1
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
2
|
Mihályi C, Iordanov I, Szollosi A, Csanády L. Structural determinants of protein kinase A essential for CFTR channel activation. Proc Natl Acad Sci U S A 2024; 121:e2407728121. [PMID: 39495914 DOI: 10.1073/pnas.2407728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the anion channel mutated in cystic fibrosis (CF) patients, is activated by the catalytic subunit of protein kinase A (PKA-C). PKA-C activates CFTR both noncatalytically, through binding, and catalytically, through phosphorylation of multiple serines in CFTR's regulatory (R) domain. Here, we identify key molecular determinants of the CFTR/PKA-C interaction essential for these processes. By comparing CFTR current activation in the presence of ATP or an ATP analog unsuitable for phosphotransfer, as well as pseudosubstrate peptides of various lengths, we identify two distinct specific regions of the PKA-C surface which interact with CFTR to cause noncatalytic and catalytic CFTR stimulation, respectively. Whereas the "substrate site" mediates CFTR phosphorylation, a distinct hydrophobic patch (the "docking site") is responsible for noncatalytic CFTR activation, achieved by stabilizing the R domain in a "released" conformation permissive to channel gating. Furthermore, by comparing PKA-C variants with different posttranslational modification patterns, we find that direct membrane tethering of the kinase through its N-terminal myristoyl group is an unappreciated fundamental requirement for CFTR activation: PKA-C demyristoylation abolishes noncatalytic, and profoundly slows catalytic, CFTR stimulation. For the F508del CFTR mutant, present in ~90% of CF patients, maximal activation by demyristoylated PKA-C is reduced by ~10-fold compared to that by myristoylated PKA-C. Finally, in bacterial genera that contain common CF pathogens, we identify virulence factors that demyristoylate PKA-C in vitro, raising the possibility that during recurrent bacterial infections in CF patients, PKA-C demyristoylation may contribute to the exacerbation of lung disease.
Collapse
Affiliation(s)
- Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| |
Collapse
|
3
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
4
|
Castanier S, Elbahnsi A, Chevalier B, Baatallah N, Pranke I, Berri L, Edelman A, Sermet-Gaudelus I, Mornon JP, Callebaut I, Hinzpeter A. Novel gain-of-function mutants identify a critical region within CFTR membrane-spanning domain 2 controlling cAMP-dependent and ATP-independent channel activation. Cell Mol Life Sci 2024; 81:426. [PMID: 39373784 PMCID: PMC11458853 DOI: 10.1007/s00018-024-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
CFTR is an anion channel that has evolved from the mold of an ABC transporter. It possesses specific structural features, including a lateral portal between the cytoplasmic extensions of its transmembrane helices TM4 and TM6. This TM4-TM6 portal is lined by basic residues attracting anions from the cytosol towards the intracellular vestibule. Even though a symmetric, open portal is not observed at the level of the TM10/TM12 interface, basic amino acids are also present at this level, exposed to solvent in the vicinity of the regulatory R region, whose phosphorylation enables channel activation. Here, using all-atom molecular dynamics simulations in combination with functional and biochemical assays, we investigate the importance of these basic amino acids (R1158 and R1030), and of a neighboring aromatic amino acid (W846) in the regulation of CFTR activity. Results indicate that mutation of these amino acids globally increased channel activity and enabled channel opening by potentiators without the need to elevate cAMP levels. These effects (i) were observed even when the binding site of the potentiator VX-770 was mutated, revealing a probable independent mechanism, and (ii) were additive to one gain-of-function mutant within the selectivity filter. Taken together, our results indicate that the region of the membrane-spanning domain 2 (MSD2), symmetric to the lateral portal located between MSD1 TM4 and TM6, is a novel critical actor of CFTR regulation.
Collapse
Affiliation(s)
- Solène Castanier
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
- Université Paris Cité, Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Paris, 75006, France
| | - Benoit Chevalier
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Nesrine Baatallah
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Iwona Pranke
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Lynda Berri
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Aleksander Edelman
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, 75005, France
| | - Alexandre Hinzpeter
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, F-75015, France.
| |
Collapse
|
5
|
Vaccarin C, Veit G, Hegedus T, Torres O, Chilin A, Lukacs GL, Marzaro G. Synthesis and Biological Evaluation of Pyrazole-Pyrimidones as a New Class of Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2024; 67:13891-13908. [PMID: 39137389 DOI: 10.1021/acs.jmedchem.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound 4172 that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661. Here, novel CFTR correctors were designed by applying a classical medicinal chemistry approach on the 4172 scaffold. Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted to propose a plausible binding site and design more potent and effective analogs. We identified three optimized compounds, which, in combination with VX-809 and the investigational corrector 3151, increased the plasma membrane density and function of F508del-CFTR and other rare CFTR mutants resistant to the currently approved therapies.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tamas Hegedus
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest 1052, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
7
|
Gao X, Yeh HI, Yang Z, Fan C, Jiang F, Howard RJ, Lindahl E, Kappes JC, Hwang TC. Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore. Nat Commun 2024; 15:6668. [PMID: 39107303 PMCID: PMC11303713 DOI: 10.1038/s41467-024-50641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR's activity through binding to a site also comprising TM8.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Chen Fan
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Rebecca J Howard
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - John C Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
- Research Service, Birmingham Veterans Affairs Medical Center, Veterans Health Administration, Birmingham, AL, 35233, USA
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan.
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
9
|
McDonald EF, Kim M, Olson JA, Meiler J, Plate L. Proteostasis Landscapes of Selective versus Poorly Responsive CFTR Variants Reveals Structural Vulnerabilities to Correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602964. [PMID: 39026768 PMCID: PMC11257600 DOI: 10.1101/2024.07.10.602964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cystic Fibrosis (CF) is a lethal genetic disorder caused by variants in CF transmembrane conductance regulator (CFTR). Many disease variants are treatable with corrector compounds, which enhance the folding and trafficking of CFTR. However, correctors fail to elicit a response for every CFTR variant. Approximately 3% of persons with CF harbor poorly responsive CFTR variants. Here, we reveal that a group of poorly responsive variants overlap with selectively responsive variants in a critical domain interface (nucleotide-binding domain 1/intracellular loop 4 - NBD1/ICL4). Affinity purification mass spectrometry proteomics was used to profile the protein homeostasis (proteostasis) changes of CFTR variants during corrector treatment to assess modulated interactions with protein folding and maturation pathways. Responsive variant interactions converged on similar proteostasis pathways during correction. In contrast, poorly responsive variants subtly diverged, revealing a partial restoration of protein quality control surveillance and a capacity to correct some mutations. Computational structural modeling showed that corrector VX-445 failed to confer enough NBD1 stability to poorly responsive variants. NBD1 secondary stabilizing mutations rescued poorly responsive variants, revealing structural vulnerabilities in NBD1 required for treating poor responders. Our study provides a framework for discerning the underlying protein quality control and structural defects of CFTR variants not reached with existing drugs. These insights can help expand therapeutics to all susceptible CFTR variants to enhance personalized medicine efforts.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37240, USA
| | - John A Olson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Lindt KA, Frühschulz S, Tampé R, Abele R. Interdomain communication in a homodimeric ABC transporter. J Biol Chem 2024; 300:107440. [PMID: 38844133 PMCID: PMC11267003 DOI: 10.1016/j.jbc.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
ABC transporters are found in all organisms and almost every cellular compartment. They mediate the transport of various solutes across membranes, energized by ATP binding and hydrolysis. Dysfunctions can result in severe diseases, such as cystic fibrosis or antibiotic resistance. In type IV ABC transporters, each of the two nucleotide-binding domains is connected to a transmembrane domain by two coupling helices, which are part of cytosolic loops. Although there are many structural snapshots of different conformations, the interdomain communication is still enigmatic. Therefore, we analyzed the function of three conserved charged residues in the intracytosolic loop 1 of the human homodimeric, lysosomal peptide transporter TAPL (transporter associated with antigen processing-like). Substitution of D278 in coupling helix 1 by alanine interrupted peptide transport by impeding ATP hydrolysis. Alanine substitution of R288 and D292, both localized next to the coupling helix 1 extending to transmembrane helix 3, reduced peptide transport but increased basal ATPase activity. Surprisingly, the ATPase activity of the R288A variant dropped in a peptide-dependent manner, whereas ATPase activity of wildtype and D292A was unaffected. Interestingly, R288A and D292A mutants did not differentiate between ATP and GTP in respect of hydrolysis. However, in contrast to wildtye TAPL, only ATP energized peptide transport. In sum, D278 seems to be involved in bidirectional interdomain communication mediated by network of polar interactions, whereas the two residues in the cytosolic extension of transmembrane helix 3 are involved in regulation of ATP hydrolysis, most likely by stabilization of the outward-facing conformation.
Collapse
Affiliation(s)
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
11
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Young PG, Levring J, Fiedorczuk K, Blanchard SC, Chen J. Structural basis for CFTR inhibition by CFTR inh-172. Proc Natl Acad Sci U S A 2024; 121:e2316675121. [PMID: 38422021 DOI: 10.1073/pnas.2316675121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates electrolyte and fluid balance in epithelial tissues. While activation of CFTR is vital to treating cystic fibrosis, selective inhibition of CFTR is a potential therapeutic strategy for secretory diarrhea and autosomal dominant polycystic kidney disease. Although several CFTR inhibitors have been developed by high-throughput screening, their modes of action remain elusive. In this study, we determined the structure of CFTR in complex with the inhibitor CFTRinh-172 to an overall resolution of 2.7 Å by cryogenic electron microscopy. We observe that CFTRinh-172 binds inside the pore near transmembrane helix 8, a critical structural element that links adenosine triphosphate hydrolysis with channel gating. Binding of CFTRinh-172 stabilizes a conformation in which the chloride selectivity filter is collapsed, and the pore is blocked from the extracellular side of the membrane. Single-molecule fluorescence resonance energy transfer experiments indicate that CFTRinh-172 inhibits channel gating without compromising nucleotide-binding domain dimerization. Together, these data reconcile previous biophysical observations and provide a molecular basis for the activity of this widely used CFTR inhibitor.
Collapse
Affiliation(s)
- Paul G Young
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38101
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, The Rockefeller University, New York, NY 10065
| |
Collapse
|
13
|
Mazza T, Roumeliotis TI, Garitta E, Drew D, Rashid ST, Indiveri C, Choudhary JS, Linton KJ, Beis K. Structural basis for the modulation of MRP2 activity by phosphorylation and drugs. Nat Commun 2024; 15:1983. [PMID: 38438394 PMCID: PMC10912322 DOI: 10.1038/s41467-024-46392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Theodoros I Roumeliotis
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elena Garitta
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - S Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, W12 0NN, London, UK
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), 70126, Bari, Italy
| | - Jyoti S Choudhary
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kenneth J Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK.
| |
Collapse
|
14
|
Thakur S, Ankita, Dash S, Verma R, Kaur C, Kumar R, Mazumder A, Singh G. Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis. Cell Biochem Biophys 2024; 82:15-34. [PMID: 38048024 DOI: 10.1007/s12013-023-01200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Cystic fibrosis is a genetic disorder inherited in an autosomal recessive manner. It is caused by a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene on chromosome 7, which leads to abnormal regulation of chloride and bicarbonate ions in cells that line organs like the lungs and pancreas. The CFTR protein plays a crucial role in regulating chloride ion flow, and its absence or malfunction causes the production of thick mucus that affects several organs. There are more than 2000 identified mutations that are classified into seven categories based on their dysfunction mechanisms. In this article, we have conducted a thorough examination and consolidation of the diverse array of tests essential for the quantification of CFTR functionality. Furthermore, we have engaged in a comprehensive discourse regarding the recent advancements in CFTR modulator therapy, a pivotal approach utilized for the management of cystic fibrosis, alongside its concomitant relevance in evaluating CFTR functionality.
Collapse
Affiliation(s)
- Shorya Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Ankita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Shubham Dash
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rupali Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India.
| |
Collapse
|
15
|
Levring J, Chen J. Structural identification of a selectivity filter in CFTR. Proc Natl Acad Sci U S A 2024; 121:e2316673121. [PMID: 38381791 PMCID: PMC10907310 DOI: 10.1073/pnas.2316673121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that regulates transepithelial salt and fluid homeostasis. CFTR dysfunction leads to reduced chloride secretion into the mucosal lining of epithelial tissues, thereby causing the inherited disease cystic fibrosis. Although several structures of CFTR are available, our understanding of the ion-conduction pathway is incomplete. In particular, the route that connects the cytosolic vestibule with the extracellular space has not been clearly defined, and the structure of the open pore remains elusive. Furthermore, although many residues have been implicated in altering the selectivity of CFTR, the structure of the "selectivity filter" has yet to be determined. In this study, we identify a chloride-binding site at the extracellular ends of transmembrane helices 1, 6, and 8, where a dehydrated chloride is coordinated by residues G103, R334, F337, T338, and Y914. Alterations to this site, consistent with its function as a selectivity filter, affect ion selectivity, conductance, and open channel block. This selectivity filter is accessible from the cytosol through a large inner vestibule and opens to the extracellular solvent through a narrow portal. The identification of a chloride-binding site at the intra- and extracellular bridging point leads us to propose a complete conductance path that permits dehydrated chloride ions to traverse the lipid bilayer.
Collapse
Affiliation(s)
- Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY10065
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
16
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
17
|
Mao YX, Chen ZP, Wang L, Wang J, Zhou CZ, Hou WT, Chen Y. Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain. Nat Commun 2024; 15:1061. [PMID: 38316776 PMCID: PMC10844203 DOI: 10.1038/s41467-024-45337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Collapse
Affiliation(s)
- Yao-Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
18
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
19
|
McDonald EF, Oliver KE, Schlebach JP, Meiler J, Plate L. Benchmarking AlphaMissense pathogenicity predictions against cystic fibrosis variants. PLoS One 2024; 19:e0297560. [PMID: 38271453 PMCID: PMC10810519 DOI: 10.1371/journal.pone.0297560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Variants in the cystic fibrosis transmembrane conductance regulator gene (CFTR) result in cystic fibrosis-a lethal autosomal recessive disorder. Missense variants that alter a single amino acid in the CFTR protein are among the most common cystic fibrosis variants, yet tools for accurately predicting molecular consequences of missense variants have been limited to date. AlphaMissense (AM) is a new technology that predicts the pathogenicity of missense variants based on dual learned protein structure and evolutionary features. Here, we evaluated the ability of AM to predict the pathogenicity of CFTR missense variants. AM predicted a high pathogenicity for CFTR residues overall, resulting in a high false positive rate and fair classification performance on CF variants from the CFTR2.org database. AM pathogenicity score correlated modestly with pathogenicity metrics from persons with CF including sweat chloride level, pancreatic insufficiency rate, and Pseudomonas aeruginosa infection rate. Correlation was also modest with CFTR trafficking and folding competency in vitro. By contrast, the AM score correlated well with CFTR channel function in vitro-demonstrating the dual structure and evolutionary training approach learns important functional information despite lacking such data during training. Different performance across metrics indicated AM may determine if polymorphisms in CFTR are recessive CF variants yet cannot differentiate mechanistic effects or the nature of pathophysiology. Finally, AM predictions offered limited utility to inform on the pharmacological response of CF variants i.e., theratype. Development of new approaches to differentiate the biochemical and pharmacological properties of CFTR variants is therefore still needed to refine the targeting of emerging precision CF therapeutics.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis and Airways Diseases, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, United States of America
| | - Jonathan P. Schlebach
- Department of Chemistry, Purdue University, West Lafyette, Indiana, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
20
|
Li H, Rodrat M, Al-Salmani MK, Veselu DF, Han ST, Raraigh KS, Cutting GR, Sheppard DN. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. J Physiol 2024; 602:333-354. [PMID: 38186087 PMCID: PMC10872379 DOI: 10.1113/jp285727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 μM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Majid K Al-Salmani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Sultanate of Oman
| | | | - Sangwoo T Han
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Ersoy A, Altintel B, Livnat Levanon N, Ben-Tal N, Haliloglu T, Lewinson O. Computational analysis of long-range allosteric communications in CFTR. eLife 2023; 12:RP88659. [PMID: 38109179 PMCID: PMC10727502 DOI: 10.7554/elife.88659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Malfunction of the CFTR protein results in cystic fibrosis, one of the most common hereditary diseases. CFTR functions as an anion channel, the gating of which is controlled by long-range allosteric communications. Allostery also has direct bearings on CF treatment: the most effective CFTR drugs modulate its activity allosterically. Herein, we integrated Gaussian network model, transfer entropy, and anisotropic normal mode-Langevin dynamics and investigated the allosteric communications network of CFTR. The results are in remarkable agreement with experimental observations and mutational analysis and provide extensive novel insight. We identified residues that serve as pivotal allosteric sources and transducers, many of which correspond to disease-causing mutations. We find that in the ATP-free form, dynamic fluctuations of the residues that comprise the ATP-binding sites facilitate the initial binding of the nucleotide. Subsequent binding of ATP then brings to the fore and focuses on dynamic fluctuations that were present in a latent and diffuse form in the absence of ATP. We demonstrate that drugs that potentiate CFTR's conductance do so not by directly acting on the gating residues, but rather by mimicking the allosteric signal sent by the ATP-binding sites. We have also uncovered a previously undiscovered allosteric 'hotspot' located proximal to the docking site of the phosphorylated regulatory (R) domain, thereby establishing a molecular foundation for its phosphorylation-dependent excitatory role. This study unveils the molecular underpinnings of allosteric connectivity within CFTR and highlights a novel allosteric 'hotspot' that could serve as a promising target for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Ayca Ersoy
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Bengi Altintel
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Nurit Livnat Levanon
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyTel AvivIsrael
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv UniversityTel-AvivIsrael
| | - Turkan Haliloglu
- Department of Chemical Engineering, Bogazici UniversityIstanbulTurkey
- Polymer Research Center, Bogazici UniversityIstanbulTurkey
| | - Oded Lewinson
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyTel AvivIsrael
| |
Collapse
|
23
|
Baroni D, Scarano N, Ludovico A, Brandas C, Parodi A, Lunaccio D, Fossa P, Moran O, Cichero E, Millo E. In Silico and In Vitro Evaluation of the Mechanism of Action of Three VX809-Based Hybrid Derivatives as Correctors of the F508del CFTR Protein. Pharmaceuticals (Basel) 2023; 16:1702. [PMID: 38139828 PMCID: PMC10748060 DOI: 10.3390/ph16121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive fatal genetic disease in the Caucasian population, is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that regulates salt and water transport across a variety of secretory epithelia. Deletion of phenylalanine at position 508, F508del, the most common CF-causing mutation, destabilises the CFTR protein, causing folding and trafficking defects that lead to a dramatic reduction in its functional expression. Small molecules called correctors have been developed to rescue processing-defective F508del CFTR. We have combined in silico and in vitro approaches to investigate the mechanism of action and potential as CFTR correctors of three hybrid derivatives (2a, 7a, and 7m) obtained by merging the amino-arylthiazole core with the benzodioxole carboxamide moiety characterising the corrector lumacaftor. Molecular modelling analyses suggested that the three hybrids interact with a putative region located at the MSD1/NBD1 interface. Biochemical analyses confirmed these results, showing that the three molecules affect the expression and stability of the F508del NBD1. Finally, the YFP assay was used to evaluate the influence of the three hybrid derivatives on F508del CFTR function, assessing that their effect is additive to that of the correctors VX661 and VX445. Our study shows that the development and testing of optimised compounds targeting different structural and functional defects of mutant CFTR is the best strategy to provide more effective correctors that could be used alone or in combination as a valuable therapeutic option to treat an even larger cohort of people affected by CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Alessandra Ludovico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Dario Lunaccio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| |
Collapse
|
24
|
Linsdell P. Role of Hydrophobic Amino-Acid Side-Chains in the Narrow Selectivity Filter of the CFTR Chloride Channel Pore in Conductance and Selectivity. J Membr Biol 2023; 256:433-442. [PMID: 37823914 DOI: 10.1007/s00232-023-00294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Structural analysis of CFTR has identified a narrow, hydrophobic region close to the extracellular end of the open channel pore that may function as a selectivity filter. The present study combines comprehensive mutagenesis of hydrophobic amino-acid side-chains within the selectivity filter with functional evaluation of channel Cl- conductance and anion selectivity. Among these hydrophobic amino-acids, one (F337) appears to play a dominant role in determining both conductance and selectivity. Anion selectivity appears to depend on both side-chain size and hydrophobicity at this position. In contrast, conductance is disrupted by all F337 mutations, suggesting that unique interactions between permeating Cl- ions and the native phenylalanine side-chain are important for conductance. Surprisingly, a positively charged lysine side-chain can be substituted for several hydrophobic residues within the selectivity filter (including F337) with only minor changes in pore function, arguing against a crucial role for overall hydrophobicity. These results suggest that localized interactions between permeating anions and amino-acid side-chains within the selectivity filter may be more important in determining pore functional properties than are global features such as overall hydrophobicity.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
25
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
26
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedüs T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. Nat Commun 2023; 14:6868. [PMID: 37891162 PMCID: PMC10611759 DOI: 10.1038/s41467-023-42586-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.
Collapse
Affiliation(s)
- Naoto Soya
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Haijin Xu
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Ariel Roldan
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Haoxin Ye
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Aiswarya Premchandar
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - John Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Tamás Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
27
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedus T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563107. [PMID: 37905074 PMCID: PMC10614980 DOI: 10.1101/2023.10.19.563107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.
Collapse
|
28
|
McDonald EF, Meiler J, Plate L. CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine. ACS Chem Biol 2023; 18:2128-2143. [PMID: 37730207 PMCID: PMC10595991 DOI: 10.1021/acschembio.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by mutations in the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR). Class-II mutants of CFTR lack intermolecular interactions important for CFTR structural stability and lead to misfolding. Misfolded CFTR is detected by a diverse suite of proteostasis factors that preferentially bind and route mutant CFTR toward premature degradation, resulting in reduced plasma membrane CFTR levels and impaired chloride ion conductance associated with CF. CF treatment has been vastly improved over the past decade by the availability of small molecules called correctors. Correctors directly bind CFTR, stabilize its structure by conferring thermodynamically favorable interactions that compensate for mutations, and thereby lead to downstream folding fidelity. However, each of over 100 Class-II CF causing mutations causes unique structural defects and shows a unique response to drug treatment, described as theratype. Understanding CFTR structural defects, the proteostasis factors evaluating those defects, and the stabilizing effects of CFTR correctors will illuminate a path toward personalized medicine for CF. Here, we review recent advances in our understanding of CFTR folding, focusing on structure, corrector binding sites, the mechanisms of proteostasis factors that evaluate CFTR, and the implications for CF personalized medicine.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Institute
for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany
| | - Lars Plate
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
29
|
Simon MA, Iordanov I, Szollosi A, Csanády L. Estimating the true stability of the prehydrolytic outward-facing state in an ABC protein. eLife 2023; 12:e90736. [PMID: 37782012 PMCID: PMC10569789 DOI: 10.7554/elife.90736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023] Open
Abstract
CFTR, the anion channel mutated in cystic fibrosis patients, is a model ABC protein whose ATP-driven conformational cycle is observable at single-molecule level in patch-clamp recordings. Bursts of CFTR pore openings are coupled to tight dimerization of its two nucleotide-binding domains (NBDs) and in wild-type (WT) channels are mostly terminated by ATP hydrolysis. The slow rate of non-hydrolytic closure - which determines how tightly bursts and ATP hydrolysis are coupled - is unknown, as burst durations of catalytic site mutants span a range of ~200-fold. Here, we show that Walker A mutation K1250A, Walker B mutation D1370N, and catalytic glutamate mutations E1371S and E1371Q all completely disrupt ATP hydrolysis. True non-hydrolytic closing rate of WT CFTR approximates that of K1250A and E1371S. That rate is slowed ~15-fold in E1371Q by a non-native inter-NBD H-bond, and accelerated ~15-fold in D1370N. These findings uncover unique features of the NBD interface in human CFTR.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - László Csanády
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| |
Collapse
|
30
|
Kim M, McDonald EF, Sabusap CMP, Timalsina B, Joshi D, Hong JS, Rab A, Sorscher EJ, Plate L. Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics. J Biol Chem 2023; 299:105242. [PMID: 37690692 PMCID: PMC10579539 DOI: 10.1016/j.jbc.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface. Yet, CFTR variants display differential responses to each corrector. Here, we report that variants P67L and L206W respond similarly to VX-809 but divergently to VX-445 with P67L exhibiting little rescue when treated with VX-445. We investigate the underlying cellular mechanisms of how CFTR biogenesis is altered by correctors in these variants. Affinity purification-mass spectrometry multiplexed with isobaric tandem mass tags was used to quantify CFTR protein-protein interaction changes between variants P67L and L206W. VX-445 facilitates unique proteostasis factor interactions especially in translation, folding, and degradation pathways in a CFTR variant-dependent manner. A number of these interacting proteins knocked down by siRNA, such as ribosomal subunit proteins, moderately rescued fully glycosylated P67L. Importantly, these knockdowns sensitize P67L to VX-445 and further enhance the trafficking correction of this variant. Partial inhibition of protein translation also mildly sensitizes P67L CFTR to VX-445 correction, supporting a role for translational dynamics in the rescue mechanism of VX-445. Our results provide a better understanding of VX-445 biological mechanism of action and reveal cellular targets that may sensitize nonresponsive CFTR variants to known and available correctors.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Disha Joshi
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jeong S Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
31
|
Lester A, Sandman M, Herring C, Girard C, Dixon B, Ramsdell H, Reber C, Poulos J, Mitchell A, Spinney A, Henager ME, Evans CN, Turlington M, Johnson QR. Computational Exploration of Potential CFTR Binding Sites for Type I Corrector Drugs. Biochemistry 2023; 62:2503-2515. [PMID: 37437308 PMCID: PMC10433520 DOI: 10.1021/acs.biochem.3c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.
Collapse
Affiliation(s)
- Anna Lester
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Madeline Sandman
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Caitlin Herring
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Christian Girard
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Brandon Dixon
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Havanna Ramsdell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Callista Reber
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Jack Poulos
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Alexis Mitchell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Allison Spinney
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Marissa E. Henager
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Claudia N. Evans
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Quentin R. Johnson
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| |
Collapse
|
32
|
Si K, He X, Chen L, Zhang A, Guo C, Li M. The structure of Plasmodium falciparum multidrug resistance protein 1 reveals an N-terminal regulatory domain. Proc Natl Acad Sci U S A 2023; 120:e2219905120. [PMID: 37527341 PMCID: PMC10410737 DOI: 10.1073/pnas.2219905120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), an adenosine triphosphate (ATP)-binding cassette (ABC) transporter on the digestive vacuole (DV) membrane of the parasite, is associated with the resistance to antimalarial drugs. To understand the mechanisms of PfMDR1, we determined the cryo-electron microscopy structures of this transporter in different states. The transporter in the apo state shows an inward-facing conformation with a large cavity opening to the cytoplasm. Upon ATP binding and dimerization of the nucleotide-binding domains (NBDs), PfMDR1 displays an outward-facing conformation with a cavity toward the DV lumen. Drug resistance-associated mutations were investigated in both structures for their effects, and Y184F was identified as an allosteric activity-enhancing mutation. The amphiphilic substrate-binding site of PfMDR1 was revealed by the complex structure with the antimalarial drug mefloquine and confirmed by mutagenesis studies. Remarkably, a helical structure was found to hinder NBD dimerization and inhibit PfMDR1 activity. The location of this regulatory domain in the N terminus is different from the well-studied R domain in the internal linker region of other ABC transporter family members. The lack of the phosphorylation site of this domain also suggests a different regulation mechanism.
Collapse
Affiliation(s)
- Kaixue Si
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Xishuo He
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Liping Chen
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Anqi Zhang
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Changyou Guo
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Minghui Li
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| |
Collapse
|
33
|
McKee AG, McDonald EF, Penn WD, Kuntz CP, Noguera K, Chamness LM, Roushar FJ, Meiler J, Oliver KE, Plate L, Schlebach JP. General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants. Cell Chem Biol 2023; 30:632-642.e5. [PMID: 37253358 PMCID: PMC10330547 DOI: 10.1016/j.chembiol.2023.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations that compromise the expression and/or function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Most people with CF harbor a common misfolded variant (ΔF508) that can be partially rescued by therapeutic "correctors" that restore its expression. Nevertheless, many other CF variants are insensitive to correctors. Using deep mutational scanning, we quantitatively compare the effects of two correctors on the plasma membrane expression of 129 CF variants. Though structural calculations suggest corrector binding provides similar stabilization to most variants, it's those with intermediate expression and mutations near corrector binding pockets that exhibit the greatest response. Deviations in sensitivity appear to depend on the degree of variant destabilization and the timing of misassembly. Combining correctors appears to rescue more variants by doubling the binding energy and stabilizing distinct cotranslational folding transitions. These results provide an overview of rare CF variant expression and establish new tools for precision pharmacology.
Collapse
Affiliation(s)
- Andrew G McKee
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Karen Noguera
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Francis J Roushar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Institute for Drug Development, Leipzig University, Leipzig, SAC 04109, Germany
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
34
|
Csanády L. Blue flash sheds light on the roles of individual phosphoserines in CFTR channel activation. J Gen Physiol 2023; 155:e202313336. [PMID: 37017643 PMCID: PMC10082323 DOI: 10.1085/jgp.202313336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Light-controlled availability for phosphorylation reveals dominant roles of select R-domain serines in CFTR channel activation.
Collapse
Affiliation(s)
- László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| |
Collapse
|
35
|
Allan KM, Astore MA, Kardia E, Wong SL, Fawcett LK, Bell JL, Visser S, Chen PC, Griffith R, Jaffe A, Sivam S, Vittorio O, Kuyucak S, Waters SA. Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient. Front Mol Biosci 2023; 10:1148501. [PMID: 37325471 PMCID: PMC10267335 DOI: 10.3389/fmolb.2023.1148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Egi Kardia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jessica L Bell
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Simone Visser
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sheila Sivam
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
36
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
37
|
McCarty NA. Tweaking the catalytic efficiency of the CFTR ion channel. J Gen Physiol 2023; 155:e202313343. [PMID: 37014352 PMCID: PMC10075223 DOI: 10.1085/jgp.202313343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
CFTR, unique among ABC transporters, evolved to function as an ion channel in part by optimizing the stability of the open state.
Collapse
|
38
|
Simon MA, Csanády L. Optimization of CFTR gating through the evolution of its extracellular loops. J Gen Physiol 2023; 155:e202213264. [PMID: 36723516 PMCID: PMC9929929 DOI: 10.1085/jgp.202213264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
CFTR chloride channel mutations cause the lethal and incurable disease cystic fibrosis (CF). CFTR is activated by phosphorylation, and phosphorylated channels exhibit "bursting" behavior-"bursts" of openings separated by short "flickery" closures and flanked by long "interburst" closures-driven by ATP binding/hydrolysis at two nucleotide-binding domains. The human channel (hCFTR) and the distant zebrafish ortholog (zCFTR) display differences both in their gating properties and structures. In phosphorylated ATP-bound hCFTR, the hR117 side chain, conserved across evolution, forms an H-bond that stabilizes the open state. Lack of that bond in the hR117H mutant causes CF. In the phosphorylated ATP-bound zCFTR structure that H-bond is not observable. Here, we show that the zR118H mutation does not affect the function of zCFTR. Instead, we identify an H-bond between the zS109 and zS120 side chains of phosphorylated ATP-bound, but not of unphosphorylated apo-, zCFTR. We investigate the role of that interaction using thermodynamic mutant cycles built on gating parameters determined in inside-out patch clamp recordings. We find that zS109 indeed forms an H-bond with zN120 in the flickery closed state, but not in the open or interburst closed states. Although in hCFTR an isoleucine (hI119) replaces the asparagine, mutation hS108A produces a strong hR117H-like phenotype. Since the effects of the latter two mutations are not additive, we conclude that in hCFTR these two positions interact, and the hS108-hR117 and hR117-hE1124 H-bonds cooperate to stabilize the open state. These findings highlight an example of how the gating mechanism was optimized during CFTR molecular evolution.
Collapse
Affiliation(s)
- Márton A. Simon
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| |
Collapse
|
39
|
Infield DT, Schene ME, Fazan FS, Galles GD, Galpin JD, Ahern CA. Real-time observation of functional specialization among phosphorylation sites in CFTR. J Gen Physiol 2023; 155:e202213216. [PMID: 36695813 PMCID: PMC9930130 DOI: 10.1085/jgp.202213216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphoregulation is ubiquitous in biology. Defining the functional roles of individual phosphorylation sites within a multivalent system remains particularly challenging. We have therefore applied a chemical biology approach to light-control the state of single candidate phosphoserines in the canonical anion channel CFTR while simultaneously measuring channel activity. The data show striking non-equivalency among protein kinase A consensus sites, which vary from <10% to >1,000% changes in channel activity upon phosphorylation. Of note, slow phosphorylation of S813 suggests that this site is rate-limiting to the full activation of CFTR. Further, this approach reveals an unexpected coupling between the phosphorylation of S813 and a nearby site, S795. Overall, these data establish an experimental route to understanding roles of specific phosphoserines within complex phosphoregulatory domains. This strategy may be employed in the study of phosphoregulation of other eukaryotic proteins.
Collapse
Affiliation(s)
- Daniel T. Infield
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Miranda E. Schene
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Frederico S. Fazan
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Grace D. Galles
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| |
Collapse
|
40
|
Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J. CFTR function, pathology and pharmacology at single-molecule resolution. Nature 2023; 616:606-614. [PMID: 36949202 PMCID: PMC10115640 DOI: 10.1038/s41586-023-05854-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.
Collapse
Affiliation(s)
- Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gabriel Fitzgerald
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Fundamental and translational research in Cystic Fibrosis - why we still need it. J Cyst Fibros 2023; 22 Suppl 1:S1-S4. [PMID: 36577595 DOI: 10.1016/j.jcf.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Clinical treatments for cystic fibrosis (CF) underwent significant changes in the last decade as therapies targeting the basic defect in the CFTR protein were approved. Significant scientific progress has also been made in several other areas that may lead in the future to novel therapeutic approaches that can help fight CF in all individuals living with this disease. Thus, focusing on fundamental research in the CF field has and will continue to be of great importance. This has been one of the aims of the European Cystic Fibrosis Society (ECFS), which has promoted the ECFS Basic Science Conference (BSC) every year since 2004. This special issue covers the topics featured and discussed at the 17th ECFS BSC, held in Albufeira (Portugal) in March 2022, and highlights advances in understanding CFTR, in using personalized medicine, and in developing innovative strategies to identify breakthrough therapies. This introduction highlights the topics presented throughout this special issue, thereby underscoring the relevance of fundamental research in CF.
Collapse
|
42
|
Hwang TC, Braakman I, van der Sluijs P, Callebaut I. Structure basis of CFTR folding, function and pharmacology. J Cyst Fibros 2023; 22 Suppl 1:S5-S11. [PMID: 36216744 DOI: 10.1016/j.jcf.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
The root cause of cystic fibrosis (CF), the most common life-shortening genetic disease in the Caucasian population, is the loss of function of the CFTR protein, which serves as a phosphorylation-activated, ATP-gated anion channel in numerous epithelia-lining tissues. In the past decade, high-throughput drug screening has made a significant stride in developing highly effective CFTR modulators for the treatment of CF. Meanwhile, structural-biology studies have succeeded in solving the high-resolution three-dimensional (3D) structure of CFTR in different conformations. Here, we provide a brief overview of some striking features of CFTR folding, function and pharmacology, in light of its specific structural features within the ABC-transporter superfamily. A particular focus is given to CFTR's first nucleotide-binding domain (NBD1), because folding of NBD1 constitutes a bottleneck in the CFTR protein biogenesis pathway, and ATP binding to this domain plays a unique role in the functional stability of CFTR. Unraveling the molecular basis of CFTR folding, function, and pharmacology would inspire the development of next-generation mutation-specific CFTR modulators.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France.
| |
Collapse
|
43
|
Zacarias S, Batista MSP, Ramalho SS, Victor BL, Farinha CM. Rescue of Rare CFTR Trafficking Mutants Highlights a Structural Location-Dependent Pattern for Correction. Int J Mol Sci 2023; 24:ijms24043211. [PMID: 36834620 PMCID: PMC9961391 DOI: 10.3390/ijms24043211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Currently, more than 2100 variants have been identified in the gene, with a large number being very rare. The approval of modulators that act on mutant CFTR protein, correcting its molecular defect and thus alleviating the burden of the disease, revolutionized the field of CF. However, these drugs do not apply to all patients with CF, especially those with rare mutations-for which there is a lack of knowledge on the molecular mechanisms of the disease and the response to modulators. In this work, we evaluated the impact of several rare putative class II mutations on the expression, processing, and response of CFTR to modulators. Novel cell models consisting of bronchial epithelial cell lines expressing CFTR with 14 rare variants were created. The variants studied are localized at Transmembrane Domain 1 (TMD1) or very close to the signature motif of Nucleotide Binding Domain 1 (NBD1). Our data show that all mutations analyzed significantly decrease CFTR processing and while TMD1 mutations respond to modulators, those localized in NBD1 do not. Molecular modeling calculations confirm that the mutations in NBD1 induce greater destabilization of CFTR structure than those in TMD1. Furthermore, the structural proximity of TMD1 mutants to the reported binding site of CFTR modulators such as VX-809 and VX-661, make them more efficient in stabilizing the CFTR mutants analyzed. Overall, our data suggest a pattern for mutation location and impact in response to modulators that correlates with the global effect of the mutations on CFTR structure.
Collapse
|
44
|
A Structure-Based View on ABC-Transporter Linked to Multidrug Resistance. Molecules 2023; 28:molecules28020495. [PMID: 36677553 PMCID: PMC9862083 DOI: 10.3390/molecules28020495] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
The discovery of the first ATP-binding cassette (ABC) transporter, whose overexpression in cancer cells is responsible for exporting anticancer drugs out of tumor cells, initiated enormous efforts to overcome tumor cell multidrug resistance (MDR) by inhibition of ABC-transporter. Because of its many physiological functions, diverse studies have been conducted on the mechanism, function and regulation of this important group of transmembrane transport proteins. In this review, we will focus on the structural aspects of this transporter superfamily. Since the resolution revolution of electron microscope, experimentally solved structures increased rapidly. A summary of the structures available and an overview of recent structure-based studies are provided. More specifically, the artificial intelligence (AI)-based predictions from AlphaFold-2 will be discussed.
Collapse
|
45
|
Ritivoiu ME, Drăgoi CM, Matei D, Stan IV, Nicolae AC, Craiu M, Dumitrescu IB, Ciolpan AA. Current and Future Therapeutic Approaches of Exocrine Pancreatic Insufficiency in Children with Cystic Fibrosis in the Era of Personalized Medicine. Pharmaceutics 2023; 15:162. [PMID: 36678791 PMCID: PMC9862205 DOI: 10.3390/pharmaceutics15010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
This review presents current updates of pancreatic enzyme replacement therapy in children with cystic fibrosis based on literature published in the last decade and some special considerations regarding pancreatic enzyme replacement therapy in the era of new therapies, such as cystic fibrosis transmembrane conductance regulator modulator therapies. Few articles evaluate the efficacy of pancreatic enzyme replacement therapy in the pediatric population, and most studies also included children and adults with cystic fibrosis. Approximately 85% of cystic fibrosis patients have exocrine pancreatic insufficiency and need pancreatic enzyme replacement therapy. Fecal elastase is the most commonly used diagnostic test for exocrine pancreatic insufficiency, although this value can fluctuate over time. While it is used as a diagnostic test, it cannot be used for monitoring the effectiveness of pancreatic enzyme replacement therapy and for adjusting doses. Pancreatic enzyme replacement therapy, the actual treatment for exocrine pancreatic insufficiency, is essential in children with cystic fibrosis to prevent malabsorption and malnutrition and needs to be urgently initiated. This therapy presents many considerations for physicians, patients, and their families, including types and timing of administration, dose monitoring, and therapy failures. Based on clinical trials, pancreatic enzyme replacement therapy is considered effective and well-tolerated in children with cystic fibrosis. An important key point in cystic fibrosis treatment is the recent hypothesis that cystic fibrosis transmembrane conductance regulator modulators could improve pancreatic function, further studies being essential. Pancreatic enzyme replacement therapy is addressed a complication of the disease (exocrine pancreatic insufficiency), while modulators target the defective cystic fibrosis transmembrane conductance regulator protein. Exocrine pancreatic insufficiency in cystic fibrosis remains an active area of research in this era of cystic fibrosis transmembrane conductance regulator modulator therapies. This new therapy could represent an example of personalized medicine in cystic fibrosis patients, with each class of modulators being addressed to patients with specific genetic mutations.
Collapse
Affiliation(s)
- Mirela-Elena Ritivoiu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Cristina Manuela Drăgoi
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Dumitru Matei
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Iustina Violeta Stan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Alina Crenguţa Nicolae
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihai Craiu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Ion-Bogdan Dumitrescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Alina Angelica Ciolpan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| |
Collapse
|
46
|
Zeng ZW, Linsdell P, Pomès R. Molecular dynamics study of Cl - permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 2023; 80:51. [PMID: 36694009 PMCID: PMC9873711 DOI: 10.1007/s00018-022-04621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
The recent elucidation of atomistic structures of Cl- channel CFTR provides opportunities for understanding the molecular basis of cystic fibrosis. Despite having been activated through phosphorylation and provided with ATP ligands, several near-atomistic cryo-EM structures of CFTR are in a closed state, as inferred from the lack of a continuous passage through a hydrophobic bottleneck region located in the extracellular portion of the pore. Here, we present repeated, microsecond-long molecular dynamics simulations of human CFTR solvated in a lipid bilayer and aqueous NaCl. At equilibrium, Cl- ions enter the channel through a lateral intracellular portal and bind to two distinct cationic sites inside the channel pore but do not traverse the narrow, de-wetted bottleneck. Simulations conducted in the presence of a strong hyperpolarizing electric field led to spontaneous Cl- translocation events through the bottleneck region of the channel, suggesting that the protein relaxed to a functionally open state. Conformational changes of small magnitude involving transmembrane helices 1 and 6 preceded ion permeation through diverging exit routes at the extracellular end of the pore. The pore bottleneck undergoes wetting prior to Cl- translocation, suggesting that it acts as a hydrophobic gate. Although permeating Cl- ions remain mostly hydrated, partial dehydration occurs at the binding sites and in the bottleneck. The observed Cl- pathway is largely consistent with the loci of mutations that alter channel conductance, anion binding, and ion selectivity, supporting the model of the open state of CFTR obtained in the present study.
Collapse
Affiliation(s)
- Zhi Wei Zeng
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 1X5, Canada
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
47
|
Im J, Hillenaar T, Yeoh HY, Sahasrabudhe P, Mijnders M, van Willigen M, Hagos A, de Mattos E, van der Sluijs P, Braakman I. ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol Life Sci 2023; 80:33. [PMID: 36609925 PMCID: PMC9825563 DOI: 10.1007/s00018-022-04671-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023]
Abstract
The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.
Collapse
Affiliation(s)
- Jisu Im
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hui Ying Yeoh
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Priyanka Sahasrabudhe
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Navigo Proteins GmbH, 06120 Halle, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Julius Clinical Ltd, 3703 CD Zeist, The Netherlands
| | - Azib Hagos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
48
|
Schenkel M, Ravamehr-Lake D, Czerniak T, Saenz JP, Krainer G, Schlierf M, Deber CM. Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184078. [PMID: 36279907 DOI: 10.1016/j.bbamem.2022.184078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that codes for the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). Recent advances in CF treatment have included use of small-molecule drugs known as modulators, such as Lumacaftor (VX-809), but their detailed mechanism of action and interplay with the surrounding lipid membranes, including cholesterol, remain largely unknown. To examine these phenomena and guide future modulator development, we prepared a set of wild type (WT) and mutant helical hairpin constructs consisting of CFTR transmembrane (TM) segments 3 and 4 and the intervening extracellular loop (termed TM3/4 hairpins) that represent minimal membrane protein tertiary folding units. These hairpin variants, including CF-phenotypic loop mutants E217G and Q220R, and membrane-buried mutant V232D, were reconstituted into large unilamellar phosphatidylcholine (POPC) vesicles, and into corresponding vesicles containing 70 mol% POPC +30 mol% cholesterol, and studied by single-molecule FRET and circular dichroism experiments. We found that the presence of 30 mol% cholesterol induced an increase in helicity of all TM3/4 hairpins, suggesting an increase in bilayer cross-section and hence an increase in the depth of membrane insertion compared to pure POPC vesicles. Importantly, when we added the corrector VX-809, regardless of the presence or absence of cholesterol, all mutants displayed folding and helicity largely indistinguishable from the WT hairpin. Fluorescence spectroscopy measurements suggest that the corrector alters lipid packing and water accessibility. We propose a model whereby VX-809 shields the protein from the lipid environment in a mutant-independent manner such that the WT scaffold prevails. Such 'normalization' to WT conformation is consistent with the action of VX-809 as a protein-folding chaperone.
Collapse
Affiliation(s)
- Mathias Schenkel
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tomasz Czerniak
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - James P Saenz
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Charles M Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
49
|
Moffett AS, Cui G, Thomas PJ, Hunt WD, McCarty NA, Westafer RS, Eckford AW. Permissive and nonpermissive channel closings in CFTR revealed by a factor graph inference algorithm. BIOPHYSICAL REPORTS 2022; 2:100083. [PMID: 36425670 PMCID: PMC9680790 DOI: 10.1016/j.bpr.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | - Guiying Cui
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio
| | - William D. Hunt
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Nael A. McCarty
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | | | - Andrew W. Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| |
Collapse
|
50
|
Hillenaar T, Beekman J, van der Sluijs P, Braakman I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int J Mol Sci 2022; 23:15170. [PMID: 36499495 PMCID: PMC9735543 DOI: 10.3390/ijms232315170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands;
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| |
Collapse
|