1
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mattingly HH, Kamino K, Ong J, Kottou R, Emonet T, Machta BB. E. coli do not count single molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602750. [PMID: 39026702 PMCID: PMC11257612 DOI: 10.1101/2024.07.09.602750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Organisms must perform sensory-motor behaviors to survive. What bounds or constraints limit behavioral performance? Previously, we found that the gradient-climbing speed of a chemotaxing Escherichia coli is near a bound set by the limited information they acquire from their chemical environments (1). Here we ask what limits their sensory accuracy. Past theoretical analyses have shown that the stochasticity of single molecule arrivals sets a fundamental limit on the precision of chemical sensing (2). Although it has been argued that bacteria approach this limit, direct evidence is lacking. Here, using information theory and quantitative experiments, we find that E. coli's chemosensing is not limited by the physics of particle counting. First, we derive the physical limit on the behaviorally-relevant information that any sensor can get about a changing chemical concentration, assuming that every molecule arriving at the sensor is recorded. Then, we derive and measure how much information E. coli's signaling pathway encodes during chemotaxis. We find that E. coli encode two orders of magnitude less information than an ideal sensor limited only by shot noise in particle arrivals. These results strongly suggest that constraints other than particle arrival noise limit E. coli's sensory fidelity.
Collapse
Affiliation(s)
| | | | - Jude Ong
- Molecular, Cellular, and Developmental Biology, Yale University
| | - Rafaela Kottou
- Molecular, Cellular, and Developmental Biology, Yale University
| | - Thierry Emonet
- Molecular, Cellular, and Developmental Biology, Yale University
- Physics, Yale University
- QBio Institute, Yale University
| | | |
Collapse
|
3
|
Mattingly HH, Kamino K, Ong J, Kottou R, Emonet T, Machta BB. E. coli do not count single molecules. ARXIV 2024:arXiv:2407.07264v1. [PMID: 39040643 PMCID: PMC11261978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Organisms must perform sensory-motor behaviors to survive. What bounds or constraints limit behavioral performance? Previously, we found that the gradient-climbing speed of a chemotaxing Escherichia coli is near a bound set by the limited information they acquire from their chemical environments (1). Here we ask what limits their sensory accuracy. Past theoretical analyses have shown that the stochasticity of single molecule arrivals sets a fundamental limit on the precision of chemical sensing (2). Although it has been argued that bacteria approach this limit, direct evidence is lacking. Here, using information theory and quantitative experiments, we find that E. coli's chemosensing is not limited by the physics of particle counting. First, we derive the physical limit on the behaviorally-relevant information that any sensor can get about a changing chemical concentration, assuming that every molecule arriving at the sensor is recorded. Then, we derive and measure how much information E. coli's signaling pathway encodes during chemotaxis. We find that E. coli encode two orders of magnitude less information than an ideal sensor limited only by shot noise in particle arrivals. These results strongly suggest that constraints other than particle arrival noise limit E. coli's sensory fidelity.
Collapse
Affiliation(s)
| | | | - Jude Ong
- Molecular, Cellular, and Developmental Biology, Yale University
| | - Rafaela Kottou
- Molecular, Cellular, and Developmental Biology, Yale University
| | - Thierry Emonet
- Molecular, Cellular, and Developmental Biology, Yale University
- Physics, Yale University
- QBio Institute, Yale University
| | | |
Collapse
|
4
|
Mattei M, Arenas A. Exploring spatial segregation induced by competition avoidance as driving mechanism for emergent coexistence in microbial communities. Phys Rev E 2024; 110:014404. [PMID: 39160961 DOI: 10.1103/physreve.110.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the role of spatial segregation, prompted by competition avoidance, as a key mechanism for emergent coexistence within microbial communities. Recognizing these communities as complex adaptive systems, we challenge the sufficiency of mean-field pairwise interaction models, and we consider the impact of spatial dynamics. We developed an individual-based spatial simulation depicting bacterial movement through a pattern of random walks influenced by competition avoidance, leading to the formation of spatially segregated clusters. This model was integrated with a Lotka-Volterra metapopulation framework focused on competitive interactions. Our findings reveal that spatial segregation combined with low diffusion rates and high compositional heterogeneity among patches can lead to emergent coexistence in microbial communities. This reveals a novel mechanism underpinning the formation of stable, coexisting microbe clusters, which is nonetheless incapable of promoting coexistence in the case of isolated pairs of species. This study underscores the importance of considering spatial factors in understanding the dynamics of microbial ecosystems.
Collapse
|
5
|
Knight J, García-Galindo P, Pausch J, Pruessner G. Memoryless chemotaxis with discrete cues. J R Soc Interface 2024; 21:20240100. [PMID: 39081250 PMCID: PMC11289677 DOI: 10.1098/rsif.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing discrete chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.
Collapse
Affiliation(s)
- Jacob Knight
- Department of Mathematics, Imperial College London, South Kensington, LondonSW7 2BZ, UK
| | - Paula García-Galindo
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CambridgeCB3 0AS, UK
| | - Johannes Pausch
- Department of Mathematics, Imperial College London, South Kensington, LondonSW7 2BZ, UK
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, South Kensington, LondonSW7 2BZ, UK
| |
Collapse
|
6
|
Seymour JR, Brumley DR, Stocker R, Raina JB. Swimming towards each other: the role of chemotaxis in bacterial interactions. Trends Microbiol 2024; 32:640-649. [PMID: 38212193 DOI: 10.1016/j.tim.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Chemotaxis allows microorganisms to direct movement in response to chemical stimuli. Bacteria use this behaviour to develop spatial associations with animals and plants, and even larger microbes. However, current theory suggests that constraints imposed by the limits of chemotactic sensory systems will prevent sensing of chemical gradients emanating from cells smaller than a few micrometres, precluding the utility of chemotaxis in interactions between individual bacteria. Yet, recent evidence has revealed surprising levels of bacterial chemotactic precision, as well as a role for chemotaxis in metabolite exchange between bacterial cells. If indeed widespread, chemotactic sensing between bacteria could represent an important, but largely overlooked, phenotype within interbacterial interactions, and play a significant role in shaping cooperative and competitive relationships.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| |
Collapse
|
7
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
8
|
Salek MM, Carrara F, Zhou J, Stocker R, Jimenez‐Martinez J. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310121. [PMID: 38445967 PMCID: PMC11132056 DOI: 10.1002/advs.202310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 03/07/2024]
Abstract
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while porous media such as living tissues, geological substrates, or industrial systems typically display a porosity that spans multiple scales, most microfluidic models to date are limited to a single porosity or a small range of pore sizes. Here, a novel microfluidic system with multiscale porosity is presented. By embedding polyacrylamide (PAAm) hydrogel structures through in-situ photopolymerization in a landscape of microfabricated polydimethylsiloxane (PDMS) pillars with varying spacing, micromodels with porosity spanning several orders of magnitude, from nanometers to millimeters are created. Experiments conducted at different porosity patterns demonstrate the potential of this approach to characterize fundamental and ubiquitous biological and geochemical transport processes in porous media. Accounting for multiscale porosity allows studies of the resulting heterogeneous fluid flow and concentration fields of transported chemicals, as well as the biological behaviors associated with this heterogeneity, such as bacterial chemotaxis. This approach brings laboratory studies of transport in porous media a step closer to their natural counterparts in the environment, industry, and medicine.
Collapse
Affiliation(s)
- M. Mehdi Salek
- Department of Biological Engineering, School of EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Francesco Carrara
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Jiande Zhou
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Microsystems LaboratoryInstitute of MicroengineeringSchool of EngineeringEPFLLausanneSwitzerland
| | - Roman Stocker
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Joaquin Jimenez‐Martinez
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Department of Water Resources and Drinking WaterEawagDubendorfSwitzerland
| |
Collapse
|
9
|
Shoup D, Ursell T. Bacterial bioconvection confers context-dependent growth benefits and is robust under varying metabolic and genetic conditions. J Bacteriol 2023; 205:e0023223. [PMID: 37787517 PMCID: PMC10601612 DOI: 10.1128/jb.00232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
Microbes often respond to environmental cues by adopting collective behaviors-like biofilms or swarming-that benefit the population. During "bioconvection," microbes gather in dense groups and plume downward through fluid environments, driving flow and mixing on the scale of millions of cells. Though bioconvection was observed a century ago, the effects of differing physical and chemical inputs and its potential selective advantages for different species of microbes remain largely unexplored. In Bacillus subtilis, vertical oxygen gradients that originate from air-liquid interfaces create cell-density inversions that drive bioconvection. Here, we develop Escherichia coli as a complementary model for the study of bioconvection. In the context of a still fluid, we found that motile and chemotactic genotypes of both E. coli and B. subtilis bioconvect and show increased growth compared to immotile or non-chemotactic genotypes, whereas in a well-mixed fluid, there is no growth advantage to motility or chemotaxis. We found that fluid depth, cell concentration, and carbon availability affect the emergence and timing of bioconvective patterns. Also, whereas B. subtilis requires oxygen gradients to bioconvect, E. coli deficient in aerotaxis (Δaer) or energy-taxis (Δtsr) still bioconvects, as do cultures that lack an air-liquid interface. Thus, in two distantly related microbes, bioconvection may confer context-dependent growth benefits, and E. coli bioconvection is robustly elicited by multiple types of chemotaxis. These results greatly expand the set of physical and metabolic conditions in which this striking collective behavior can be expected and demonstrate its potential to be a generic force for behavioral selection across ecological contexts. IMPORTANCE Individual microorganisms frequently move in response to gradients in their fluid environment, with corresponding metabolic benefits. At a population level, such movements can create density variations in a fluid that couple to gravity and drive large-scale convection and mixing called bioconvection. In this work, we provide evidence that this collective behavior confers a selective benefit on two distantly related species of bacteria. We develop new methods for quantifying this behavior and show that bioconvection in Escherichia coli is surprisingly robust to changes in cell concentration, fluid depth, interface conditions, metabolic sensing, and carbon availability. These results greatly expand the set of conditions known to elicit this collective behavior and indicate its potential to be a selective pressure across ecological contexts.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Rocky Mountain National Laboratories (NIH), Hamilton, Montana, USA
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Material Science Institute, Eugene, Oregon, USA
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
10
|
Chen G, Hu Z, Ebrahimi A, Johnson DR, Wu F, Sun Y, Shen R, Liu L, Wang G. Chemotactic movement and zeta potential dominate Chlamydomonas microsphaera attachment and biocathode development. ENVIRONMENTAL TECHNOLOGY 2023; 44:1838-1849. [PMID: 34859742 DOI: 10.1080/09593330.2021.2014575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Microalgal cell attaching and biofilm formation are critical in the application of microalgal biocathode, which severs as one of the hopeful candidates to an original cathode in bioelectrochemical systems. Many efforts have been put in biofilm formation and bioelectrochemical systems for years, but the predominant factors shaping microalgal biocathode formation are sketchy. We launched a pair of researches to investigate microalgal attachment and biofilm formation in the presence/absence of applied voltages using Chlamydomonas microsphaera as a model unicellular motile microalga. In this study, we presented how microalga attached and biofilm formed on a carbon felt surface without applied voltages and try to manifest the most important aspects in this process. Results showed that while nutrient sources did not directly regulate cell attachment onto the carbon felt, limited initial nutrient concentration nevertheless promoted cell attachment. Specifically, nutrient availability did not influence the early stage (20-60 min) of microalgal cell attachment but did significantly impact cell attachment during later stages (240-720 min). Further analysis revealed that nutrient availability-mediated chemotactic movements and zeta potential are crucial to facilitate the initial attachment and subsequent biofilm formation of C. microsphaera onto the surfaces, serving as an important factor controlling microalgal surface attachment. Our results demonstrate that nutrient availability is a dominant factor controlling microalgal surface attachment and subsequent biofilm formation processes. This study provides a mechanistic understanding of microalgal surface attachment and biofilm formation processes on carbon felts surfaces in the absence of applied voltages.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhen Hu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Fazhu Wu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yifei Sun
- Department of Soil and Water Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Renhao Shen
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Chatterjee AK, Hayakawa H. Counterflow-induced clustering: Exact results. Phys Rev E 2023; 107:054905. [PMID: 37329055 DOI: 10.1103/physreve.107.054905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/27/2023] [Indexed: 06/18/2023]
Abstract
We analyze the cluster formation in a nonergodic stochastic system as a result of counterflow, with the aid of an exactly solvable model. To illustrate the clustering, a two species asymmetric simple exclusion process with impurities on a periodic lattice is considered, where the impurity can activate flips between the two nonconserved species. Exact analytical results, supported by Monte Carlo simulations, show two distinct phases, free-flowing phase and clustering phase. The clustering phase is characterized by constant density and vanishing current of the nonconserved species, whereas the free-flowing phase is identified with nonmonotonic density and nonmonotonic finite current of the same. The n-point spatial correlation between n consecutive vacancies grows with increasing n in the clustering phase, indicating the formation of two macroscopic clusters in this phase, one of the vacancies and the other consisting of all the particles. We define a rearrangement parameter that permutes the ordering of particles in the initial configuration, keeping all the input parameters fixed. This rearrangement parameter reveals the significant effect of nonergodicity on the onset of clustering. For a special choice of the microscopic dynamics, we connect the present model to a system of run-and-tumble particles used to model active matter, where the two species having opposite net bias manifest the two possible run directions of the run-and-tumble particles, and the impurities act as tumbling reagents that enable the tumbling process.
Collapse
Affiliation(s)
- Amit Kumar Chatterjee
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nat Microbiol 2023; 8:510-521. [PMID: 36759754 DOI: 10.1038/s41564-023-01327-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell-cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean's most abundant microorganisms.
Collapse
|
13
|
Noell SE, Brennan E, Washburn Q, Davis EW, Hellweger FL, Giovannoni SJ. Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol 2023. [PMID: 36826469 DOI: 10.1111/1462-2920.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.
Collapse
Affiliation(s)
- Stephen E Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Brennan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Quinn Washburn
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Oregon, USA
| | | | | |
Collapse
|
14
|
Zhang Y, Wei D, Wang X, Wang B, Li M, Fang H, Peng Y, Fan Q, Ye F. Run-and-Tumble Dynamics and Mechanotaxis Discovered in Microglial Migration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0063. [PMID: 36939442 PMCID: PMC10013966 DOI: 10.34133/research.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.
Collapse
Affiliation(s)
- Yiyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Haiping Fang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Science,
East China University of Science and Technology, Shanghai 200237, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| |
Collapse
|
15
|
Hallstrøm S, Raina JB, Ostrowski M, Parks DH, Tyson GW, Hugenholtz P, Stocker R, Seymour JR, Riemann L. Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N 2 fixation in the pelagic ocean. THE ISME JOURNAL 2022; 16:2525-2534. [PMID: 35915168 PMCID: PMC9561647 DOI: 10.1038/s41396-022-01299-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/05/2023]
Abstract
Heterotrophic bacterial diazotrophs (HBDs) are ubiquitous in the pelagic ocean, where they have been predicted to carry out the anaerobic process of nitrogen fixation within low-oxygen microenvironments associated with marine pelagic particles. However, the mechanisms enabling particle colonization by HBDs are unknown. We hypothesized that HBDs use chemotaxis to locate and colonize suitable microenvironments, and showed that a cultivated marine HBD is chemotactic toward amino acids and phytoplankton-derived DOM. Using an in situ chemotaxis assay, we also discovered that diverse HBDs at a coastal site are motile and chemotactic toward DOM from various phytoplankton taxa and, indeed, that the proportion of diazotrophs was up to seven times higher among the motile fraction of the bacterial community compared to the bulk seawater community. Finally, three of four HBD isolates and 16 of 17 HBD metagenome assembled genomes, recovered from major ocean basins and locations along the Australian coast, each encoded >85% of proteins affiliated with the bacterial chemotaxis pathway. These results document the widespread capacity for chemotaxis in diverse and globally relevant marine HBDs. We suggest that HBDs could use chemotaxis to seek out and colonize low-oxygen microenvironments suitable for nitrogen fixation, such as those formed on marine particles. Chemotaxis in HBDs could therefore affect marine nitrogen and carbon biogeochemistry by facilitating nitrogen fixation within otherwise oxic waters, while also altering particle degradation and the efficiency of the biological pump.
Collapse
Affiliation(s)
- Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
16
|
Random encounters and amoeba locomotion drive the predation of Listeria monocytogenes by Acanthamoeba castellanii. Proc Natl Acad Sci U S A 2022; 119:e2122659119. [PMID: 35914149 PMCID: PMC9371647 DOI: 10.1073/pnas.2122659119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, Acanthamoeba are ubiquitous in the soil and aqueous environments inhabited by Listeria monocytogenes. Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which Acanthamoeba castellanii assemble L. monocytogenes in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that A. castellanii may recruit L. monocytogenes by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of A. castellanii and L. monocytogenes and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that L. monocytogenes captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of L. monocytogenes trapped by A. castellanii revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.
Collapse
|
17
|
Raina JB, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, Ostrowski M, Signal B, Lutz A, Mendis H, Rubino F, Fernandez VI, Stocker R, Hugenholtz P, Tyson GW, Seymour JR. Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature 2022; 605:132-138. [PMID: 35444277 DOI: 10.1038/s41586-022-04614-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/04/2022] [Indexed: 01/04/2023]
Abstract
The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry1-3, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioural responses of marine bacteria and archaea, we observed significant levels of chemotaxis towards microscale hotspots of phytoplankton-derived dissolved organic matter (DOM) at a coastal field site across multiple deployments, spanning several months. Microscale metagenomics revealed that a wide diversity of marine prokaryotes, spanning 27 bacterial and 2 archaeal phyla, displayed chemotaxis towards microscale patches of DOM derived from ten globally distributed phytoplankton species. The distinct DOM composition of each phytoplankton species attracted phylogenetically and functionally discrete populations of bacteria and archaea, with 54% of chemotactic prokaryotes displaying highly specific responses to the DOM derived from only one or two phytoplankton species. Prokaryotes exhibiting chemotaxis towards phytoplankton-derived compounds were significantly enriched in the capacity to transport and metabolize specific phytoplankton-derived chemicals, and displayed enrichment in functions conducive to symbiotic relationships, including genes involved in the production of siderophores, B vitamins and growth-promoting hormones. Our findings demonstrate that the swimming behaviour of natural prokaryotic assemblages is governed by specific chemical cues, which dictate important biogeochemical transformation processes and the establishment of ecological interactions that structure the base of the marine food web.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Bennett S Lambert
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, USA.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anna Bramucci
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Brandon Signal
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Himasha Mendis
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Francesco Rubino
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
18
|
Keegstra JM, Carrara F, Stocker R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 2022; 20:491-504. [PMID: 35292761 DOI: 10.1038/s41579-022-00709-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.
Collapse
Affiliation(s)
| | - Francesco Carrara
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
20
|
Urmy SS, Benoit-Bird KJ. Fear dynamically structures the ocean's pelagic zone. Curr Biol 2021; 31:5086-5092.e3. [PMID: 34562382 DOI: 10.1016/j.cub.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023]
Abstract
Fear of predation can have wide-ranging ecological effects.1-4 This is especially true in the ocean's pelagic zone, the Earth's largest habitat, where vertical gradients in light and primary productivity force numerous taxa to migrate vertically each night to feed at the surface while minimizing risk from visual predators.5-7 Despite its importance and the fact that it is driven by spatial differences in perceived risk,8 diel vertical migration (DVM) is rarely considered within the "landscape of fear"3,8,9 framework.10 It is also far from the only such process in the pelagic zone. We used continuous, year-long records from an upward-looking echosounder and broadband hydrophone at a cabled observatory off Central California, USA, to observe avoidance reactions by several groups of pelagic animals to the presence of their predators. As expected, vertical migration was ubiquitous, but we also observed behaviors at shorter and longer timescales that were best explained by fear of predation. The presence of foraging odontocetes induced immediate diving behavior in mesopelagic sound-scattering layers, and schools of epipelagic fishes induced similar reaction in layers of zooplankton and mesopelagic micronekton. At longer timescales, the presence of fish schools significantly deepened vertical migration, rearranging life throughout the water column. We argue that behavioral reactions to predation risk are common in the pelagic zone at a range of spatiotemporal scales and that our understanding of food webs and biogeochemical cycling in this immense biome will be incomplete unless we account for fear.
Collapse
Affiliation(s)
- Samuel S Urmy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA.
| | - Kelly J Benoit-Bird
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
21
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
22
|
Yasuda S. Effects of internal dynamics on chemotactic aggregation of bacteria. Phys Biol 2021; 18. [PMID: 34425564 DOI: 10.1088/1478-3975/ac2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022]
Abstract
The effects of internal adaptation dynamics on the self-organized aggregation of chemotactic bacteria are investigated by Monte Carlo (MC) simulations based on a two-stream kinetic transport equation coupled with a reaction-diffusion equation of the chemoattractant that bacteria produce. A remarkable finding is a nonmonotonic behavior of the peak aggregation density with respect to the adaptation time; more specifically, aggregation is the most enhanced when the adaptation time is comparable to or moderately larger than the mean run time of bacteria. Another curious observation is the formation of a trapezoidal aggregation profile occurring at a very large adaptation time, where the biased motion of individual cells is rather hindered at the plateau regimes due to the boundedness of the tumbling frequency modulation. Asymptotic analysis of the kinetic transport system is also carried out, and a novel asymptotic equation is obtained at the large adaptation-time regime while the Keller-Segel type equations are obtained when the adaptation time is moderate. Numerical comparison of the asymptotic equations with MC results clarifies that trapezoidal aggregation is well described by the novel asymptotic equation, and the nonmonotonic behavior of the peak aggregation density is interpreted as the transient of the asymptotic solutions between different adaptation time regimes.
Collapse
Affiliation(s)
- Shugo Yasuda
- Graduate School of Information Science, University of Hyogo, 650-0047 Kobe, Japan
| |
Collapse
|
23
|
Junyent S, Reeves JC, Szczerkowski JLA, Garcin CL, Trieu TJ, Wilson M, Lundie-Brown J, Habib SJ. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 2021; 10:59791. [PMID: 34028355 PMCID: PMC8177892 DOI: 10.7554/elife.59791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Joshua C Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - James LA Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Matthew Wilson
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Jethro Lundie-Brown
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Jakuszeit T, Lindsey-Jones J, Peaudecerf FJ, Croze OA. Migration and accumulation of bacteria with chemotaxis and chemokinesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:32. [PMID: 33721117 PMCID: PMC7960630 DOI: 10.1140/epje/s10189-021-00009-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Bacteria can chemotactically migrate up attractant gradients by controlling run-and-tumble motility patterns. In addition to this well-known chemotactic behaviour, several soil and marine bacterial species perform chemokinesis; they adjust their swimming speed according to the local concentration of chemoeffector, with higher speed at higher concentration. A field of attractant then induces a spatially varying swimming speed, which results in a drift towards lower attractant concentrations-contrary to the drift created by chemotaxis. Here, to explore the biological benefits of chemokinesis and investigate its impact on the chemotactic response, we extend a Keller-Segel-type model to include chemokinesis. We apply the model to predict the dynamics of bacterial populations capable of chemokinesis and chemotaxis in chemoeffector fields inspired by microfluidic and agar plate migration assays. We find that chemokinesis combined with chemotaxis not only may enhance the population response with respect to pure chemotaxis, but also modifies it qualitatively. We conclude presenting predictions for bacteria around dynamic finite-size nutrient sources, simulating, e.g. a marine particle or a root. We show that chemokinesis can reduce the measuring bias that is created by a decaying attractant gradient.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | - François J Peaudecerf
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Ottavio A Croze
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
- Present address: School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
25
|
Baker KD, Kellogg CTE, McClelland JW, Dunton KH, Crump BC. The Genomic Capabilities of Microbial Communities Track Seasonal Variation in Environmental Conditions of Arctic Lagoons. Front Microbiol 2021; 12:601901. [PMID: 33643234 PMCID: PMC7906997 DOI: 10.3389/fmicb.2021.601901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
In contrast to temperate systems, Arctic lagoons that span the Alaska Beaufort Sea coast face extreme seasonality. Nine months of ice cover up to ∼1.7 m thick is followed by a spring thaw that introduces an enormous pulse of freshwater, nutrients, and organic matter into these lagoons over a relatively brief 2–3 week period. Prokaryotic communities link these subsidies to lagoon food webs through nutrient uptake, heterotrophic production, and other biogeochemical processes, but little is known about how the genomic capabilities of these communities respond to seasonal variability. Replicate water samples from two lagoons and one coastal site near Kaktovik, AK were collected in April (full ice cover), June (ice break up), and August (open water) to represent winter, spring, and summer, respectively. Samples were size fractionated to distinguish free-living and particle-attached microbial communities. Multivariate analysis of metagenomes indicated that seasonal variability in gene abundances was greater than variability between size fractions and sites, and that June differed significantly from the other months. Spring (June) gene abundances reflected the high input of watershed-sourced nutrients and organic matter via spring thaw, featuring indicator genes for denitrification possibly linked to greater organic carbon availability, and genes for processing phytoplankton-derived organic matter associated with spring blooms. Summer featured fewer indicator genes, but had increased abundances of anoxygenic photosynthesis genes, possibly associated with elevated light availability. Winter (April) gene abundances suggested low energy inputs and autotrophic bacterial metabolism, featuring indicator genes for chemoautotrophic carbon fixation, methane metabolism, and nitrification. Winter indicator genes for nitrification belonged to Thaumarchaeota and Nitrosomonadales, suggesting these organisms play an important role in oxidizing ammonium during the under-ice period. This study shows that high latitude estuarine microbial assemblages shift metabolic capabilities as they change phylogenetic composition between these extreme seasons, providing evidence that these communities may be resilient to large hydrological events in a rapidly changing Arctic.
Collapse
Affiliation(s)
- Kristina D Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - James W McClelland
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Kenneth H Dunton
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
26
|
Moran JL, Wheat PM, Marine NA, Posner JD. Chemokinesis-driven accumulation of active colloids in low-mobility regions of fuel gradients. Sci Rep 2021; 11:4785. [PMID: 33637781 PMCID: PMC7910604 DOI: 10.1038/s41598-021-83963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Many motile cells exhibit migratory behaviors, such as chemotaxis (motion up or down a chemical gradient) or chemokinesis (dependence of speed on chemical concentration), which enable them to carry out vital functions including immune response, egg fertilization, and predator evasion. These have inspired researchers to develop self-propelled colloidal analogues to biological microswimmers, known as active colloids, that perform similar feats. Here, we study the behavior of half-platinum half-gold (Pt/Au) self-propelled rods in antiparallel gradients of hydrogen peroxide fuel and salt, which tend to increase and decrease the rods' speed, respectively. Brownian Dynamics simulations, a Fokker-Planck theoretical model, and experiments demonstrate that, at steady state, the rods accumulate in low-speed (salt-rich, peroxide-poor) regions not because of chemotaxis, but because of chemokinesis. Chemokinesis is distinct from chemotaxis in that no directional sensing or reorientation capabilities are required. The agreement between simulations, model, and experiments bolsters the role of chemokinesis in this system. This work suggests a novel strategy of exploiting chemokinesis to effect accumulation of motile colloids in desired areas.
Collapse
Affiliation(s)
- Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, USA.
| | - Philip M Wheat
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Nathan A Marine
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, USA. .,Department of Family Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Weigh KV, Batista BD, Dennis PG. A Bait-Trap Assay to Characterize Soil Microbes that Exhibit Chemotaxis to Root Exudates. Methods Mol Biol 2021; 2232:283-289. [PMID: 33161554 DOI: 10.1007/978-1-0716-1040-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we describe a novel "bait-trap" assay, which facilitates capture of soil microorganisms that exhibit chemotaxis to chemical attractants, such as root exudates. These multi-population assemblages represent potential guilds and can be characterized using a wide-range of culture-dependent and culture-independent methods. While in this example, we use root exudates as bait, any water-soluble compound(s) could be used. Hence, the potential applications for the assay are diverse.
Collapse
Affiliation(s)
- Katherine V Weigh
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bruna D Batista
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
28
|
Carreira C, Carvalho JPS, Talbot S, Pereira I, Lønborg C. Small-scale distribution of microbes and biogeochemistry in the Great Barrier Reef. PeerJ 2020; 8:e10049. [PMID: 33150061 PMCID: PMC7585385 DOI: 10.7717/peerj.10049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Abstract
Microbial communities distribute heterogeneously at small-scales (mm-cm) due to physical, chemical and biological processes. To understand microbial processes and functions it is necessary to appreciate microbes and matter at small scales, however, few studies have determined microbial, viral, and biogeochemical distribution over space and time at these scales. In this study, the small-scale spatial and temporal distribution of microbes (bacteria and chlorophyll a), viruses, dissolved inorganic nutrients and dissolved organic carbon were determined at five locations (spatial) along the Great Barrier Reef (Australia), and over 4 consecutive days (temporal) at a coastal location. Our results show that: (1) the parameters show high small-scale heterogeneity; (2) none of the parameters measured explained the bacterial abundance distributions at these scales spatially or temporally; (3) chemical (ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, and total dissolved nitrogen) and biological (chl a, and bacterial and viral abundances) measurements did not reveal significant relationships at the small scale; and (4) statistically significant differences were found between sites/days for all parameter measured but without a clear pattern.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Biology & CESAM -The Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | - Samantha Talbot
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Isabel Pereira
- Department of Mathematic & CIDMA - Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal
| | - Christian Lønborg
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,Section for Applied Marine Ecology and Modelling, Department of Bioscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
29
|
Agmon E, Spangler RK. A Multi-Scale Approach to Modeling E. coli Chemotaxis. ENTROPY 2020; 22:e22101101. [PMID: 33286869 PMCID: PMC7597207 DOI: 10.3390/e22101101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
The degree to which we can understand the multi-scale organization of cellular life is tied to how well our models can represent this organization and the processes that drive its evolution. This paper uses Vivarium-an engine for composing heterogeneous computational biology models into integrated, multi-scale simulations. Vivarium's approach is demonstrated by combining several sub-models of biophysical processes into a model of chemotactic E. coli that exchange molecules with their environment, express the genes required for chemotaxis, swim, grow, and divide. This model is developed incrementally, highlighting cross-compartment mechanisms that link E. coli to its environment, with models for: (1) metabolism and transport, with transport moving nutrients across the membrane boundary and metabolism converting them to useful metabolites, (2) transcription, translation, complexation, and degradation, with stochastic mechanisms that read real gene sequence data and consume base pairs and ATP to make proteins and complexes, and (3) the activity of flagella and chemoreceptors, which together support navigation in the environment.
Collapse
|
30
|
König S, Köhnke MC, Firle AL, Banitz T, Centler F, Frank K, Thullner M. Disturbance Size Can Be Compensated for by Spatial Fragmentation in Soil Microbial Ecosystems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|