1
|
Liu W, Wang X, Zhao Z, Wu H, Lu W, Huang M, Zhang X, Zhang J, Mao J, Li J, Liu L. NcBRI1 positively regulate vascular development and promote biomass production in Neolamarckia cadamba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112352. [PMID: 39638094 DOI: 10.1016/j.plantsci.2024.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Brassinosteroids (BRs) are essential phytohormones that play a crucial role in plant growth and development. However, our understanding of BR receptors and their functions in tree species is currently limited. In this study, we looked for potential BR receptor genes in the burflower-tree (Neolamarckia cadamba) genome. We identified five candidate gene from sequence analysis and phylogenetic reconstruction. Among these genes, Neolamarckia cadamba BRASSINOSTEROID-INSENSITIVE 1 (NcBRI1) is ubiquitously expressed in all tested tissues and encodes a functional BR receptor localized to the plasma membrane. Ectopic expression of NcBRI1 in the Arabidopsis (Arabidopsis thaliana) loss-of-function BRI1 mutant bri1-5 not only rescued its growth retardation phenotype but also facilitated vascular development by reactivating BR signal transduction. Furthermore, overexpression of NcBRI1 promoted vascular formation and cell elongation in transgenic hairy roots of Neolamarckia cadamba. By contrast, microRNA-mediated knockdown of NcBRI1 resulted in delayed vascular development and smaller cells. Importantly, we found that manipulation of NcBRI1 in Neolamarckia cadamba can enhance the biomass of hairy roots. These findings highlight the critical role of NcBRI1 in BR signaling and its significant influence on vascular development and rapid growth in Neolamarckia cadamba.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zeping Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huixiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mengjiao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00283-8. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
3
|
Furuya T, Ohashi-Ito K, Kondo Y. Multiple Roles of Brassinosteroid Signaling in Vascular Development. PLANT & CELL PHYSIOLOGY 2024; 65:1601-1607. [PMID: 38590039 DOI: 10.1093/pcp/pcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signaling pathways. Genetic studies have revealed that mutants that are defective in BR biosynthesis or the BR signaling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
4
|
Zhang P, Zhao J, Zhang W, Guo Y, Zhang K. Sulfated peptides: key players in plant development, growth, and stress responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1474111. [PMID: 39502916 PMCID: PMC11534595 DOI: 10.3389/fpls.2024.1474111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Peptide hormones regulate plant development, growth, and stress responses. Sulfated peptides represent a class of proteins that undergo posttranslational modification by tyrosylprotein sulfotransferase (TPST), followed by specific enzymatic cleavage to generate mature peptides. This process contributes to the formation of various bioactive peptides, including PSKs (PHYTOSULFOKINEs), PSYs (PLANT PEPTIDE CONTAINING SULFATED TYROSINE), CIFs (CASPARIAN STRIP INTEGRITY FACTOR), and RGFs (ROOT MERISTEM GROWTH FACTOR). In the past three decades, significant progress has been made in understanding the molecular mechanisms of sulfated peptides that regulate plant development, growth, and stress responses. In this review, we explore the sequence properties of precursors, posttranslational modifications, peptide receptors, and signal transduction pathways of the sulfated peptides, analyzing their functions in plants. The cross-talk between PSK/RGF peptides and other phytohormones, such as brassinosteroids, auxin, salicylic acid, abscisic acid, gibberellins, ethylene, and jasmonic acid, is also described. The significance of sulfated peptides in crops and their potential application for enhancing crop productivity are discussed, along with future research directions in the study of sulfated peptides.
Collapse
Affiliation(s)
- Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
7
|
Harshith CY, Pal A, Chakraborty M, Nair A, Raju S, Shivaprasad PV. Wound-induced small-peptide-mediated signaling cascade, regulated by OsPSKR, dictates balance between growth and defense in rice. Cell Rep 2024; 43:114515. [PMID: 39003743 DOI: 10.1016/j.celrep.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.
Collapse
Affiliation(s)
- Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India; SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
8
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
9
|
Hunziker P, Greb T. Stem Cells and Differentiation in Vascular Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:399-425. [PMID: 38382908 DOI: 10.1146/annurev-arplant-070523-040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches.
Collapse
Affiliation(s)
- Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| |
Collapse
|
10
|
El Arbi N, Schürholz AK, Handl MU, Schiffner A, Hidalgo Prados I, Schnurbusch L, Wenzl C, Zhao X, Zeng J, Lohmann JU, Wolf S. ARGONAUTE10 controls cell fate specification and formative cell divisions in the Arabidopsis root. EMBO J 2024; 43:1822-1842. [PMID: 38565947 PMCID: PMC11066080 DOI: 10.1038/s44318-024-00072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Department of Plant Physiology, Umea Plant Science Centre, Umea, Sweden
| | - Ann-Kathrin Schürholz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Corden Pharma, Heidelberg, Germany
| | - Marlene U Handl
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Alexei Schiffner
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Inés Hidalgo Prados
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Liese Schnurbusch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Christian Wenzl
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jian Zeng
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Rohr L, Ehinger A, Rausch L, Glöckner Burmeister N, Meixner AJ, Gronnier J, Harter K, Kemmerling B, zur Oven-Krockhaus S. OneFlowTraX: a user-friendly software for super-resolution analysis of single-molecule dynamics and nanoscale organization. FRONTIERS IN PLANT SCIENCE 2024; 15:1358935. [PMID: 38708397 PMCID: PMC11066300 DOI: 10.3389/fpls.2024.1358935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Super-resolution microscopy (SRM) approaches revolutionize cell biology by providing insights into the nanoscale organization and dynamics of macromolecular assemblies and single molecules in living cells. A major hurdle limiting SRM democratization is post-acquisition data analysis which is often complex and time-consuming. Here, we present OneFlowTraX, a user-friendly and open-source software dedicated to the analysis of single-molecule localization microscopy (SMLM) approaches such as single-particle tracking photoactivated localization microscopy (sptPALM). Through an intuitive graphical user interface, OneFlowTraX provides an automated all-in-one solution for single-molecule localization, tracking, as well as mobility and clustering analyses. OneFlowTraX allows the extraction of diffusion and clustering parameters of millions of molecules in a few minutes. Finally, OneFlowTraX greatly simplifies data management following the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We provide a detailed step-by-step manual and guidelines to assess the quality of single-molecule analyses. Applying different fluorophores including mEos3.2, PA-GFP, and PATagRFP, we exemplarily used OneFlowTraX to analyze the dynamics of plant plasma membrane-localized proteins including an aquaporin, the brassinosteroid receptor Brassinosteroid Insensitive 1 (BRI1) and the Receptor-Like Protein 44 (RLP44).
Collapse
Affiliation(s)
- Leander Rohr
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Alexandra Ehinger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Luiselotte Rausch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Alfred J. Meixner
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| | - Julien Gronnier
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Birgit Kemmerling
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Sven zur Oven-Krockhaus
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Elliott L, Kalde M, Schürholz AK, Zhang X, Wolf S, Moore I, Kirchhelle C. A self-regulatory cell-wall-sensing module at cell edges controls plant growth. NATURE PLANTS 2024; 10:483-493. [PMID: 38454063 PMCID: PMC10954545 DOI: 10.1038/s41477-024-01629-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Morphogenesis of multicellular organs requires coordination of cellular growth. In plants, cell growth is determined by turgor pressure and the mechanical properties of the cell wall, which also glues cells together. Because plants have to integrate tissue-scale mechanical stresses arising through growth in a fixed tissue topology, they need to monitor cell wall mechanical status and adapt growth accordingly. Molecular factors have been identified, but whether cell geometry contributes to wall sensing is unknown. Here we propose that plant cell edges act as cell-wall-sensing domains during growth. We describe two Receptor-Like Proteins, RLP4 and RLP4-L1, which occupy a unique polarity domain at cell edges established through a targeted secretory transport pathway. We show that RLP4s associate with the cell wall at edges via their extracellular domain, respond to changes in cell wall mechanics and contribute to directional growth control in Arabidopsis.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Xinyu Zhang
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Sebastian Wolf
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford, UK.
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France.
| |
Collapse
|
13
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
14
|
Li Y, Di Q, Luo L, Yu L. Phytosulfokine peptides, their receptors, and functions. FRONTIERS IN PLANT SCIENCE 2024; 14:1326964. [PMID: 38250441 PMCID: PMC10796568 DOI: 10.3389/fpls.2023.1326964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Phytosulfokines (PSKs) are a class of disulfated pentapeptides and are regarded as plant peptide hormones. PSK-α, -γ, -δ, and -ϵ are four bioactive PSKs that are reported to have roles in plant growth, development, and immunity. In this review, we summarize recent advances in PSK biosynthesis, signaling, and function. PSKs are encoded by precursor genes that are widespread in higher plants. PSKs maturation from these precursors requires a sulfation step, which is catalyzed by a tyrosylprotein sulfotransferase, as well as proteolytic cleavage by subtilisin serine proteases. PSK signaling is mediated by plasma membrane-localized receptors PSKRs that belong to the leucine-rich repeat receptor-like kinase family. Moreover, multiple biological functions can be attributed to PSKs, including promoting cell division and cell growth, regulating plant reproduction, inducing somatic embryogenesis, enhancing legume nodulation, and regulating plant resistance to biotic and abiotic stress. Finally, we propose several research directions in this field. This review provides important insights into PSKs that will facilitate biotechnological development and PSK application in agriculture.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
López-Gómez P, Buezo J, Urra M, Cornejo A, Esteban R, Fernández de Los Reyes J, Urarte E, Rodríguez-Dobreva E, Chamizo-Ampudia A, Eguaras A, Wolf S, Marino D, Martínez-Merino V, Moran JF. A new oxidative pathway of nitric oxide production from oximes in plants. MOLECULAR PLANT 2024; 17:178-198. [PMID: 38102832 DOI: 10.1016/j.molp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/06/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO3-, evidencing the existence of a metabolic pathway for oxidative production of NO. We hypothesized that oximes, such as indole-3-acetaldoxime (IAOx), a precursor to indole-3-acetic acid, are intermediate oxidation products in NO synthesis. We detected the production of NO from IAOx and other oximes catalyzed by peroxidase (POD) enzyme using both 4-amino-5-methylamino-2',7'-difluorescein fluorescence and chemiluminescence. Flavins stimulated the reaction, while superoxide dismutase inhibited it. Interestingly, mouse NO synthase can also use IAOx to produce NO at a lower rate than POD. We provided a full mechanism for POD-dependent NO production from IAOx consistent with the experimental data and supported by density functional theory calculations. We showed that the addition of IAOx to extracts from Medicago truncatula increased the in vitro production of NO, while in vivo supplementation of IAOx and other oximes increased the number of lateral roots, as shown for NO donors, and a more than 10-fold increase in IAOx dehydratase expression. Furthermore, we found that in vivo supplementation of IAOx increased NO production in Arabidopsis thaliana wild-type plants, while prx33-34 mutant plants, defective in POD33-34, had reduced production. Our data show that the release of NO by IAOx, as well as its auxinic effect, explain the superroot phenotype. Collectively, our study reveals that plants produce NO utilizing diverse molecules such as oximes, POD, and flavins, which are widely distributed in the plant kingdom, thus introducing a long-awaited oxidative pathway to NO production in plants. This knowledge has essential implications for understanding signaling in biological systems.
Collapse
Affiliation(s)
- Pedro López-Gómez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Javier Buezo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Marina Urra
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Sarriena s/n, Apdo. 644, 48080 Bilbao, Spain
| | - Jorge Fernández de Los Reyes
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Estibaliz Urarte
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Estefanía Rodríguez-Dobreva
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alejandro Chamizo-Ampudia
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alejandro Eguaras
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Sebastian Wolf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Sarriena s/n, Apdo. 644, 48080 Bilbao, Spain
| | - Victor Martínez-Merino
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain.
| | - Jose F Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain.
| |
Collapse
|
16
|
Sun Y, Yang B, De Rybel B. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6964-6974. [PMID: 37343122 PMCID: PMC7615341 DOI: 10.1093/jxb/erad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.
Collapse
Affiliation(s)
- Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Chao J, Wu S, Shi M, Xu X, Gao Q, Du H, Gao B, Guo D, Yang S, Zhang S, Li Y, Fan X, Hai C, Kou L, Zhang J, Wang Z, Li Y, Xue W, Xu J, Deng X, Huang X, Gao X, Zhang X, Hu Y, Zeng X, Li W, Zhang L, Peng S, Wu J, Hao B, Wang X, Yu H, Li J, Liang C, Tian WM. Genomic insight into domestication of rubber tree. Nat Commun 2023; 14:4651. [PMID: 37532727 PMCID: PMC10397287 DOI: 10.1038/s41467-023-40304-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.
Collapse
Affiliation(s)
- Jinquan Chao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shaohua Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Minjing Shi
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Qi Biodesign, Life Science Park, Beijing, 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuguang Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shixin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiuli Fan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiwei Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaomin Deng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiao Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinsheng Gao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiaofei Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanshi Hu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Weiguo Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiqing Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jilin Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Bingzhong Hao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xuchu Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei-Min Tian
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
18
|
Neubus Claus LA, Liu D, Hohmann U, Vukašinović N, Pleskot R, Liu J, Schiffner A, Jaillais Y, Wu G, Wolf S, Van Damme D, Hothorn M, Russinova E. BRASSINOSTEROID INSENSITIVE1 internalization can occur independent of ligand binding. PLANT PHYSIOLOGY 2023; 192:65-76. [PMID: 36617237 PMCID: PMC10152650 DOI: 10.1093/plphys/kiad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
The brassinosteroid (BR) hormone and its plasma membrane (PM) receptor BR INSENSITIVE1 (BRI1) are one of the best-studied receptor-ligand pairs for understanding the interplay between receptor endocytosis and signaling in plants. BR signaling is mainly determined by the PM pool of BRI1, whereas BRI1 endocytosis ensures signal attenuation. As BRs are ubiquitously distributed in the plant, the tools available to study the BRI1 function without interference from endogenous BRs are limited. Here, we designed a BR binding-deficient Arabidopsis (Arabidopsis thaliana) mutant based on protein sequence-structure analysis and homology modeling of members of the BRI1 family. This tool allowed us to re-examine the BRI1 endocytosis and signal attenuation model. We showed that despite impaired phosphorylation and ubiquitination, BR binding-deficient BRI1 internalizes similarly to the wild type form. Our data indicate that BRI1 internalization relies on different endocytic machineries. In addition, the BR binding-deficient mutant provides opportunities to study non-canonical ligand-independent BRI1 functions.
Collapse
Affiliation(s)
- Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jing Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710062 Shaanxi, China
| | - Alexei Schiffner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lyon, 69342 Lyon, France
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710062 Shaanxi, China
| | - Sebastian Wolf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Nunes TDG, Berg LS, Slawinska MW, Zhang D, Redt L, Sibout R, Vogel JP, Laudencia-Chingcuanco D, Jesenofsky B, Lindner H, Raissig MT. Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon. Curr Biol 2023; 33:1844-1854.e6. [PMID: 37086717 DOI: 10.1016/j.cub.2023.03.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.
Collapse
Affiliation(s)
- Tiago D G Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Lea S Berg
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Redt
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Sibout
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.
| |
Collapse
|
20
|
Ohashi-Ito K, Iwamoto K, Yamagami A, Nakano T, Fukuda H. HD-ZIP III-dependent local promotion of brassinosteroid synthesis suppresses vascular cell division in Arabidopsis root apical meristem. Proc Natl Acad Sci U S A 2023; 120:e2216632120. [PMID: 37011193 PMCID: PMC10104508 DOI: 10.1073/pnas.2216632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Kuninori Iwamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Ayumi Yamagami
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Takeshi Nakano
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Environmental Sciences, Kyoto University of Advanced Science, Kyoto621-8555, Japan
| |
Collapse
|
21
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
22
|
Yu J, Zhang J, Hong H. Characterization and Expression Analysis of Four Cadmium-Tolerance-Associated Genes of Avicennia marina (Forsk.). BIOLOGY 2023; 12:216. [PMID: 36829494 PMCID: PMC9952839 DOI: 10.3390/biology12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Mangroves colonize the intertidal area of estuaries (e.g., Pichavaram, Payardia, and Mai Po) with remarkable cadmium (Cd) pollution. A study on the mechanism of mangrove plant response to Cd pollution can help to understand the adaptive characteristics of plants under Cd stress. This study explored the roles of peroxidase (PRX), pectate lyase (PL), and phytosulfokine (PSK) genes in cadmium tolerance of mangrove Avicennia marina. Full-length sequences of four genes (i.e., AmPRX1, AmPRX2, AmPL, and AmPSK) associated with metal tolerance were identified with suppression subtractive hybridization and rapid amplification of cDNA ends. These genes showed the characteristic features of the respective protein family, indicating functions similar to other plant proteins. Real-time quantitative PCR analysis demonstrated that cadmium exposure resulted in differences in expression patterns among the tissues. Our findings emphasize the complex regulatory mechanism of these four genes in response to trace metal pollution and reveal their functions in metabolic signaling during the stress response.
Collapse
Affiliation(s)
- Jinfeng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Innovax Biotech, Xiamen 361022, China
| | - Jicheng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Frasergen, Wuhan 430075, China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
24
|
Qin T, Ali K, Wang Y, Dormatey R, Yao P, Bi Z, Liu Y, Sun C, Bai J. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato. FRONTIERS IN PLANT SCIENCE 2022; 13:1007866. [PMID: 36340359 PMCID: PMC9629812 DOI: 10.3389/fpls.2022.1007866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Potato is one of the most important vegetable crops worldwide. Its growth, development and ultimately yield is hindered by drought stress condition. Breeding and selection of deep-rooted and drought-tolerant potato varieties has become a prime approach for improving the yield and quality of potato (Solanum tuberosum L.) in arid and semiarid areas. A comprehensive understanding of root development-related genes has enabled scientists to formulate strategies to incorporate them into breeding to improve complex agronomic traits and provide opportunities for the development of stress tolerant germplasm. Root response to drought stress is an intricate process regulated through complex transcriptional regulatory network. To understand the rooting depth and molecular mechanism, regulating root response to drought stress in potato, transcriptome dynamics of roots at different stages of drought stress were analyzed in deep (C119) and shallow-rooted (C16) cultivars. Stage-specific expression was observed for a significant proportion of genes in each cultivar and it was inferred that as compared to C16 (shallow-rooted), approximately half of the genes were differentially expressed in deep-rooted cultivar (C119). In C16 and C119, 11 and 14 coexpressed gene modules, respectively, were significantly associated with physiological traits under drought stress. In a comparative analysis, some modules were different between the two cultivars and were associated with differential response to specific drought stress stage. Transcriptional regulatory networks were constructed, and key components determining rooting depth were identified. Through the results, we found that rooting depth (shallow vs deep) was largely determined by plant-type, cell wall organization or biogenesis, hemicellulose metabolic process, and polysaccharide metabolic process. In addition, candidate genes responding to drought stress were identified in deep (C119) and shallow (C16) rooted potato varieties. The results of this study will be a valuable source for further investigations on the role of candidate gene(s) that affect rooting depth and drought tolerance mechanisms in potato.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
25
|
Glöckner N, zur Oven-Krockhaus S, Rohr L, Wackenhut F, Burmeister M, Wanke F, Holzwart E, Meixner AJ, Wolf S, Harter K. Three-Fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192630. [PMID: 36235497 PMCID: PMC9571070 DOI: 10.3390/plants11192630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 05/13/2023]
Abstract
Protein-protein interaction studies provide valuable insights into cellular signaling. Brassinosteroid (BR) signaling is initiated by the hormone-binding receptor Brassinosteroid Insensitive 1 (BRI1) and its co-receptor BRI1 Associated Kinase 1 (BAK1). BRI1 and BAK1 were shown to interact independently with the Receptor-Like Protein 44 (RLP44), which is implicated in BRI1/BAK1-dependent cell wall integrity perception. To demonstrate the proposed complex formation of BRI1, BAK1 and RLP44, we established three-fluorophore intensity-based spectral Förster resonance energy transfer (FRET) and FRET-fluorescence lifetime imaging microscopy (FLIM) for living plant cells. Our evidence indicates that RLP44, BRI1 and BAK1 form a ternary complex in a distinct plasma membrane nanodomain. In contrast, although the immune receptor Flagellin Sensing 2 (FLS2) also forms a heteromer with BAK1, the FLS2/BAK1 complexes are localized to other nanodomains. In conclusion, both three-fluorophore FRET approaches provide a feasible basis for studying the in vivo interaction and sub-compartmentalization of proteins in great detail.
Collapse
Affiliation(s)
- Nina Glöckner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Sven zur Oven-Krockhaus
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Frank Wackenhut
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Moritz Burmeister
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Eleonore Holzwart
- Centre for Organismal Studies (COS), University of Heidelberg, 69117 Heidelberg, Germany
| | - Alfred J. Meixner
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sebastian Wolf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69117 Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-(0)-7071-2972605
| |
Collapse
|
26
|
Canher B, Lanssens F, Zhang A, Bisht A, Mazumdar S, Heyman J, Wolf S, Melnyk CW, De Veylder L. The regeneration factors ERF114 and ERF115 regulate auxin-mediated lateral root development in response to mechanical cues. MOLECULAR PLANT 2022; 15:1543-1557. [PMID: 36030378 DOI: 10.1016/j.molp.2022.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plants show an unparalleled regenerative capacity, allowing them to survive severe stress conditions, such as injury, herbivory attack, and harsh weather conditions. This potential not only replenishes tissues and restores damaged organs but can also give rise to whole plant bodies. Despite the intertwined nature of development and regeneration, common upstream cues and signaling mechanisms are largely unknown. Here, we demonstrate that in addition to being activators of regeneration, ETHYLENE RESPONSE FACTOR 114 (ERF114) and ERF115 govern developmental growth in the absence of wounding or injury. Increased ERF114 and ERF115 activity enhances auxin sensitivity, which is correlated with enhanced xylem maturation and lateral root formation, whereas their knockout results in a decrease in lateral roots. Moreover, we provide evidence that mechanical cues contribute to ERF114 and ERF115 expression in correlation with BZR1-mediated brassinosteroid signaling under both regenerative and developmental conditions. Antagonistically, cell wall integrity surveillance via mechanosensory FERONIA signaling suppresses their expression under both conditions. Taken together, our data suggest a molecular framework in which cell wall signals and mechanical strains regulate organ development and regenerative responses via ERF114- and ERF115-mediated auxin signaling.
Collapse
Affiliation(s)
- Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Fien Lanssens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Shamik Mazumdar
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
27
|
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer AJ, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife 2022; 11:e73031. [PMID: 36069528 PMCID: PMC9525061 DOI: 10.7554/elife.73031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Friederike Wanke
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Leander Rohr
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Nina Glöckner
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Luiselotte Rausch
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Stefan Scholl
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Emanuele Scacchi
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
- Department of Ecological and biological Science, Tuscia UniversityViterboItaly
| | | | - Lana Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane Biology, Foshan UniversityFoshanChina
| | - Karin Schumacher
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Ursula Kummer
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Klaus Harter
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| |
Collapse
|
28
|
Devi LL, Pandey A, Gupta S, Singh AP. The interplay of auxin and brassinosteroid signaling tunes root growth under low and different nitrogen forms. PLANT PHYSIOLOGY 2022; 189:1757-1773. [PMID: 35377445 PMCID: PMC9237728 DOI: 10.1093/plphys/kiac157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/08/2022] [Indexed: 05/11/2023]
Abstract
The coordinated signaling activity of auxin and brassinosteroids (BRs) is critical for optimal plant growth and development. Nutrient-derived signals regulate root growth by modulating the levels and spatial distribution of growth hormones to optimize nutrient uptake and assimilation. However, the effect of the interaction of these two hormones and their signaling on root plasticity during low and differential availability of nitrogen (N) forms (NH4+/NO3-) remains elusive. We demonstrate that root elongation under low N (LN) is an outcome of the interdependent activity of auxin and BR signaling pathways in Arabidopsis (Arabidopsis thaliana). LN promotes root elongation by increasing BR-induced auxin transport activity in the roots. Increased nuclear auxin signaling and its transport efficiency have a distinct impact on root elongation under LN conditions. High auxin levels reversibly inhibit BR signaling via BRI1 KINASE INHIBITOR1. Using the tissue-specific approach, we show that BR signaling from root vasculature (stele) tissues is sufficient to promote cell elongation and, hence, root growth under LN condition. Further, we show that N form-defined root growth attenuation or enhancement depends on the fine balance of BR and auxin signaling activity. NH4+ as a sole N source represses BR signaling and response, which in turn inhibits auxin response and transport, whereas NO3- promotes root elongation in a BR signaling-dependent manner. In this study, we demonstrate the interplay of auxin and BR-derived signals, which are critical for root growth in a heterogeneous N environment and appear essential for root N foraging response and adaptation.
Collapse
Affiliation(s)
| | - Anshika Pandey
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | | |
Collapse
|
29
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
30
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
31
|
Graeff M, Rana S, Wendrich JR, Dorier J, Eekhout T, Aliaga Fandino AC, Guex N, Bassel GW, De Rybel B, Hardtke CS. A single-cell morpho-transcriptomic map of brassinosteroid action in the Arabidopsis root. MOLECULAR PLANT 2021; 14:1985-1999. [PMID: 34358681 PMCID: PMC8674818 DOI: 10.1016/j.molp.2021.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 05/05/2023]
Abstract
The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity. Instead, brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion. Moreover, we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions, which are sufficient to restore growth vigor. Finally, single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Jos R Wendrich
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Thomas Eekhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Ana Cecilia Aliaga Fandino
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - George W Bassel
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Fridman Y, Strauss S, Horev G, Ackerman-Lavert M, Reiner-Benaim A, Lane B, Smith RS, Savaldi-Goldstein S. The root meristem is shaped by brassinosteroid control of cell geometry. NATURE PLANTS 2021; 7:1475-1484. [PMID: 34782771 PMCID: PMC8592843 DOI: 10.1038/s41477-021-01014-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/05/2021] [Indexed: 05/10/2023]
Abstract
Growth extent and direction determine cell and whole-organ architecture. How they are spatio-temporally modulated to control size and shape is not well known. Here we tackled this question by studying the effect of brassinosteroid (BR) signalling on the structure of the root meristem. Quantification of the three-dimensional geometry of thousands of individual meristematic cells across different tissue types showed that the modulation of BR signalling yields distinct changes in growth rate and anisotropy, which affects the time that cells spend in the meristem and has a strong impact on the final root form. By contrast, the hormone effect on cell volume was minor, establishing cell volume as invariant to the effect of BR. Thus, BR has the highest effect on cell shape and growth anisotropy, regulating the overall longitudinal and radial growth of the meristem, while maintaining a coherent distribution of cell sizes. Moving from single-cell quantification to the whole organ, we developed a computational model of radial growth. The simulation demonstrates how differential BR-regulated growth between the inner and outer tissues shapes the meristem and thus explains the non-intuitive outcomes of tissue-specific perturbation of BR signalling. The combined experimental data and simulation suggest that the inner and outer tissues have distinct but coordinated roles in growth regulation.
Collapse
Affiliation(s)
- Y Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - G Horev
- Lorey I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Ackerman-Lavert
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - A Reiner-Benaim
- Clinical Epidemiology Unit, Rambam Health Care Campus, Haifa, Israel
| | - B Lane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - R S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Department of Computational and Systems Biology, John Innes Centre, Norwich, UK.
| | | |
Collapse
|
33
|
Li Z, Sela A, Fridman Y, Garstka L, Höfte H, Savaldi-Goldstein S, Wolf S. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 2021; 148:273348. [PMID: 34739031 PMCID: PMC8627601 DOI: 10.1242/dev.199504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Plant brassinosteroid hormones (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, feedback signalling from the wall connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here, we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. Furthermore, both depletion of endogenous BRs and exogenous supply of BRs triggered these defects. Cell wall signalling-induced alterations in the orientation of newly placed walls appear to occur late during cytokinesis, after initial positioning of the cortical division zone. Tissue-specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement. Summary: Both increased and reduced BR signalling strength results in altered cell wall orientation in the Arabidopsis root, uncoupled from whole-root growth control.
Collapse
Affiliation(s)
- Zhenni Li
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ayala Sela
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Fridman
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lucía Garstka
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Herman Höfte
- Department of Development, Signalling, and Modelling, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
34
|
Ackerman-Lavert M, Fridman Y, Matosevich R, Khandal H, Friedlander-Shani L, Vragović K, Ben El R, Horev G, Tarkowská D, Efroni I, Savaldi-Goldstein S. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function. Curr Biol 2021; 31:4462-4472.e6. [PMID: 34418341 DOI: 10.1016/j.cub.2021.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Root meristem organization is maintained by an interplay between hormone signaling pathways that both interpret and determine their accumulation and distribution. The interacting hormones Brassinosteroids (BR) and auxin control the number of meristematic cells in the Arabidopsis root. BR was reported both to promote auxin signaling input and to repress auxin signaling output. Whether these contradicting molecular outcomes co-occur and what their significance in meristem function is remain unclear. Here, we established a dual effect of BR on auxin, with BR simultaneously promoting auxin biosynthesis and repressing auxin transcriptional output, which is essential for meristem maintenance. Blocking BR-induced auxin synthesis resulted in rapid BR-mediated meristem loss. Conversely, plants with reduced BR levels were resistant to a critical loss of auxin biosynthesis, maintaining their meristem morphology. In agreement, injured root meristems, which rely solely on local auxin synthesis, regenerated when both auxin and BR synthesis were inhibited. Use of BIN2 as a tool to selectively inhibit BR signaling yielded meristems with distinct phenotypes depending on the perturbed tissue: meristem reminiscent either of BR-deficient mutants or of high BR exposure. This enabled mapping of the BR-auxin interaction that maintains the meristem to the outer epidermis and lateral root cap tissues and demonstrated the essentiality of BR signaling in these tissues for meristem response to BR. BR activity in internal tissues however, proved necessary to control BR levels. Together, we demonstrate a basis for inter-tissue coordination and how a critical ratio between these hormones determines the meristematic state.
Collapse
Affiliation(s)
- M Ackerman-Lavert
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Y Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - R Matosevich
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - H Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - L Friedlander-Shani
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - K Vragović
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - R Ben El
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - G Horev
- Lorey I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - D Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Olomouc, Czech Republic
| | - I Efroni
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Savaldi-Goldstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
35
|
Garnelo Gómez B, Holzwart E, Shi C, Lozano-Durán R, Wolf S. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. J Cell Sci 2021; 134:272537. [PMID: 34569597 PMCID: PMC8572011 DOI: 10.1242/jcs.259134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.
Collapse
Affiliation(s)
- Borja Garnelo Gómez
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Eleonore Holzwart
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
36
|
Jiang C, Li B, Song Z, Zhang Y, Yu C, Wang H, Wang L, Zhang H. PtBRI1.2 promotes shoot growth and wood formation through a brassinosteroid-mediated PtBZR1-PtWNDs module in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6350-6364. [PMID: 34089602 DOI: 10.1093/jxb/erab260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroid-insensitive-1 (BRI1) plays important roles in various signalling pathways controlling plant growth and development. However, the regulatory mechanism of BRI1 in brassinosteroid (BR)-mediated signalling for shoot growth and wood formation in woody plants is largely unknown. In this study, PtBRI1.2, a brassinosteroid-insensitive-1 gene, was overexpressed in poplar. Shoot growth and wood formation of transgenic plants were examined and the regulatory genes involved were verified. PtBRI1.2 was localized to the plasma membrane, with a predominant expression in leaves. Ectopic expression of PtBRI1.2 in Arabidopsis bri1-201 and bri1-5 mutants rescued their retarded-growth phenotype. Overexpression of PtBRI1.2 in poplar promoted shoot growth and wood formation in transgenic plants. Further studies revealed that overexpression of PtBRI1.2 promoted the accumulation of PtBZR1 (BRASSINAZOLE RESISTANT1) in the nucleus, which subsequently activated PtWNDs (WOOD-ASSOCIATED NAC DOMAIN transcription factors) to up-regulate expression of secondary cell wall biosynthesis genes involved in wood formation. Our results suggest that PtBRI1.2 plays a crucial role in regulating shoot growth and wood formation by activating BR signalling.
Collapse
Affiliation(s)
- Chunmei Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Yuliang Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
37
|
Fujita S. CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers. Peptides 2021; 143:170599. [PMID: 34174383 DOI: 10.1016/j.peptides.2021.170599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
In multicellular organisms, water and most of the small molecules, such as nutrients, toxic substances, and signaling compounds, move freely through extracellular spaces, depending on their biochemical nature. To restrict the simple diffusion of small molecules, multicellular organisms have evolved extracellular barriers across specific tissue layers, such as tight junctions in the animal epithelium. Similar extracellular barriers are also generated in plants through the accumulation of hydrophobic chemicals, such as lignin or cutin, although the detailed molecular mechanisms underlying this process remain elusive. Here, I summarize recent advances in extracellular barrier formation in plants by focusing mainly on CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides, which trigger the spatially precise deposition of designated cell wall components, enabling plants to establish transcellular barrier networks correctly. The genome of Arabidopsis thaliana, a model plant species, harbors five CIF genes, which encode propeptides which are processed into small secreted peptides of 21-24 amino acids. Sulfation of tyrosine residues in CIF peptides ensures their full bioactivity and high-affinity binding to their receptors SCHENGEN3/GASSHO1 (SGN3/GSO1) and GSO2 in vitro. Additionally, in vivo analysis shows that physical restriction of CIF peptide diffusion and the subcellular localization of a signaling module and expression patterns of a peptide processing enzyme specify the location of signal activation. Thus, the CIF peptide family provides fascinating models for understanding mature peptide biogenesis and spatially limited signal activation with small diffusive molecules.
Collapse
Affiliation(s)
- Satoshi Fujita
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
38
|
Shin Y, Chane A, Jung M, Lee Y. Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2021; 10:1712. [PMID: 34451757 PMCID: PMC8399534 DOI: 10.3390/plants10081712] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
Pectin is an abundant cell wall polysaccharide with essential roles in various biological processes. The structural diversity of pectins, along with the numerous combinations of the enzymes responsible for pectin biosynthesis and modification, plays key roles in ensuring the specificity and plasticity of cell wall remodeling in different cell types and under different environmental conditions. This review focuses on recent progress in understanding various aspects of pectin, from its biosynthetic and modification processes to its biological roles in different cell types. In particular, we describe recent findings that cell wall modifications serve not only as final outputs of internally determined pathways, but also as key components of intercellular communication, with pectin as a major contributor to this process. The comprehensive view of the diverse roles of pectin presented here provides an important basis for understanding how cell wall-enclosed plant cells develop, differentiate, and interact.
Collapse
Affiliation(s)
- Yesol Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Andrea Chane
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Minjung Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; (Y.S.); (A.C.); (M.J.)
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Steidele CE, Stam R. Multi-omics approach highlights differences between RLP classes in Arabidopsis thaliana. BMC Genomics 2021; 22:557. [PMID: 34284718 PMCID: PMC8290556 DOI: 10.1186/s12864-021-07855-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The Leucine rich-repeat (LRR) receptor-like protein (RLP) family is a complex gene family with 57 members in Arabidopsis thaliana. Some members of the RLP family are known to be involved in basal developmental processes, whereas others are involved in defence responses. However, functional data is currently only available for a small subset of RLPs, leaving the remaining ones classified as RLPs of unknown function. RESULTS Using publicly available datasets, we annotated RLPs of unknown function as either likely defence-related or likely fulfilling a more basal function in plants. Then, using these categories, we can identify important characteristics that differ between the RLP subclasses. We found that the two classes differ in abundance on both transcriptome and proteome level, physical clustering in the genome and putative interaction partners. However, the classes do not differ in the genetic di versity of their individual members in accessible pan-genome data. CONCLUSIONS Our work has several implications for work related to functional studies on RLPs as well as for the understanding of RLP gene family evolution. Using our annotations, we can make suggestions on which RLPs can be identified as potential immune receptors using genetics tools and thereby complement disease studies. The lack of differences in nucleotide diversity between the two RLP subclasses further suggests that non-synonymous diversity of gene sequences alone cannot distinguish defence from developmental genes. By contrast, differences in transcript and protein abundance or clustering at genomic loci might also allow for functional annotations and characterisation in other plant species.
Collapse
Affiliation(s)
- C E Steidele
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann- Straße 2, 85354, Freising, Germany
| | - R Stam
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann- Straße 2, 85354, Freising, Germany.
| |
Collapse
|
40
|
Stührwohldt N, Bühler E, Sauter M, Schaller A. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3427-3440. [PMID: 33471900 DOI: 10.1093/jxb/erab017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7, and SBT3.8, were found to be up-regulated in response to osmotic stress. Stress symptoms were more pronounced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the PSK1 precursor (proPSK1) or SBT3.8, resulting in higher fresh weight and improved lateral root development in transgenic plants compared with wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression of proPSK1 in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Eric Bühler
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
41
|
Deom CM, Alabady MS, Yang L. Early transcriptome changes induced by the Geminivirus C4 oncoprotein: setting the stage for oncogenesis. BMC Genomics 2021; 22:147. [PMID: 33653270 PMCID: PMC7923490 DOI: 10.1186/s12864-021-07455-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Beet curly top virus C4 oncoprotein is a pathogenic determinant capable of inducing extensive developmental abnormalities. No studies to date have investigated how the transcriptional profiles differ between plants expressing or not expressing the C4 oncoprotein. RESULTS We investigated early transcriptional changes in Arabidopsis associated with expression of the Beet curly top virus C4 protein that represent initial events in pathogenesis via a comparative transcriptional analysis of mRNAs and small RNAs. We identified 48 and 94 differentially expressed genes at 6- and 12-h post-induction versus control plants. These early time points were selected to focus on direct regulatory effects of C4 expression. Since previous evidence suggested that the C4 protein regulated the brassinosteroid (BR)-signaling pathway, differentially expressed genes could be divided into two groups: those responsive to alterations in the BR-signaling pathway and those uniquely responsive to C4. Early transcriptional changes that disrupted hormone homeostasis, 18 and 19 differentially expressed genes at both 6- and 12-hpi, respectively, were responsive to C4-induced regulation of the BR-signaling pathway. Other C4-induced differentially expressed genes appeared independent of the BR-signaling pathway at 12-hpi, including changes that could alter cell development (4 genes), cell wall homeostasis (5 genes), redox homeostasis (11 genes) and lipid transport (4 genes). Minimal effects were observed on expression of small RNAs. CONCLUSION This work identifies initial events in genetic regulation induced by a geminivirus C4 oncoprotein. We provide evidence suggesting the C4 protein regulates multiple regulatory pathways and provides valuable insights into the role of the C4 protein in regulating initial events in pathogenesis.
Collapse
Affiliation(s)
- Carl Michael Deom
- Department of Plant Pathology, University of Georgia, Athens, GA, USA.
| | - Magdy S Alabady
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
de Souza JV, Kondal M, Zaborniak P, Cairns R, Bronowska AK. Controlling the Heterodimerisation of the Phytosulfokine Receptor 1 (PSKR1) via Island Loop Modulation. Int J Mol Sci 2021; 22:1806. [PMID: 33670396 PMCID: PMC7918699 DOI: 10.3390/ijms22041806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing a pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between a leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor's island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of the PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel "druggable" binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
Collapse
Affiliation(s)
- João V. de Souza
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Matthew Kondal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Piotr Zaborniak
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Ryland Cairns
- Fontus Environmental, High Garth, Thirsk YO7 3PX, UK;
| | - Agnieszka K. Bronowska
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| |
Collapse
|
43
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
44
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
45
|
Nagar P, Kumar A, Jain M, Kumari S, Mustafiz A. Genome-wide analysis and transcript profiling of PSKR gene family members in Oryza sativa. PLoS One 2020; 15:e0236349. [PMID: 32701993 PMCID: PMC7377467 DOI: 10.1371/journal.pone.0236349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022] Open
Abstract
Peptide signalling is an integral part of cell-to-cell communication which helps to relay the information responsible for coordinating cell proliferation and differentiation. Phytosulfokine Receptor (PSKR) is a transmembrane LRR-RLK family protein with a binding site for small signalling peptide, phytosulfokine (PSK). PSK signalling through PSKR promotes normal growth and development and also plays a role in defense responses. Like other RLKs, these PSKRs might have a role in signal transduction pathways related to abiotic stress responses. Genome-wide analysis of phytosulfokine receptor gene family has led to the identification of fifteen putative members in the Oryza sativa genome. The expression analysis of OsPSKR genes done using RNA-seq data, showed that these genes were differentially expressed in different tissues and responded specifically to heat, salt, drought and cold stress. Furthermore, the real-time quantitative PCR for fifteen OsPSKR genes revealed temporally and spatially regulated gene expression corresponding to salinity and drought stress. Our results provide useful information for a better understanding of OsPSKR genes and provide the foundation for additional functional exploration of the rice PSKR gene family in development and stress response.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, JK, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
46
|
Pandey A, Devi LL, Singh AP. Review: Emerging roles of brassinosteroid in nutrient foraging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110474. [PMID: 32540004 DOI: 10.1016/j.plantsci.2020.110474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are well-characterized growth hormones that are critical for plant growth, development, and productivity. Genetic and molecular studies have revealed the key components of BR biosynthesis and signaling pathways. The membrane-localized BR signaling receptor, BRASSINOSTEROID INSENSITIVE1 (BRI1) binds directly to its ligand and initiates series of signaling events that led to the activation of BR transcriptional regulators, BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1/BZR2) to regulate the cellular processes. Insights from Arabidopsis research revealed tissue and cell type-specific roles of BR in controlling cell elongation and maintenance of stem cell niche in roots. More recently, BRs have gained much attention in regulating the root growth during nutrient deficiency such as nitrogen, phosphorus, and boron. Differential distribution of nutrients in the rhizosphere alters BR hormone levels and signaling to reprogram spatial distribution of root system architecture (RSA) such as a change in primary root growth, lateral root numbers, length, and angle, root hair formation and elongation. These morpho-physiological changes in RSA are also known as an adaptive root trait or foraging response of the plant. In this review, we highlight the role of BRs in regulating RSA to increase root foraging response during fluctuating nutrient availability.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
47
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
48
|
Ramachandran P, Augstein F, Nguyen V, Carlsbecker A. Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development. FRONTIERS IN PLANT SCIENCE 2020; 11:570. [PMID: 32499804 PMCID: PMC7243681 DOI: 10.3389/fpls.2020.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/17/2020] [Indexed: 05/23/2023]
Abstract
Periods of drought, that threaten crop production, are expected to become more prominent in large parts of the world, making it necessary to explore all aspects of plant growth and development, to breed, modify and select crops adapted to such conditions. One such aspect is the xylem, where influencing the size and number of the water-transporting xylem vessels, may impact on hydraulic conductance and drought tolerance. Here, we focus on how plants adjust their root xylem as a response to reduced water availability. While xylem response has been observed in a wide array of species, most of our knowledge on the molecular mechanisms underlying xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When grown under water limiting conditions, Arabidopsis rapidly adjusts its development to produce more xylem strands with altered identity in an abscisic acid (ABA) dependent manner. Other hormones such as auxin and cytokinin are essential for vascular patterning and differentiation. Their balance can be perturbed by stress, as evidenced by the effects of enhanced jasmonic acid signaling, which results in similar xylem developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids and other signaling molecules involved in drought tolerance can also impact xylem development. Hence, a multitude of signals affect root xylem properties and, potentially, influence survival under water limiting conditions. Here, we review the likely entangled signals that govern root vascular development, and discuss the importance of taking root anatomical traits into account when breeding crops for enhanced resilience toward changes in water availability.
Collapse
|
49
|
Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. PLANT PHYSIOLOGY 2020; 182:1636-1644. [PMID: 31796560 PMCID: PMC7140915 DOI: 10.1104/pp.19.01259] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/17/2019] [Indexed: 05/18/2023]
Abstract
CLE peptide and related signaling pathways take up prominent roles in the development of both vascular tissues, xylem and phloem.
Collapse
Affiliation(s)
- Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Gou X, Li J. Paired Receptor and Coreceptor Kinases Perceive Extracellular Signals to Control Plant Development. PLANT PHYSIOLOGY 2020; 182:1667-1681. [PMID: 32144125 PMCID: PMC7140932 DOI: 10.1104/pp.19.01343] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/04/2020] [Indexed: 05/12/2023]
Abstract
Receptor-like protein kinase complexes regulate plant growth and development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|