting their possible involvement in the disease. The strongest correlations with the clinical variables and the cell subsets analyzed were found for 25(OH)D and SCFAs levels. A correlation was also found between 25(OH)D and PA/AA ratio, and the interaction between these factors negatively correlated with interleukin 17 (IL-17)-producing CD4+ and CD8+ T cells in untreated MS patients. Therapies that simultaneously increase vitamin D levels and modify the proportion of SCFA could be evaluated in the future.
Collapse
|
21
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Keyvani H, Zahednasab H, Aljanabi HAA, Asadi M, Mirzaei R, Esghaei M, Karampoor S. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol 2020; 346:577313. [PMID: 32673896 DOI: 10.1016/j.jneuroim.2020.577313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a destructive autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system (CNS) with unknown etiology and mechanism of pathogenesis. Pathogens, especially human herpes viruses, have been suggested as environmental factors of the MS and other neuroinflammatory disorders. This study aimed to determine the prevalence of HHV-6 antibody response in MS patients and investigate the levels of pro/anti-inflammatory cytokine and chemokines in MS patients in comparison with healthy subjects. Two hundred sixty-three patients with clinically defined MS (140 females and 123 males), along with 263 healthy subjects (140 females and 123 males), were recruited for this study. After the analysis of HHV-6 seropositivity/seronegativity, the levels of some pro/anti-inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and IL-12 as well as two chemokines, namely CCL-2 and CCL-5 were determined by the enzyme-linked immunosorbent assay (ELISA) method in HHV-6 seropositive/seronegative MS patients and healthy subjects. Our results showed that the serum concentrations of TNF-α, IFN-γ, IL-1β, IL-6, and CCL-5 elevated in HHV-6 seropositive compared with seronegative MS patients (P < .05). Moreover, the levels of IL-12, IL-10, and CCL-2 levels were significantly lower in seropositive MS patients when compared with seronegative MS patients (P < .05). Also, our results revealed that the mean values of the expanded disability status scale (EDSS) were significantly higher in HHV-6 seropositive versus seronegative MS patients (P < .05). In conclusion, we proposed that HHV-6 infection may play a role in MS pathogenesis by changing cytokine signaling in MS patients that may lead to peripheral inflammation.
Collapse
Affiliation(s)
- Hossein Keyvani
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Alnahrain University College of Medicine, Bagdad, Iraq; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
23
|
Lee NJ, Ha SK, Sati P, Absinta M, Nair G, Luciano NJ, Leibovitch EC, Yen CC, Rouault TA, Silva AC, Jacobson S, Reich DS. Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Invest 2020; 129:4365-4376. [PMID: 31498148 DOI: 10.1172/jci126809] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecil C Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
HHV-6-Associated Neurological Disease in Children: Epidemiologic, Clinical, Diagnostic, and Treatment Considerations. Pediatr Neurol 2020; 105:10-20. [PMID: 31932119 DOI: 10.1016/j.pediatrneurol.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 02/04/2023]
Abstract
Human herpesviruses 6A and 6B, often referred to collectively as human herpesvirus 6, are a pair of beta-herpesviruses known to cause a variety of clinical syndromes in both immunocompetent and immunocompromised individuals. Most humans are infected with human herpesvirus 6B, and many with human herpesvirus 6A. Primary infection typically occurs in early childhood, although large-scale reviews on the topic are limited. Herein, the authors explore the clinical manifestations of human herpesvirus 6-associated disease in both immunocompetent and immunocompromised pediatric patients, the risk factors for development of human herpesvirus 6-associated neurological disease, the risk of autoimmunity associated with development of active or latent infection, the relevance of human herpesvirus 6-specific diagnostic tests, and the medications used to treat human herpesvirus 6. The goal of this review is to improve the current understanding of human herpesvirus 6 in pediatric populations and to examine the most effective diagnostic and therapeutic interventions in this disease state.
Collapse
|
25
|
Abstract
The etiology and pathogenesis of MS is likely to involve multiple factors interacting with each other, and the role of infectious and viral agents is still under debate, however a consistent amount of studies suggests that some viruses are associated with the disease. The strongest documentation has come from the detection of viral nucleic acid or antigen or of an anti-viral antibody response in MS patients. A further step for the study of the mechanism viruses might be involved in can be made using in vitro and in vivo models. While in vitro models, based on glial and neural cell lines from various sources are widely used, in vivo animal models present challenges. Indeed neurotropic animal viruses are currently used to study demyelination in well-established models, but animal models of demyelination by human virus infection have only recently been developed, using animal gammaherpesviruses closely related to Epstein Barr virus (EBV), or using marmosets expressing the specific viral receptor for Human Herpesvirus 6 (HHV-6). The present review will illustrate the main potential mechanisms of MS pathogenesis possibly associated with viral infections and viruses currently used to study demyelination in animal models. Then the viruses most strongly linked with MS will be discussed, in the perspective that more than one virus might have a role, with varying degrees of interaction, contributing to MS heterogeneity.
Collapse
Affiliation(s)
- Donatella Donati
- Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera Universitaria Senese I 53100 Siena, Italy
| |
Collapse
|
26
|
Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, Mighetto L, Pirriatore V, Gregori G, Lipani F, Ghisetti V, Bonora S, Di Perri G, Calcagno A. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020; 34:373-380. [PMID: 31764071 PMCID: PMC7773520 DOI: 10.1097/qad.0000000000002442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The current study aimed to investigate whether cerebrospinal fluid (CSF) Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA was associated with viral, inflammatory and neuronal damage biomarkers in people living with HIV (PLWH). DESIGN A cross-sectional diagnostic study on CSF fluid samples in patients undergoing lumbar punctures for clinical reasons, to better understand the role of EBV and CMV in the CNS on HIV RNA replication, blood-brain-barrier (BBB) damage and biomarkers of neuronal damage/inflammation. METHODS EBV, CMV DNA and HIV RNA were measured on CSF, through real time (RT)-PCR, from PLWHs undergoing lumbar punctures for clinical reasons (excluding oncho-haematological comorbidities). Immune-enzymatic assays evaluated blood-brain barrier inflammation and damage. Patients were stratified according to plasma HIV RNA levels in viremic (≥50 copies/ml) and aviremic (<50 copies/ml). RESULTS We included 297 participants. Among 167 viremic patients CSF EBV and CMV DNA were detectable in 42 (25.1%) and 10 (6.3%) participants; among 130 aviremic individuals CSF EBV and CMV DNA were detectable in 12 (9.2%) and 0 (0%) participants, respectively. In viremic group detectable CSF EBV DNA was associated with CSF pleocytosis (P < 0.001), higher CSF HIV RNA (P < 0.001) and neopterin levels (P = 0.002). In aviremic participants detectable EBV DNA was associated with pleocytosis (P = 0.056), higher neopterin (P = 0.027) and immune globulins (P = 0.016) in the CSF; CSF escape was more common in those with detectable EBV DNA (50 vs. 21.2%, P = 0.036). CONCLUSION EBV DNA was frequently detected in the CSF of viremic and fewer aviremic patients on antiretroviral treatment. In PLWH without clinical evidence of encephalitis CSF EBV DNA was associated with higher biomarkers levels of neuronal damage/inflammation. The role of EBV reactivation in HIV-associated central nervous system disorders warrants further studies.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Maria Grazia Milia
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Cristiana Atzori
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Sara Gianella
- University of California San Diego, La Jolla, California, USA
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Daniele Imperiale
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Lorenzo Mighetto
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Gabriella Gregori
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Valeria Ghisetti
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| |
Collapse
|
27
|
Amini R, Karampoor S, Zahednasab H, Keyvani H, Gheiasian M, Jalilian FA. Serum levels of matrix metalloproteinase-2, -9, and vitamin D in patients with multiple sclerosis with or without herpesvirus-6 seropositivity. Braz J Infect Dis 2020; 24:144-149. [PMID: 32243867 PMCID: PMC9392051 DOI: 10.1016/j.bjid.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Razieh Amini
- Hamadan University of Medical Sciences, Faculty of Medicine, Department of Molecular Medicine and Genetics, Hamadan, Iran
| | - Sajad Karampoor
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran.
| | - Hamid Zahednasab
- University of Tehran, Institute of Biochemistry and Biophysics, Tehran, Iran
| | - Hossein Keyvani
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Masoud Gheiasian
- Hamadan University of Medical Sciences, Faculty of Medicine, Department of Neurology, Hamadan, Iran
| | - Farid Azizi Jalilian
- Hamadan University of Medical Sciences, Faculty of Medicine Hamadan, Department of Medical Virology, Hamadan, Iran.
| |
Collapse
|
28
|
An Animal Model That Mimics Human Herpesvirus 6B Pathogenesis. J Virol 2020; 94:JVI.01851-19. [PMID: 31852793 DOI: 10.1128/jvi.01851-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.
Collapse
|
29
|
Mohammed EM. Environmental Influencers, MicroRNA, and Multiple Sclerosis. J Cent Nerv Syst Dis 2020; 12:1179573519894955. [PMID: 32009827 PMCID: PMC6971968 DOI: 10.1177/1179573519894955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological disorder characterized by an aberrant immune system that affects patients' quality of life. Several environmental factors have previously been proposed to associate with MS pathophysiology, including vitamin D deficiency, Epstein-Barr virus (EBV) infection, and cigarette smoking. These factors may influence cellular molecularity, interfering with cellular proliferation, differentiation, and apoptosis. This review argues that small noncoding RNA named microRNA (miRNA) influences these factors' mode of action. Dysregulation in the miRNAs network may deeply impact cellular hemostasis, thereby possibly resulting in MS pathogenicity. This article represents a literature review and an author's theory of how environmental factors may induce dysregulations in the miRNAs network, which could ultimately affect MS pathogenicity.
Collapse
|
30
|
Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, Gao G, Biscola NP, Havton LA, Crocker SJ, Popko B, Reich DS, Schafer DP. Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity 2020; 52:167-182.e7. [PMID: 31883839 PMCID: PMC6996144 DOI: 10.1016/j.immuni.2019.12.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sebastian Werneburg
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jonathan Jung
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rejani B Kunjamma
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cory M Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiologic and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Natalia P Biscola
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Popko
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Wells MJ, Jacobson S, Levine PH. An evaluation of HHV-6 as an etiologic agent in Hodgkin lymphoma and brain cancer using IARC criteria for oncogenicity. Infect Agent Cancer 2019; 14:31. [PMID: 31709003 PMCID: PMC6833260 DOI: 10.1186/s13027-019-0248-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human herpesvirus-6 (HHV-6) is a ubiquitous double-stranded DNA virus that can cause roseola infantum, encephalitis, and seizure disorders. Several studies have shown an association between HHV-6 and cancer but confirmation of an etiologic role is lacking. We reviewed the criteria for viral causation of cancer used by The International Agency for Research on Cancer (IARC) for six oncogenic viruses and applied criteria to published reports of HHV-6 and its association with Hodgkin lymphoma and brain tumors. METHODS Our major criteria for oncogenicity were finding evidence of the virus in every tumor cell and prevention of the tumor by an antiviral vaccine. Our six minor criteria included: 1) suggestive serologic correlation, such as higher virus antibody levels in cases compared to controls; 2) evidence of the virus in some but not all tumor cells, and 3) time space clustering. We focused on Epstein-Barr virus (EBV) as the primary virus for comparison as HHV-6 and EBV are both Herpesviridae, ubiquitous infections, and EBV is well-accepted as a human oncovirus. Particular attention was given to Hodgkin lymphoma (HL) and brain cancer as these malignancies have been the most studied. RESULTS No studies reported HHV-6 satisfying either of the major criteria for oncogenicity. Of the minor criteria used by IARC, serologic studies have been paramount in supporting EBV as an oncogenic agent in all EBV-associated tumors, but not for HHV-6 in HL or brain cancer. Clustering of cases was suggestive for both HL and brain cancer and medical intervention suggested by longer survival in patients treated with antiviral agents was reported for brain cancer. CONCLUSION There is insufficient evidence to indicate HHV-6 is an etiologic agent with respect to HL and brain cancers. We suggest that methods demonstrating EBV oncogenicity be applied to HHV-6. It is important that one study has found HHV-6 in all cancer cells in oral cancer in a region with elevated HHV-6 antibodies and therefore HHV-6 can still be considered a possible human oncogenic virus.
Collapse
Affiliation(s)
- Michael J. Wells
- School of Community and Population Health, University of New England, 716 Stevens Ave, Portland, ME 04103 USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Viral Immunology Section, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Paul H. Levine
- College of Public Health, University of Nebraska, 984355 Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
32
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|
33
|
Pellett PE. An Old Rose and its Newly Revealed Thorns. J Infect Dis 2019; 220:343-345. [DOI: 10.1093/infdis/jiy645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip E Pellett
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
34
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Toro CT, Eliassen E, Prusty BK. Does infection of cerebellar Purkinje neurons with human herpes virus 6A or 6B (HHV-6) increase the risk of developing mood disorders? Future Microbiol 2019; 14:85-88. [DOI: 10.2217/fmb-2018-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Carla T Toro
- Applied Psychology, Institute of Digital Healthcare, WMG, University of Warwick, CV4 7AL, UK
| | | | - Bhupesh K Prusty
- Institute for Virology & Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
36
|
Reply to Zahednasab et al.: HHV-6 and marmoset EAE. Proc Natl Acad Sci U S A 2018; 115:E12127. [DOI: 10.1073/pnas.1818755115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
|