1
|
Yang S, Wang X, Gao H, Yuan S. Motile cilia: Key developmental and functional roles in reproductive systems. Andrology 2025. [PMID: 39895399 DOI: 10.1111/andr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Cilia are specialized microtubule-based organelles that extend from the cell surface and are classified into non-motile and motile types. The assembly and function of cilia are regulated by a complex molecular network that enables motile cilia to generate fluid flow across epithelial surfaces through coordinated beating. These motile cilia are found in the respiratory, nervous, and reproductive systems. In males, motile cilia are found in the efferent ducts and facilitate the transport of sperm from the testis to the epididymis. In females, they are mainly found in the oviducts, where they help to transport, nourish and fertilize eggs, and are also present in the endometrial epithelium. MATERIAL-METHODS This review compares the common factors that affect motile cilia in both male and female reproductive tracts, discusses the origin and development of multiciliated cell and cilia within the efferent ducts and oviducts, and enumerates the infertility or related reproductive diseases that may arise due to motile cilia defects. RESULTS-DISCUSSION In males, motile cilia in the efferent ducts create turbulence through their beating, which keeps semen suspended and prevents ductal obstruction. In females, motile cilia are distributed on the epithelia of the oviducts and the endometrium. Specifically, motile cilia in the infundibulum of the oviduct aid in capturing oocytes, while cilia in the isthmus region have been found to bind to sperm heads, facilitating the formation of the sperm reservoir. Several common factors, such as miR-34b/c and miR-449, TAp73, Gemc1, and estrogen, etc., have been shown to play crucial regulatory roles in motile cilia within the efferent ducts and oviducts, thereby further influencing fertility outcomes. CONCLUSIONS Pathogenic mutations that disrupt ciliary function can impair ciliogenesis or alter the structure of sperm flagella, potentially resulting in infertility. Consequently, motile cilia in both the male and female reproductive tracts are crucial for fertility. There are still numerous unresolved mysteries surrounding these cilia that merit further investigation by researchers, as they hold great significance for the clinical diagnosis and treatment of infertility and related reproductive disorders.
Collapse
Affiliation(s)
- Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Gao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Ito M, Morimoto K, Ohashi M, Wakabayashi K, Miyabayashi A, Yamada H, Hijikata M, Keicho N. Primary Ciliary Dyskinesia Due to Compound Heterozygous Variants in CFAP221 with Obstructive Azoospermia: Young's Syndrome May Be a Phenotype of Primary Ciliary Dyskinesia. Intern Med 2025; 64:423-428. [PMID: 38960684 DOI: 10.2169/internalmedicine.3978-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
We report the case of a 42-year-old man with bronchiectasis who had a history of infertility treatment for obstructive azoospermia. Young's syndrome was suspected based on the triad of obstructive azoospermia, sinusitis, and bronchiectasis. He had normal electron microscopy findings, normal nasal nitric oxide levels (116 nL/min), and no situs inversus. However, we found compound heterozygous variants considered pathogenic in CFAP221. This led to a diagnosis of primary ciliary dyskinesia (PCD). Distinguishing PCD from Young's syndrome in patients with the triad of obstructive azoospermia, sinusitis, and bronchiectasis is challenging. Young's syndrome may be a phenotype of PCD.
Collapse
Affiliation(s)
- Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Japan
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
| | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| |
Collapse
|
3
|
Khoury Damaa M, Serizay J, Balagué R, Boudjema AR, Faucourt M, Delgehyr N, Goh KJ, Lu H, Tan EK, James CT, Faucon C, Mitri R, Bracht DC, Bingle CD, Dunn NR, Arnold SJ, Zaragosi LE, Barbry P, Koszul R, Omran H, Gil-Gómez G, Escudier E, Legendre M, Roy S, Spassky N, Meunier A. Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation. Cell Rep 2025; 44:115117. [PMID: 39740663 DOI: 10.1016/j.celrep.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC). Here, we show that Ccno is activated at the crossroads of the onset of MCC differentiation, the entry into the MCC cell-cycle variant, and the activation of the centriole biogenesis program. Its absence blocks the G1/S-like transition of the cell-cycle variant, interrupts the centriologenesis transcription program, and compromises the production of centrioles and cilia in mouse brain and human respiratory MCCs. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell-cycle variant and the interruption of this variant as one etiology of RGMC.
Collapse
Affiliation(s)
- Michella Khoury Damaa
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Jacques Serizay
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France; Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Rémi Balagué
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Amélie-Rose Boudjema
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Kim Jee Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Cameron T James
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK; Singapore-MIT Association for Research and Technology, Critical Analytics for Manufacturing Personalised-Medicine (SMART CAMP), 1 CREATE Way, Singapore 138602, Singapore
| | - Catherine Faucon
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Rana Mitri
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Diana Carolin Bracht
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Laure-Emmanuelle Zaragosi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; 3IA Côte d'Azur, 06560 Sophia Antipolis, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Gabriel Gil-Gómez
- Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Estelle Escudier
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Marie Legendre
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Salman Ahmadi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
6
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
7
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
8
|
Li H, Pan C, Wang Y, Li J, Zhang Z, Shahzad K, Mustafa SB, Wang Y, Zhao W. Analysis of histomorphology and SERNINA5 gene expression in different regions of epididymis of cattleyak. J Mol Histol 2024; 55:825-834. [PMID: 39105940 DOI: 10.1007/s10735-024-10234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The molecular mechanism of sterility in cattleyak is still unresolved. The related factors of infertility in cattleyak were studied by tissue section, SERPINA5 gene cloning and bioinformatics technology. Tissue sections of the epididymis showed poorly structured and disorganized epithelial cells in the corpus of the epididymis compared to the caput of the epididymis, while in the cauda part of the epididymis, the extra basal smooth muscle was thinner, the surface of the epithelial lumen was discontinuous and the epithelium was markedly degenerated. The results of gene cloning showed that the coding sequence (CDS) region of the SERPINA5 gene in cattleyak was 1215 bp in length, encoding a total of 404 amino acids, of which the isoleucine content was the highest, accounting for a total of 49 amino acids (12.1%). The results of real-time fluorescence quantitative PCR (qPCR) showed that the expression of the SERPINA5 gene in the epididymis caput in cattleyak was significantly higher than that in the corpus and cauda (P < 0.05), but there were no significant differences between the corpus and cauda. In the current study, histological and bioinformatics analysis, physicochemical properties, and the expression analysis of the SERPINA5 gene in different regions of the epididymis in cattleyak were carried out to explore the biological complications of cattleyak infertility.
Collapse
Affiliation(s)
- Haiyan Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Cheng Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Yifei Wang
- Department of Clinical Laboratory, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, 621000, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Shehr Bano Mustafa
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China
| | - Ye Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610057, China.
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621000, China.
| |
Collapse
|
9
|
Champroux A, Sadat-Shirazi M, Chen X, Hacker J, Yang Y, Feig LA. Astrocyte-Derived Exosomes Regulate Sperm miR-34c Levels to Mediate the Transgenerational Effects of Paternal Chronic Social Instability Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.21.537854. [PMID: 37786715 PMCID: PMC10541588 DOI: 10.1101/2023.04.21.537854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content that induce stress-specific phenotypes in their offspring. But how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring. Here we describe evidence that a strocyte-derived exos omes ( A-Exos ) carrying miR-34c mediate how CSI stress has this transgenerational effect on sperm. We found that CSI stress decreases miR-34c carried by A-Exos in the prefrontal cortex and amygdala, as well as in the blood of males. Importantly, miR-34c A-Exos levels are also reduced in these tissues in their F1 male offspring, who despite not being exposed to stress exhibit reduced sperm miR-34c levels and transmit the same stress-associated traits to their male and female offspring. Furthermore, restoring A-Exos miR-34c content in the blood of CSI-stressed males by intravenous injection of miR-34c-containing A-Exos restores miR-34c levels in their sperm. These findings reveal an unexpected role for A-Exos in maintaining sperm miR-34c levels by a process that when suppressed by CSI stress mediates this example of transgenerational epigenetic inheritance.
Collapse
|
10
|
Vinay L, Hess RA, Belleannée C. Human efferent ductules and epididymis display unique cell lineages with motile and primary cilia. Andrology 2024. [PMID: 39212979 DOI: 10.1111/andr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous research has illustrated the role of cilia as mechanical and sensory antennae in various organs within the mammalian male reproductive system across different developmental stages. Despite their significance in both organ development and homeostasis, primary cilia in the human male reproductive excurrent duct have been overlooked due to limited access to human specimens. OBJECTIVE This study aimed to characterize the unique cellular composition of human efferent and epididymal ducts, with a focus on their association with primary cilia. MATERIALS AND METHODS Human efferent ductules/epididymides from five donors aged 32-47 years, were obtained through our local organ transplant program. Cell lineage specificity and primary cilia features were examined by immunofluorescent staining and confocal microscopy in the efferent ductules and the distinct segments of the epididymis. RESULTS The epithelium of the human efferent duct exhibited estrogen receptor-positive cells with primary cilia, FoxJ1-positive multiciliated cells with numerous motile cilia, and non-ciliated intraepithelial immune cells. Notably, intraluminal macrophages, identified by CD163/CD68 positivity, were observed to engage in sperm phagocytosis. In all three segments of the human epididymis, primary cilia were found on the surface of principal and basal cells. DISCUSSION AND CONCLUSIONS Our research indicates that the human efferent ductules create a distinct environment, characterized by the presence of two types of ciliated cells that are in contact with immune cells. The discovery of sensory primary cilia exposed on the surface of reabsorptive cells in the efferent ductules, as well as on basal and principal cells in the epididymis, lays the foundation for complementary functional studies. This research uncovers novel characteristics exclusive to human efferent ductules and epididymides, providing a basis for exploring innovative approaches to male contraception and infertility treatment.
Collapse
Affiliation(s)
- Ludovic Vinay
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| |
Collapse
|
11
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
12
|
Pasquini M, Chiani F, Gambadoro A, Di Pietro C, Paoletti R, Orsini T, Putti S, Scavizzi F, La Sala G, Ermakova O. The Odad3 Gene Is Necessary for Spermatozoa Development and Male Fertility in Mice. Cells 2024; 13:1053. [PMID: 38920681 PMCID: PMC11201558 DOI: 10.3390/cells13121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Odad3 gene loss-of-function mutation leads to Primary Ciliary Dyskinesia (PCD), a disease caused by motile cilia dysfunction. Previously, we demonstrated that knockout of the Odad3 gene in mice replicates several features of PCD, such as hydrocephalus, defects in left-right body symmetry, and male infertility, with a complete absence of sperm in the reproductive tract. The majority of Odad3 knockout animals die before sexual maturation due to severe hydrocephalus and failure to thrive, which precludes fertility studies. Here, we performed the expression analysis of the Odad3 gene during gonad development and in adult testes. We showed that Odad3 starts its expression during the first wave of spermatogenesis, specifically at the meiotic stage, and that its expression is restricted to the germ cells in the adult testes, suggesting that Odad3 plays a role in spermatozoa formation. Subsequently, we conditionally deleted the Odad3 gene in adult males and demonstrated that even partial ablation of the Odad3 gene leads to asthenoteratozoospermia with multiple morphological abnormalities of sperm flagella (MMAF) in mice. The analysis of the seminiferous tubules in Odad3-deficient mice revealed defects in spermatogenesis with accumulation of seminiferous tubules at the spermiogenesis and spermiation phases. Furthermore, analysis of fertility in heterozygous Odad3+/- knockout mice revealed a reduction in sperm count and motility as well as abnormal sperm morphology. Additionally, Odad3+/- males exhibited a shorter fertile lifespan. Overall, these results suggest the important role of Odad3 and Odad3 gene dosage in male fertility. These findings may have an impact on the genetic and fertility counseling practice of PCD patients carrying Odad3 loss-of-function mutations.
Collapse
Affiliation(s)
- Miriam Pasquini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Francesco Chiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Renata Paoletti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| | - Olga Ermakova
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy; (M.P.); (F.C.); (A.G.); (C.D.P.); (R.P.); (T.O.); (S.P.); (F.S.)
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, National Research Council of Italy (CNR), Adriano Buzzati-Traverso Campus, Via Ramarini, 32, 00015 Monterotondo, Italy
| |
Collapse
|
13
|
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024; 13:974. [PMID: 38891105 PMCID: PMC11171568 DOI: 10.3390/cells13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous, motile ciliopathy, characterized by neonatal respiratory distress, recurrent upper and lower respiratory tract infections, subfertility, and laterality defects. Diagnosis relies on a combination of tests for confirmation, including nasal nitric oxide (nNO) measurements, high-speed videomicroscopy analysis (HSVMA), immunofluorescent staining, axonemal ultrastructure analysis via transmission electron microscopy (TEM), and genetic testing. Notably, there is no single gold standard confirmatory or exclusionary test. Currently, 54 causative genes involved in cilia assembly, structure, and function have been linked to PCD; this rare disease has a spectrum of clinical manifestations and emerging genotype-phenotype relationships. In this review, we provide an overview of the structure and function of motile cilia, the emerging genetics and pathophysiology of this rare disease, as well as clinical features associated with motile ciliopathies, novel diagnostic tools, and updates on genotype-phenotype relationships in PCD.
Collapse
Affiliation(s)
- Katherine A. Despotes
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife 2024; 13:RP90203. [PMID: 38639482 PMCID: PMC11031087 DOI: 10.7554/elife.90203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Jaaved Mohammed
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San AntonioSan AntonioUnited States
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
Ling F, Essock-Burns T, McFall-Ngai M, Katija K, Nawroth JC, Kanso E. Flow Physics Explains Morphological Diversity of Ciliated Organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528181. [PMID: 38168341 PMCID: PMC10760039 DOI: 10.1101/2023.02.12.528181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organs that pump fluids by the coordinated beat of motile cilia through the lumen are integral to animal physiology. Such organs include the human airways, brain ventricles, and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as either carpet or flame designs. The reason behind this dichotomy and how duct design relates to fluid pumping remain unclear. Here, we demonstrate that two structural parameters -- lumen diameter and cilia-to-lumen ratio -- organize the observed duct diversity into a continuous spectrum that connects carpets to flames across all animal phyla. Using a unified fluid model, we show that carpet and flame designs maximize flow rate and pressure generation, respectively. We propose that convergence of ciliated organ designs follows functional constraints rather than phylogenetic distance, along with universal design rules for ciliary pumps.
Collapse
|
16
|
Pazour GJ. Cilia Structure and Function in Human Disease. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100509. [PMID: 38836197 PMCID: PMC11147146 DOI: 10.1016/j.coemr.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Ciliary dysfunction causes a large group of developmental and degenerative human diseases known as ciliopathies. These diseases reflect the critical roles that cilia play in sensing the environment and in force generation for motility. Sensory functions include our senses of vision and olfaction. In addition, primary and motile cilia throughout our body monitor the environment allowing cells to coordinate their biology with the cells around them. This coordination is critical to organ development and maintenance, and ciliary dysfunction causes diverse structural birth defects and degenerative diseases. Defects in motility cause lung disease due to the failure of mucociliary clearance, male infertility due to the failure of sperm motility and the ability of sperm to move through the efferent ducts, and disturbances of the left-right axis due to a failure of nodal cilia to establish proper left-right cues.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, USA
| |
Collapse
|
17
|
Yi S, Wang W, Su L, Meng L, Li Y, Tan C, Liu Q, Zhang H, Fan L, Lu G, Hu L, Du J, Lin G, Tan YQ, Tu C, Zhang Q. Deleterious variants in X-linked RHOXF1 cause male infertility with oligo- and azoospermia. Mol Hum Reprod 2024; 30:gaae002. [PMID: 38258527 DOI: 10.1093/molehr/gaae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.
Collapse
Affiliation(s)
- Sibing Yi
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
| | - Lilan Su
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiang Liu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and the Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| |
Collapse
|
18
|
Zhang Y, Ding R, Zhang Y, Qi J, Cao W, Deng L, Zhou L, Ye Y, Xue Y, Liu E. Dysfunction of DMT1 and miR-135b in the gut-testis axis in high-fat diet male mice. GENES & NUTRITION 2024; 19:1. [PMID: 38243197 PMCID: PMC10797958 DOI: 10.1186/s12263-024-00737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Obese patients have been found to be susceptible to iron deficiency, and malabsorption of dietary iron is the cause of obesity-related iron deficiency (ORID). Divalent metal transporter 1 (DMT1) and ferroportin (FPN), are two transmembrane transporter proteins expressed in the duodenum that are closely associated with iron absorption. However, there have been few studies on the association between these two proteins and the increased susceptibility to iron deficiency in obese patients. Chronic inflammation is also thought to be a cause of obesity-related iron deficiency, and both conditions can have an impact on spermatogenesis and impair male reproductive function. Based on previous studies, transgenerational epigenetic inheritance through gametes was observed in obesity. RESULTS Our results showed that obese mice had decreased blood iron levels (p < 0.01), lower protein and mRNA expression for duodenal DMT1 (p < 0.05), but no statistically significant variation in mRNA expression for duodenal FPN (p > 0.05); there was an increase in sperm miR-135b expression (p < 0.05). Bioinformatics revealed ninety overlapping genes and further analysis showed that they were primarily responsible for epithelial cilium movement, fatty acid beta-oxidation, protein dephosphorylation, fertilization, and glutamine transport, which are closely related to spermatogenesis, sperm development, and sperm viability in mice. CONCLUSIONS In obese mice, we observed downregulation of DMT1 in the duodenum and upregulation of miR-135b in the spermatozoa.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Yulin Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Lijun Deng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi, 538000, China
| | - Lin Zhou
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710000, China
| | - Ying Xue
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, 710049, China.
| |
Collapse
|
19
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
21
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
22
|
Lin Z, Huang Y, Liu S, Huang Q, Zhang B, Wang T, Zhang Z, Zhu X, Liao C, Han Q. Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti. BMC Genomics 2023; 24:301. [PMID: 37270481 DOI: 10.1186/s12864-023-09403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated protein‒protein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RT‒PCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.
Collapse
Affiliation(s)
- Zhinan Lin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Sihan Liu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Qiwen Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Zhu
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
23
|
Chen J, Han C. In vivo functions of miRNAs in mammalian spermatogenesis. Front Cell Dev Biol 2023; 11:1154938. [PMID: 37215089 PMCID: PMC10196063 DOI: 10.3389/fcell.2023.1154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis mainly because spermatogenesis is more or less disrupted when genes encoding key enzymes for miRNA biogenesis are mutated. However, it is challenging to study the functions of individual miRNAs due to their family-wise high sequence similarities and the clustered genomic distributions of their genes, both of which expose difficulties in using genetic methods. Accumulating evidence shows that a number of miRNAs indeed play important roles in mammalian spermatogenesis and the underlying mechanisms start to be understood. In this mini review, we focus on highlighting the roles of miRNAs in mammalian spermatogenesis elucidated mainly by using in vivo genetic methods and on discussing the underlying mechanisms. We propose that studies on the roles of miRNAs in spermatogenesis should and can be conducted in a more fruitful way given the progress in traditional methods and the birth of new technologies.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Pan B, Yuan S, Mayernik L, Yap YT, Moin K, Chung CS, Maddipati K, Krawetz SA, Zhang Z, Hess RA, Chen X. Disrupted intercellular bridges and spermatogenesis in fatty acyl-CoA reductase 1 knockout mice: A new model of ether lipid deficiency. FASEB J 2023; 37:e22908. [PMID: 37039784 PMCID: PMC10150578 DOI: 10.1096/fj.202201848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.
Collapse
Affiliation(s)
- Bo Pan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Linda Mayernik
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Charles S. Chung
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Krishnarao Maddipati
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Stephen A. Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Rex A. Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
25
|
Liu C, Si W, Tu C, Tian S, He X, Wang S, Yang X, Yao C, Li C, Kherraf ZE, Ye M, Zhou Z, Ma Y, Gao Y, Li Y, Liu Q, Tang S, Wang J, Saiyin H, Zhao L, Yang L, Meng L, Chen B, Tang D, Zhou Y, Wu H, Lv M, Tan C, Lin G, Kong Q, Shi H, Su Z, Li Z, Yao YG, Jin L, Zheng P, Ray PF, Tan YQ, Cao Y, Zhang F. Deficiency of primate-specific SSX1 induced asthenoteratozoospermia in infertile men and cynomolgus monkey and tree shrew models. Am J Hum Genet 2023; 110:516-530. [PMID: 36796361 PMCID: PMC10027476 DOI: 10.1016/j.ajhg.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zixue Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Yuhua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qiwei Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Liangyu Zhao
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Liqun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Bingbing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yiling Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Limited, Shanghai, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Umezu K, Larina IV. Optical coherence tomography for dynamic investigation of mammalian reproductive processes. Mol Reprod Dev 2023; 90:3-13. [PMID: 36574640 PMCID: PMC9877170 DOI: 10.1002/mrd.23665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
The biological events associated with mammalian reproductive processes are highly dynamic and tightly regulated by molecular, genetic, and biomechanical factors. Implementation of live imaging in reproductive research is vital for the advancement of our understanding of normal reproductive physiology and for improving the management of reproductive disorders. Optical coherence tomography (OCT) is emerging as a promising tool for dynamic volumetric imaging of various reproductive processes in mice and other animal models. In this review, we summarize recent studies employing OCT-based approaches toward the investigation of reproductive processes in both, males and females. We describe how OCT can be applied to study structural features of the male reproductive system and sperm transport through the male reproductive tract. We review OCT applications for in vitro and dynamic in vivo imaging of the female reproductive system, staging and tracking of oocytes and embryos, and investigations of the oocyte/embryo transport through the oviduct. We describe how the functional OCT approach can be applied to the analysis of cilia dynamics within the male and female reproductive systems. We also discuss the areas of research, where OCT could find potential applications to progress our understanding of normal reproductive physiology and reproductive disorders.
Collapse
Affiliation(s)
- Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Irina V Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Li J, Si SJ, Wu X, Zhang ZH, Li C, Tao YQ, Yang PK, Li DH, Li ZJ, Li GX, Liu XJ, Tian YD, Kang XT. CircEML1 facilitates the steroid synthesis in follicular granulosa cells of chicken through sponging gga-miR-449a to release IGF2BP3 expression. Genomics 2023; 115:110540. [PMID: 36563917 DOI: 10.1016/j.ygeno.2022.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Non-coding RNAs (ncRNAs) induced competing endogenous RNAs (ceRNA) play crucial roles in various biological process by regulating target gene expression. However, the studies of ceRNA networks in the regulation of ovarian ovulation processing of chicken remains deficient compared to that in mammals. Our present study revealed that circEML1 was differential expressed in hen's ovarian tissues at different ages (15 W/20 W/30 W/68 W) and identified as a loop structure from EML1 pre-mRNA, which promoted the expressions of CYP19A1/StAR and E2/P4 secretion in follicular granulosa cells (GCs). Furthermore, circEML1 could serve as a sponge of gga-miR-449a and also found that IGF2BP3 was targeted by gga-miR-449a to co-participate in the steroidogenesis, which possibly act the regulatory role via mTOR/p38MAPK pathways. Meanwhile, in the rescue experiment, gga-miR-449a could reverse the promoting role of circEML1 to IGF2BP3 and steroidogenesis. Eventually, this study suggested that circEML1/gga-miR-449a/IGF2BP3 axis exerted an important role in the steroidogenesis in GCs of chicken.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Su-Jin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Yi-Qing Tao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Peng-Kun Yang
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Dong-Hua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Xiao-Jun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Ya-Dong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China.
| | - Xiang-Tao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China.
| |
Collapse
|
28
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
29
|
Higgins K, Moore BA, Berberovic Z, Adissu HA, Eskandarian M, Flenniken AM, Shao A, Imai DM, Clary D, Lanoue L, Newbigging S, Nutter LMJ, Adams DJ, Bosch F, Braun RE, Brown SDM, Dickinson ME, Dobbie M, Flicek P, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Chin HJG, Mammano F, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Lloyd KCK, McKerlie C, Moshiri A. Analysis of genome-wide knockout mouse database identifies candidate ciliopathy genes. Sci Rep 2022; 12:20791. [PMID: 36456625 PMCID: PMC9715561 DOI: 10.1038/s41598-022-19710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
Collapse
Affiliation(s)
- Kendall Higgins
- The University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Bret A Moore
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | - Mohammad Eskandarian
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Andy Shao
- University of Reno, Nevada, School of Medicine, Reno, NV, 89557, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, U.C. Davis, Davis, 95616, USA
| | - Dave Clary
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Louise Lanoue
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael Dobbie
- Phenomics Australia, The Australian National University, 131 Garran Rd, Acton, Canberra, ACT, 2601, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Dr. Homi Bhabha Rd, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, North-West University Potchefstroom Campus 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67400, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hsian-Jean Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), 3F., No. 106, Sec. 2, Heping E. Rd., Da'an Dist., Taipei City, 106214, Taiwan (R.O.C.)
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, 00015, Monterotondo Scalo, Italy
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science, 5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, IMG BIOCEV Building SO.02 Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J-K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Organization Planning of No. 1 Shizi Street, Suzhou, 215123, China
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
- Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Colin McKerlie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children (SickKids), The Centre for Phenogenomics, Faculty of Medicine, University of Toronto, 25 Orde Street, Toronto, ON, M5T 3H7, USA.
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis Eye Center, 4860 Y. Street, Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
30
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
31
|
Immunohistochemical Changes in the Testicular Excurrent Duct System of Healthy, Male Japanese Quail ( Coturnix coturnix japonica) Observed at 4, 6-7, 12, and 52 Weeks of Age. Int J Mol Sci 2022; 23:ijms232214028. [PMID: 36430504 PMCID: PMC9694578 DOI: 10.3390/ijms232214028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The immunolocalization of the cytoskeletal and the extracellular matrix proteins was investigated in the testicular excurrent duct system of healthy Japanese quail at 4, 6−7, 12 and 52 weeks of age. TdT dUTP Nick End Labeling (TUNEL) assay was used to assess apoptotic cell formation. The epithelia of the testicular excurrent duct system in birds of all age groups displayed various immunolabeling intensities and localization of cytokeratin 5 and beta-tubulin, while α-SMA was observed in epithelia only of 4-week-old birds. In all age groups, vimentin immunostaining was observed in the rete testes and efferent ductular epithelia, but not in the epididymal duct unit. The periductal smooth muscle cells of the excurrent duct system displayed variably intense immunopositivity with cytokeratin 5, desmin, fibronectin, α-SMA, and beta-tubulin. Furthermore, beta-tubulin and vimentin immunolabeled endothelial cells and fibroblasts with various intensities, while fibronectin immunostained extracellular matrices surrounding these cells. TUNEL-positive apoptotic cells were observed in the rete testes and efferent ductular epithelia, with increased frequency (p < 0.001) in 52-week-old birds. The study serves as a baseline normal for this region in healthy birds at 4, 6−7, 12, and 52 weeks of age, for comparison in future similar immunohistochemical studies involving environmental toxins affecting this region.
Collapse
|
32
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
33
|
Zhang X, Wu W, Zhou J, Li L, Jiang H, Chen J. MiR-34b/c play a role in early sex differentiation of Amur sturgeon, Acipenser schrenckii. Front Zool 2022; 19:23. [PMID: 36163040 PMCID: PMC9511750 DOI: 10.1186/s12983-022-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sex differentiation can be viewed as a controlled regulatory balance between sex differentiation-related mRNAs and post-transcriptional mechanisms mediated by non-coding RNAs. In mammals, increasing evidence has been reported regarding the importance of gonad-specific microRNAs (miRNAs) in sex differentiation. Although many fishes express a large number of gonadal miRNAs, the effects of these sex-biased miRNAs on sex differentiation in teleost fish remain unknown. Previous studies have shown the exclusive and sexually dimorphic expression of miR-34b/c in the gonads of the Amur sturgeon (Acipenser schrenckii), suggesting its potential role in the sex differentiation process. Results Using quantitative real-time PCR (qPCR), we observed that miR-34b/c showed consistent spatiotemporal expression patterns; the expression levels significantly increased during early sex differentiation. Using in situ hybridization, miR-34c was found to be located in the germ cells. In primary germ cells in vitro, the group subjected to overexpression and inhibition of miR-34c showed significantly higher proliferation ability and lower apoptosis, respectively, compared to the corresponding control group. Luciferase reporter assays using the ar-3′UTR-psiCHECK-2 luciferase vector suggested a targeted regulatory interaction between miR-34b/c and the 3′UTR of the androgen receptor (ar) mRNA. Furthermore, miR-34b/c and ar showed negative expression patterns during early sex differentiation. Additionally, a negative feedback regulation pattern was observed between foxl2 expression in the ovaries and amh and sox9 expression in the testes during early sex differentiation. Conclusions This study sheds new light on the roles of miR-34b/c in gonad development of Amur sturgeon, and provides the first comprehensive evidence that the gonad-predominant microRNAs may have a major role in sex differentiation in teleost fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00469-6.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenhua Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
34
|
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife 2022; 11:80643. [PMID: 35969030 PMCID: PMC9507127 DOI: 10.7554/elife.80643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events. Every day, we inhale thousands of viruses, bacteria and pollution particles. To protect against these threats, cells in our airways produce mucus that traps inhaled particles before they reach the lungs. This mucus then needs to be removed to prevent it from becoming a breeding ground for microbes that may cause a respiratory infection. This is the responsibility of cells covered in tiny hair-like structures called cilia that move together to propel the mucus-trapped particles out of the airways. These specialized cells can have up to 300 motile cilia on their surface, which grow from structures called centrioles that then anchor the cilia in place. Multiciliated cells are generated from precursor cells that only have two centrioles. Therefore, as these precursors develop, they must produce large numbers of centrioles, considerably more than other cells that only need a couple of extra centrioles during cell division. However, recent studies have questioned whether the precursors of multiciliated cells rely on the same regulatory proteins to produce centrioles as dividing cells. To help answer this question, LoMastro et al. created genetically engineered mice that lacked or had an inactive form of PLK4, a protein which controls centriole formation in all cell types lacking multiple cilia. This showed that multiciliated cells also need this protein to produce centrioles. LoMastro et al. also found that multiciliated cells became larger while building centrioles, suggesting that this amplification process helps control the cell’s final size. Defects in motile cilia activity can lead to fluid build-up in the brain, respiratory infections and infertility. Unfortunately, these disorders are difficult to diagnose currently and there is no cure. The findings of LoMastro et al. further our understanding of how motile cilia are built and maintained, and may help future scientists to develop better diagnostic tools and treatments for patients.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aubrey L Maryniak
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
35
|
Wildung M, Herr C, Riedel D, Wiedwald C, Moiseenko A, Ramírez F, Tasena H, Heimerl M, Alevra M, Movsisyan N, Schuldt M, Volceanov-Hahn L, Provoost S, Nöthe-Menchen T, Urrego D, Freytag B, Wallmeier J, Beisswenger C, Bals R, van den Berge M, Timens W, Hiemstra PS, Brandsma CA, Maes T, Andreas S, Heijink IH, Pardo LA, Lizé M. miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. Int J Mol Sci 2022; 23:ijms23147749. [PMID: 35887096 PMCID: PMC9320302 DOI: 10.3390/ijms23147749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.
Collapse
Affiliation(s)
- Merit Wildung
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany;
| | - Cornelia Wiedwald
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Alena Moiseenko
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Fidel Ramírez
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Hataitip Tasena
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Maren Heimerl
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, Goettingen University, 37073 Goettingen, Germany;
| | - Naira Movsisyan
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Maike Schuldt
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Larisa Volceanov-Hahn
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Diana Urrego
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Bernard Freytag
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Julia Wallmeier
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Christoph Beisswenger
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2333 Leiden, The Netherlands;
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Stefan Andreas
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Muriel Lizé
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
36
|
Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34. Mol Biol Rep 2022; 49:7367-7376. [PMID: 35715603 DOI: 10.1007/s11033-022-07530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China. METHODS AND RESULTS In this study, firstly, we found that miR-34 can target at 3'-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes. CONCLUSIONS These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3'-UTR of Vtg and VtgR genes and inhibiting their expression.
Collapse
|
37
|
Umezu K, Xia T, Larina IV. Dynamic volumetric imaging and cilia beat mapping in the mouse male reproductive tract with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3672-3684. [PMID: 35781970 PMCID: PMC9208606 DOI: 10.1364/boe.459937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Spermatozoa transport within the male reproductive tract is a highly dynamic and biologically important reproductive event. However, due to the lack of live volumetric imaging technologies and quantitative measurements, there is little information on the dynamic aspect and regulation of this process. Here, we presented ex vivo dynamic volumetric imaging of the mouse testis, efferent duct, epididymis, and vas deferens at a micro-scale spatial resolution with optical coherence tomography (OCT). Micro computed tomography imaging is presented as a reference for the proposed OCT imaging. Application of functional OCT analysis allowed for 3D mapping of the cilia beat frequency in the efferent duct, which volumetrically visualized the spatial distribution of the ciliated cells and corresponding ciliary activities. Potentially these analyses could be expanded to in vivo settings through intravital approach. In summary, this study demonstrated that OCT has a great potential to investigate the microstructure and dynamics, such as cilia beating, muscle contractions, and sperm transport, within the male reproductive tract.
Collapse
|
38
|
Huang L, Ma M, Huang D. Different roles of cilia in different segmentations of reproductive tract. J Assist Reprod Genet 2022; 39:1501-1502. [DOI: 10.1007/s10815-022-02524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
|
39
|
Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici MD, Shen W, Cao H. Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Front Cell Dev Biol 2022; 10:819044. [PMID: 35359444 PMCID: PMC8964082 DOI: 10.3389/fcell.2022.819044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.
Collapse
Affiliation(s)
- Yuguang Chang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tingting Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zafir Muhammad
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zihui Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| |
Collapse
|
40
|
Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, Hu J, Wang Z, Ouyang B, Tu X, Zou X, Liu W, Lu M, Deng C, Yang Q, Xie Y. Anatomical Transcriptome Atlas of the Male Mouse Reproductive System During Aging. Front Cell Dev Biol 2022; 9:782824. [PMID: 35211476 PMCID: PMC8861499 DOI: 10.3389/fcell.2021.782824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The elderly males undergo degenerative fertility and testicular endocrine function that jeopardize the reproductive health and well-being. However, the mechanisms underlying reproductive aging are unclear. Here, we tried to address this by investigating the phenotypes and transcriptomes of seven regions of the male mouse reproductive tract: the testis, efferent ductules, initial segment, caput, corpus and cauda epididymidis, and vas deferens, in adult (3 months) and aged (21 months) mice. Quantitative PCR, immunohistochemistry, immunofluorescent staining, and enzyme-linked immunosorbent assay were performed for the analysis of gene expression in mice, human tissues, and semen samples. Aged male mice showed both systematic and reproductive changes, and remarkable histological changes were detected in the testis and proximal epididymis. Transcriptomes of the male reproductive tract were mapped, and a series of region-specific genes were identified and validated in mouse and/or human tissues, including Protamine 1 (Prm2), ADAM metallopeptidase domain 28 (Adam28), Ribonuclease A family member 13 (Rnase13), WAP four-disulfide core domain 13 (Wfdc13), and Wfdc9. Meanwhile, age-related transcriptome changes of different regions of the male reproductive tract were characterized. Notably, increased immune response was functionally related to the male reproductive aging, especially the T cell activation. An immune response-associated factor, phospholipase A2 group IID (Pla2g2d), was identified as a potential biomarker for reproductive aging in mice. And the PLA2G2D level in human seminal plasma surged at approximately 35 years of age. Furthermore, we highlighted Protein tyrosine phosphatase receptor type C (Ptprc), Lymphocyte protein tyrosine kinase (Lck), Microtubule associated protein tau (Mapt), and Interferon induced protein with tetratricopeptide repeats 3 (Ifit3) as critical molecules in the aging of initial segment, caput, caput, and cauda epididymidis, respectively. This study provides an RNA-seq resource for the male reproductive system during aging in mice, and is expected to improve our understanding of male reproductive aging and infertility.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd., Guangzhou, China
| | - Zhenqing Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hu
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Wang
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
42
|
Hoque M, Kim EN, Chen D, Li FQ, Takemaru KI. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022; 11:cells11030341. [PMID: 35159149 PMCID: PMC8834061 DOI: 10.3390/cells11030341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies. Although non-motile primary cilia are ubiquitous, motile multicilia are found in restricted locations of the body, such as the respiratory tract, the oviduct, the efferent duct, and the brain ventricles. Multicilia beat in a whip-like motion to generate fluid flow over the apical surface of an epithelium. The concerted ciliary motion provides the driving force critical for clearing airway mucus and debris, transporting ova from the ovary to the uterus, maintaining sperm in suspension, and circulating cerebrospinal fluid in the brain. In the male reproductive tract, multiciliated cells (MCCs) were first described in the mid-1800s, but their importance in male fertility remained elusive until recently. MCCs exist in the efferent ducts, which are small, highly convoluted tubules that connect the testis to the epididymis and play an essential role in male fertility. In this review, we will introduce multiciliogenesis, discuss mouse models of male infertility with defective multicilia, and summarize our current knowledge on the biological function of multicilia in the male reproductive tract.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
- Correspondence:
| |
Collapse
|
43
|
Wang Z, Meng N, Wang Y, Zhou T, Li M, Wang S, Chen S, Zheng H, Kong S, Wang H, Yan W. Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Front Endocrinol (Lausanne) 2022; 13:893854. [PMID: 35677715 PMCID: PMC9167928 DOI: 10.3389/fendo.2022.893854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 01/31/2023] Open
Abstract
The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nan Meng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan,
| |
Collapse
|
44
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
45
|
Ma C, Wu H, Zhu D, Wang Y, Shen Q, Cheng H, Zhang J, Geng H, Liu Y, He X, Tao F, Cao Y, Xu X. Bi-allelic mutations in MCIDAS and CCNO cause human infertility associated with abnormal gamete transport. Clin Genet 2021; 100:731-742. [PMID: 34569065 DOI: 10.1111/cge.14067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Reduced generation of multiple motile cilia (RGMC) and the consequent primary ciliary dyskinesia (PCD) cause infertility due to a substantial reduction in the number of multiciliated cells (MCCs) in the efferent ducts (EDs)/oviducts. MCIDAS acts upstream of CCNO to regulate the biogenesis of basal bodies (BBs); therefore, both genes play a vital role in the multiciliogenesis of the reproductive tract epithelium. In this study, whole-exome sequencing was performed to identify the causative genes in 10 unrelated infertile patients with PCD: seven males and three females. Notably, homozygous frameshift mutations in MCIDAS (c.186dupT, p.Pro63Serfs*22) and CCNO (c.262_263insGGCCC, p.Gln88Argfs*8) were identified in one male and one female participant from two unrelated consanguineous families. Haematoxylin-eosin staining/scanning electron microscopy revealed abnormal MCCs in the mutated EDs/oviducts. Furthermore, transmission electron microscopy revealed significantly reduced BBs. Immunofluorescence staining showed the absence of MCIDAS and CCNO signals in the affected tissues and confirmed that MCIDAS acts upstream of CCNO in the context of multiciliogenesis in the reproductive tract epithelium. In vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) was successful, with a positive pregnancy outcome in both MCIDAS- and CCNO-mutated patients. Our results support the use of IVF/ICSI interventions to treat infertility due to RGMC in couples.
Collapse
Affiliation(s)
- Cong Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Damin Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huiru Cheng
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Junqiang Zhang
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yiyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
46
|
Diagnostics and Management of Male Infertility in Primary Ciliary Dyskinesia. Diagnostics (Basel) 2021; 11:diagnostics11091550. [PMID: 34573892 PMCID: PMC8467018 DOI: 10.3390/diagnostics11091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), a disease caused by the malfunction of motile cilia, manifests mainly with chronic recurrent respiratory infections. In men, PCD is also often associated with infertility due to immotile sperm. Since causative mutations for PCD were identified in over 50 genes, the role of these genes in sperm development should be investigated in order to understand the effect of PCD mutations on male fertility. Previous studies showed that different dynein arm heavy chains are present in respiratory cilia and sperm flagellum, which may partially explain the variable effects of mutations on airways and fertility. Furthermore, recent studies showed that male reproductive tract motile cilia may play an important part in sperm maturation and transport. In some PCD patients, extremely low sperm counts were reported, which may be due to motile cilia dysfunction in the reproductive tract rather than problems with sperm development. However, the exact roles of PCD genes in male fertility require additional studies, as do the treatment options. In this review, we discuss the diagnostic and treatment options for men with PCD based on the current knowledge.
Collapse
|
47
|
Rastgar Rezaei Y, Zarezadeh R, Nikanfar S, Oghbaei H, Nazdikbin N, Bahrami-Asl Z, Zarghami N, Ahmadi Y, Fattahi A, Nouri M, Dittrich R. microRNAs in the pathogenesis of non-obstructive azoospermia: the underlying mechanisms and therapeutic potentials. Syst Biol Reprod Med 2021; 67:337-353. [PMID: 34355990 DOI: 10.1080/19396368.2021.1951890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
miRNAs are involved in different biological processes, including proliferation, differentiation, and apoptosis. Interestingly, 38% of the X chromosome-linked miRNAs are testis-specific and have crucial roles in regulating the renewal and cell cycle of spermatogonial stem cells. Previous studies demonstrated that abnormal expression of spermatogenesis-related miRNAs could lead to nonobstructive azoospermia (NOA). Moreover, differential miRNAs expression in seminal plasma of NOA patients has been reported compared to normozoospermic men. However, the role of miRNAs in NOA pathogenesis and the underlying mechanisms have not been comprehensively studied. Therefore, the aim of this review is to mechanistically describe the role of miRNAs in the pathogenesis of NOA and discuss the possibility of using the miRNAs as therapeutic targets.Abbreviations: AMO: anti-miRNA antisense oligonucleotide; AZF: azoospermia factor region; CDK: cyclin-dependent kinase; DAZ: deleted in azoospermia; ESCs: embryonic stem cells; FSH: follicle-stimulating hormone; ICSI: intracytoplasmic sperm injection; JAK/STAT: Janus kinase/signal transducers and activators of transcription; miRNA: micro-RNA; MLH1: Human mutL homolog l; NF-κB: Nuclear factor-kappa B; NOA: nonobstructive azoospermia; OA: obstructive azoospermia; PGCs: primordial germ cells; PI3K/AKT: Phosphatidylinositol 3-kinase/protein kinase B; Rb: retinoblastoma tumor suppressor; ROS: Reactive Oxygen Species; SCOS: Sertoli cell-only syndrome; SIRT: sirtuin; SNPs: single nucleotide polymorphisms; SSCs: spermatogonial stem cells; TESE: testicular sperm extraction; TGF-β: transforming growth factor-beta.
Collapse
Affiliation(s)
- Yeganeh Rastgar Rezaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Bahrami-Asl
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Ahmadi
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
48
|
Hoque M, Chen D, Hess RA, Li FQ, Takemaru KI. CEP164 is essential for efferent duct multiciliogenesis and male fertility. Reproduction 2021; 162:129-139. [PMID: 34085951 DOI: 10.1530/rep-21-0042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023]
Abstract
Cilia are evolutionarily conserved microtubule-based structures that perform diverse biological functions. Cilia are assembled on basal bodies and anchored to the plasma membrane via distal appendages. In the male reproductive tract, multicilia in efferent ducts (EDs) move in a whip-like motion to prevent sperm agglutination. Previously, we demonstrated that the distal appendage protein CEP164 recruits Chibby1 (Cby1) to basal bodies to facilitate basal body docking and ciliogenesis. Mice lacking CEP164 in multiciliated cells (MCCs) (FoxJ1-Cre;CEP164fl/fl) show a significant loss of multicilia in the trachea, oviduct, and ependyma. In addition, we observed male sterility; however, the precise role of CEP164 in male fertility remained unknown. Here, we report that the seminiferous tubules and rete testis of FoxJ1-Cre;CEP164fl/fl mice exhibit substantial dilation, indicative of dysfunctional multicilia in the EDs. We found that multicilia were hardly detectable in the EDs of FoxJ1-Cre;CEP164fl/fl mice although FoxJ1-positive immature cells were present. Sperm aggregation and agglutination were commonly noticeable in the lumen of the seminiferous tubules and EDs of FoxJ1-Cre;CEP164fl/fl mice. In FoxJ1-Cre;CEP164fl/fl mice, the apical localization of Cby1 and the transition zone marker NPHP1 was severely diminished, suggesting basal body docking defects. TEM analysis of EDs further confirmed basal body accumulation in the cytoplasm of MCCs. Collectively, we conclude that male infertility in FoxJ1-Cre;CEP164fl/fl mice is caused by sperm agglutination and obstruction of EDs due to loss of multicilia. Our study, therefore, unravels an essential role of the distal appendage protein CEP164 in male fertility.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
49
|
Loukas I, Skamnelou M, Tsaridou S, Bournaka S, Grigoriadis S, Taraviras S, Lygerou Z, Arbi M. Fine-tuning multiciliated cell differentiation at the post-transcriptional level: contribution of miR-34/449 family members. Biol Rev Camb Philos Soc 2021; 96:2321-2332. [PMID: 34132477 DOI: 10.1111/brv.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Cell differentiation is a process that must be precisely regulated for the maintenance of tissue homeostasis. Differentiation towards a multiciliated cell fate is characterized by well-defined stages, where a transcriptional cascade is activated leading to the formation of multiple centrioles and cilia. Centrioles migrate and dock to the apical cell surface and, acting as basal bodies, give rise to multiple motile cilia. The concerted movement of cilia ensures directional fluid flow across epithelia and defects either in their number or structure can lead to disease phenotypes. Micro-RNAs (miRNAs; miRs) are small, non-coding RNA molecules that play an important role in post-transcriptional regulation of gene expression. miR-34b/c and miR-449a/b/c specifically function throughout the differentiation of multiciliated cells, fine-tuning the expression of many different centriole- and cilia-related genes. They strictly regulate the expression levels of genes that are required both for commitment towards the multiciliated cell fate (e.g. Notch) and for the establishment and maintenance of this fate by regulating the expression of transcription factors and structural components of the pathway. Herein we review miR-34 and miR-449 spatiotemporal regulation along with their roles during the different stages of multiciliogenesis.
Collapse
Affiliation(s)
- Ioannis Loukas
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Margarita Skamnelou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavroula Tsaridou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Spyridoula Bournaka
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Sokratis Grigoriadis
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| |
Collapse
|
50
|
Yuan S, Wang Z, Peng H, Ward SM, Hennig GW, Zheng H, Yan W. Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proc Natl Acad Sci U S A 2021; 118:e2102940118. [PMID: 34039711 PMCID: PMC8179221 DOI: 10.1073/pnas.2102940118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mammalian oviducts play an essential role in female fertility by picking up ovulated oocytes and transporting and nurturing gametes (sperm/oocytes) and early embryos. However, the relative contributions to these functions from various cell types within the oviduct remain controversial. The oviduct in mice deficient in two microRNA (miRNA) clusters (miR-34b/c and miR-449) lacks cilia, thus allowing us to define the physiological role of oviductal motile cilia. Here, we report that the infundibulum without functional motile cilia failed to pick up the ovulated oocytes. In the absence of functional motile cilia, sperm could still reach the ampulla region, and early embryos managed to migrate to the uterus, but the efficiency was reduced. Further transcriptomic analyses revealed that the five messenger ribonucleic acids (mRNAs) encoded by miR-34b/c and miR-449 function to stabilize a large number of mRNAs involved in cilium organization and assembly and that Tubb4b was one of their target genes. Our data demonstrate that motile cilia in the infundibulum are essential for oocyte pickup and thus, female fertility, whereas motile cilia in other parts of the oviduct facilitate gamete and embryo transport but are not absolutely required for female fertility.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557;
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Hongying Peng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557;
- Sections of Metabolic Diseases and Translational Genomics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| |
Collapse
|