1
|
Chen JCH, Gilski M, Chang C, Borek D, Rosenbaum G, Lavens A, Otwinowski Z, Kubicki M, Dauter Z, Jaskolski M, Joachimiak A. Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature. IUCRJ 2024; 11:649-663. [PMID: 39190507 PMCID: PMC11364037 DOI: 10.1107/s2052252524007784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545, USA
- Department of Chemistry and BiochemistryUniversity of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Changsoo Chang
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Dominika Borek
- Department of Biophysics and Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Gerd Rosenbaum
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Alex Lavens
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Maciej Kubicki
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Zbigniew Dauter
- Macromolecular Crystallography LaboratoryNational Cancer Institute at FrederickFrederickMD21702USA
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoILUSA
| |
Collapse
|
2
|
Grünewald TA, Liebi M, Birkedal H. Crossing length scales: X-ray approaches to studying the structure of biological materials. IUCRJ 2024; 11:708-722. [PMID: 39194257 PMCID: PMC11364038 DOI: 10.1107/s2052252524007838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.
Collapse
Affiliation(s)
| | - Marianne Liebi
- Photon Science DivisionPaul Scherrer InstituteVilligenPSI5232Switzerland
- Institute of MaterialsÉcole Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| | - Henrik Birkedal
- Department of Chemistry & iNANOAarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| |
Collapse
|
3
|
Henkel A, Oberthür D. A snapshot love story: what serial crystallography has done and will do for us. Acta Crystallogr D Struct Biol 2024; 80:563-579. [PMID: 38984902 PMCID: PMC11301758 DOI: 10.1107/s2059798324005588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.
Collapse
Affiliation(s)
- Alessandra Henkel
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| |
Collapse
|
4
|
Dickerson JL, McCubbin PTN, Brooks‐Bartlett JC, Garman EF. Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models. Protein Sci 2024; 33:e5005. [PMID: 38923423 PMCID: PMC11196903 DOI: 10.1002/pro.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
New features in the dose estimation program RADDOSE-3D are summarised. They include the facility to enter a diffraction intensity decay model which modifies the "Diffraction Weighted Dose" output from a "Fluence Weighted Dose" to a "Diffraction-Decay Weighted Dose", a description of RADDOSE-ED for use in electron diffraction experiments, where dose is historically quoted in electrons/Å2 rather than in gray (Gy), and finally the development of a RADDOSE-3D GUI, enabling easy access to all the options available in the program.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Patrick T. N. McCubbin
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- Division of Structural Biology, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Baxter J, Hutchison CD, Fadini A, Maghlaoui K, Cordon-Preciado V, Morgan RML, Agthe M, Horrell S, Tellkamp F, Mehrabi P, Pfeifer Y, Müller-Werkmeister HM, von Stetten D, Pearson AR, van Thor JJ. Power Density Titration of Reversible Photoisomerization of a Fluorescent Protein Chromophore in the Presence of Thermally Driven Barrier Crossing Shown by Quantitative Millisecond Serial Synchrotron X-ray Crystallography. J Am Chem Soc 2024; 146:16394-16403. [PMID: 38848551 PMCID: PMC11191680 DOI: 10.1021/jacs.3c12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
We present millisecond quantitative serial X-ray crystallography at 1.7 Å resolution demonstrating precise optical control of reversible population transfer from Trans-Cis and Cis-Trans photoisomerization of a reversibly switchable fluorescent protein, rsKiiro. Quantitative results from the analysis of electron density differences, extrapolated structure factors, and occupancy refinements are shown to correspond to optical measurements of photoinduced population transfer and have sensitivity to a few percent in concentration differences. Millisecond time-resolved concentration differences are precisely and reversibly controlled through intense continuous wave laser illuminations at 405 and 473 nm for the Trans-to-Cis and Cis-to-Trans reactions, respectively, while the X-ray crystallographic measurement and laser illumination of the metastable Trans chromophore conformation causes partial thermally driven reconversion across a 91.5 kJ/mol thermal barrier from which a temperature jump between 112 and 128 K is extracted.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - Alisia Fadini
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - R. Marc L. Morgan
- Center
for Structural Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Michael Agthe
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Sam Horrell
- Department
of Physics, Center for Free-Electron Laser Science, Institute for
Nanostructure and Solid State Physics, University
of Hamburg, Hamburg 22607, Germany
| | - Friedjof Tellkamp
- Scientific
Support Unit Machine Physics, Max-Planck-Institute
for Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Pedram Mehrabi
- Max
Planck Institute for the Structure and Dynamics of Matter, CFEL, Hamburg 22607, Germany
| | - Yannik Pfeifer
- Institute
of Chemistry—Physical Chemistry, University of Potsdam, Potsdam 14469, Germany
| | | | - David von Stetten
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Arwen R. Pearson
- Institute
for Nanostructure and Solid State Physics & The Hamburg Centre
for Ultrafast Imaging, HARBOR, Universität
Hamburg, Hamburg 22607, Germany
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
6
|
Shelley KL, Garman EF. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr D Struct Biol 2024; 80:314-327. [PMID: 38700059 PMCID: PMC11066884 DOI: 10.1107/s2059798324003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.
Collapse
Affiliation(s)
- Kathryn L. Shelley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
7
|
Thompson AJ, Sanchez-Weatherby J, Williams LJ, Mikolajek H, Sandy J, Worrall JAR, Hough MA. Efficient in situ screening of and data collection from microcrystals in crystallization plates. Acta Crystallogr D Struct Biol 2024; 80:279-288. [PMID: 38488731 PMCID: PMC10994175 DOI: 10.1107/s2059798324001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.
Collapse
Affiliation(s)
- Amy J. Thompson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Juan Sanchez-Weatherby
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Lewis J. Williams
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Halina Mikolajek
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Sandy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Michael A. Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
8
|
Lin Z, Zhang X, Nandi P, Lin Y, Wang L, Chu YS, Paape T, Yang Y, Xiao X, Liu Q. Correlative single-cell hard X-ray computed tomography and X-ray fluorescence imaging. Commun Biol 2024; 7:280. [PMID: 38448784 PMCID: PMC10917812 DOI: 10.1038/s42003-024-05950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
X-ray computed tomography (XCT) and X-ray fluorescence (XRF) imaging are two non-invasive imaging techniques to study cellular structures and chemical element distributions, respectively. However, correlative X-ray computed tomography and fluorescence imaging for the same cell have yet to be routinely realized due to challenges in sample preparation and X-ray radiation damage. Here we report an integrated experimental and computational workflow for achieving correlative multi-modality X-ray imaging of a single cell. The method consists of the preparation of radiation-resistant single-cell samples using live-cell imaging-assisted chemical fixation and freeze-drying procedures, targeting and labeling cells for correlative XCT and XRF measurement, and computational reconstruction of the correlative and multi-modality images. With XCT, cellular structures including the overall structure and intracellular organelles are visualized, while XRF imaging reveals the distribution of multiple chemical elements within the same cell. Our correlative method demonstrates the feasibility and broad applicability of using X-rays to understand cellular structures and the roles of chemical elements and related proteins in signaling and other biological processes.
Collapse
Affiliation(s)
- Zihan Lin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao Zhang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Purbasha Nandi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuewei Lin
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Liguo Wang
- Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Timothy Paape
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- U.S. Department of Agriculture's Agricultural Research Service at Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Yang Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
9
|
Hull JA, Lee C, Kim JK, Lim SW, Park J, Park S, Lee SJ, Park G, Eom I, Kim M, Hyun H, Combs JE, Andring JT, Lomelino C, Kim CU, McKenna R. XFEL structure of carbonic anhydrase II: a comparative study of XFEL, NMR, X-ray and neutron structures. Acta Crystallogr D Struct Biol 2024; 80:194-202. [PMID: 38411550 PMCID: PMC10910541 DOI: 10.1107/s2059798324000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.
Collapse
Affiliation(s)
- Joshua A. Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Lim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jacob E. Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
11
|
Caramello N, Royant A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr D Struct Biol 2024; 80:60-79. [PMID: 38265875 PMCID: PMC10836399 DOI: 10.1107/s2059798323011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.
Collapse
Affiliation(s)
- Nicolas Caramello
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
12
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Plana-Ruiz S, Gómez-Pérez A, Budayova-Spano M, Foley DL, Portillo-Serra J, Rauch E, Grivas E, Housset D, Das PP, Taheri ML, Nicolopoulos S, Ling WL. High-Resolution Electron Diffraction of Hydrated Protein Crystals at Room Temperature. ACS NANO 2023; 17:24802-24813. [PMID: 37890869 PMCID: PMC10753879 DOI: 10.1021/acsnano.3c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Structural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited. One main reason is the fragility of such crystals. Protein crystals can be easily damaged by mechanical stress, change in temperature, or buffer conditions as well as by electron irradiation. This work demonstrates a methodology to preserve these nanocrystals in their natural environment at room temperature for electron diffraction experiments as an alternative to existing cryogenic techniques. Lysozyme crystals in their crystallization solution are hermetically sealed via graphene-coated grids, and their radiation damage is minimized by employing a low-dose data collection strategy in combination with a hybrid-pixel direct electron detector. Diffraction patterns with reflections of up to 3 Å are obtained and successfully indexed using a template-matching algorithm. These results demonstrate the feasibility of in situ protein electron diffraction. The method described will also be applicable to structural studies of hydrated nanocrystals important in many research and technological developments.
Collapse
Affiliation(s)
- Sergi Plana-Ruiz
- NanoMegas
SRPL, Rue Emile Claus
49, Brussels 1050, Belgium
- Servei
de Recursos Científics i Tècnics, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | | | | - Daniel L. Foley
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Edgar Rauch
- SIMAP,
Grenoble INP, Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | | | | | | | - Mitra L. Taheri
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Wai Li Ling
- Université
Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
14
|
Smith N, Horswill AR, Wilson MA. X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566054. [PMID: 37986818 PMCID: PMC10659368 DOI: 10.1101/2023.11.07.566054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Alexander R. Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
15
|
Bjelčić M, Sigfridsson Clauss KGV, Aurelius O, Milas M, Nan J, Ursby T. Anaerobic fixed-target serial crystallography using sandwiched silicon nitride membranes. Acta Crystallogr D Struct Biol 2023; 79:1018-1025. [PMID: 37860963 PMCID: PMC10619425 DOI: 10.1107/s205979832300880x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
In recent years, the emergence of serial crystallography, initially pioneered at X-ray free-electron lasers (XFELs), has sparked a growing interest in collecting macromolecular crystallographic data at room temperature. Various fixed-target serial crystallography techniques have been developed, ranging from commercially available chips to in-house designs implemented at different synchrotron facilities. Nevertheless, there is currently no commercially available chip (known to the authors) specifically designed for the direct handling of oxygen-sensitive samples. This study presents a methodology employing silicon nitride chips arranged in a `sandwich' configuration, enabling reliable room-temperature data collection from oxygen-sensitive samples. The method involves the utilization of a custom-made 3D-printed assembling tool and a MX sample holder. To validate the effectiveness of the proposed method, deoxyhemoglobin and methemoglobin samples were investigated using the BioMAX X-ray macromolecular crystallography beamline, the Balder X-ray absorption spectroscopy beamline and UV-Vis absorption spectroscopy.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | | | - Oskar Aurelius
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
16
|
Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. SARS-CoV-2 proteins structural studies using synchrotron radiation. Biophys Rev 2023; 15:1185-1194. [PMID: 37974992 PMCID: PMC10643813 DOI: 10.1007/s12551-023-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
In the process of the development of structural biology, both the size and the complexity of the determined macromolecular structures have grown significantly. As a result, the range of application areas for the results of structural studies of biological macromolecules has expanded. Significant progress in the development of structural biology methods has been largely achieved through the use of synchrotron radiation. Modern sources of synchrotron radiation allow to conduct high-performance structural studies with high temporal and spatial resolution. Thus, modern techniques make it possible to obtain not only static structures, but also to study dynamic processes, which play a key role in understanding biological mechanisms. One of the key directions in the development of structural research is the drug design based on the structures of biomolecules. Synchrotron radiation offers insights into the three-dimensional time-resolved structure of individual viral proteins and their complexes at atomic resolution. The rapid and accurate determination of protein structures is crucial for understanding viral pathogenicity and designing targeted therapeutics. Through the application of experimental techniques, including X-ray crystallography and small-angle X-ray scattering (SAXS), it is possible to elucidate the structural details of SARS-CoV-2 virion containing 4 structural, 16 nonstructural proteins (nsp), and several accessory proteins. The most studied potential targets for vaccines and drugs are the structural spike (S) protein, which is responsible for entering the host cell, as well as nonstructural proteins essential for replication and transcription, such as main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp). This article provides a brief overview of structural analysis techniques, with focus on synchrotron radiation-based methods applied to the analysis of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Ivan Susloparov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
17
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
18
|
Pei X, Bhatt N, Wang H, Ando N, Meisburger SP. Introduction to diffuse scattering and data collection. Methods Enzymol 2023; 688:1-42. [PMID: 37748823 DOI: 10.1016/bs.mie.2023.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A long-standing goal in X-ray crystallography has been to extract information about the collective motions of proteins from diffuse scattering: the weak, textured signal that is found in the background of diffraction images. In the past few years, the field of macromolecular diffuse scattering has seen dramatic progress, and many of the past challenges in measurement and interpretation are now considered tractable. However, the concept of diffuse scattering is still new to many researchers, and a general set of procedures needed to collect a high-quality dataset has never been described in detail. Here, we provide the first guidelines for performing diffuse scattering experiments, which can be performed at any macromolecular crystallography beamline that supports room-temperature studies with a direct detector. We begin with a brief introduction to the theory of diffuse scattering and then walk the reader through the decision-making processes involved in preparing for and conducting a successful diffuse scattering experiment. Finally, we define quality metrics and describe ways to assess data quality both at the beamline and at home. Data obtained in this way can be processed independently by crystallographic software and diffuse scattering software to produce both a crystal structure, which represents the average atomic coordinates, and a three-dimensional diffuse scattering map that can then be interpreted in terms of models for protein motions.
Collapse
Affiliation(s)
- Xiaokun Pei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Neti Bhatt
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - Haoyue Wang
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States; Department of Physics, Cornell University, Ithaca, NY, United States; Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States.
| | - Steve P Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
19
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
20
|
Jousseaume T, Colin JF, Chandesris M, Lyonnard S, Tardif S. How Beam Damage Can Skew Synchrotron Operando Studies of Batteries. ACS ENERGY LETTERS 2023; 8:3323-3329. [PMID: 37588015 PMCID: PMC10426324 DOI: 10.1021/acsenergylett.3c00815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 08/18/2023]
Abstract
With the advent of high-brilliance synchrotron sources, the issue of beam damage on the samples deserves proper attention. It is especially true for operando studies in batteries, since the intense photon fluxes are commonly used to probe ever finer effects. Here we report on the causes and consequences of synchrotron X-ray beam damage in batteries, based on the case study of operando X-ray diffraction. We show that beam damage is caused by the mingled actions of dose and dose rate. The aftereffects can lie in a broad range, from mild modifications of the crystalline structure to artificial phase transitions, and can thus impede or bias the understanding of the mechanisms at play. We estimate the doses at which the different effects appear in two materials, suggesting that it could be expanded to other materials with the same technology. We also provide recommendations for the design of operando synchrotron experiments.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Tardif
- Univ.
Grenoble Alpes, CEA, IRIG, F-38000, Grenoble, France
| |
Collapse
|
21
|
Timmermann S, Anthuparambil ND, Girelli A, Begam N, Kowalski M, Retzbach S, Senft MD, Akhundzadeh MS, Poggemann HF, Moron M, Hiremath A, Gutmüller D, Dargasz M, Öztürk Ö, Paulus M, Westermeier F, Sprung M, Ragulskaya A, Zhang F, Schreiber F, Gutt C. X-ray driven and intrinsic dynamics in protein gels. Sci Rep 2023; 13:11048. [PMID: 37422480 PMCID: PMC10329714 DOI: 10.1038/s41598-023-38059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.
Collapse
Affiliation(s)
- Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| | - Nimmi Das Anthuparambil
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Marvin Kowalski
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Maximilian Darius Senft
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | | | - Marc Moron
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Michelle Dargasz
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| |
Collapse
|
22
|
de Sá Ribeiro F, Lima LMTR. Linking B-factor and temperature-induced conformational transition. Biophys Chem 2023; 298:107027. [PMID: 37172417 DOI: 10.1016/j.bpc.2023.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The crystallographic B-factor, also called temperature factor or Debye-Waller factor, has long been used as a surrogate for local protein flexibility. However, the use of the absolute B-factor as a probe for protein motion requires reproducible validation against conformational changes against chemical and physical variables. Here we report the investigation of the thermal dependence of the crystallographic B-factor and its correlation with conformational changes of the protein. We obtained the crystal protein structure coordinates and B-factors at high resolution (1.5 Å) over a broad temperature range (100 K to 325 K). The exponential thermal dependence of B-factor as a function of temperature was equal for both the diffraction intensity data (Wilson B-factor) and for all modeled atoms of the system (protein and non-protein atoms), with a thermal diffusion constant of about 0.0045 K-1, similar for all atoms. The extrapolated B-factor at zero Kelvin (or zero-point fluctuation) varies among the atoms, although with no apparent correlation with temperature-dependent protein conformational changes. These data suggest that the thermal vibration of the atom does not necessarily correlate with the conformational dynamics of the protein.
Collapse
Affiliation(s)
- Fernando de Sá Ribeiro
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Metrologia, Tecnologia e Qualidade (INMETRO), Duque de Caxias, RJ 25250-020, Brazil.
| |
Collapse
|
23
|
Ghosh S, Zorić D, Dahl P, Bjelčić M, Johannesson J, Sandelin E, Borjesson P, Björling A, Banacore A, Edlund P, Aurelius O, Milas M, Nan J, Shilova A, Gonzalez A, Mueller U, Brändén G, Neutze R. A simple goniometer-compatible flow cell for serial synchrotron X-ray crystallography. J Appl Crystallogr 2023; 56:449-460. [PMID: 37032973 PMCID: PMC10077854 DOI: 10.1107/s1600576723001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via light-weight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Å resolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX.
Collapse
Affiliation(s)
- Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Doris Zorić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Monika Bjelčić
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Per Borjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | | | - Analia Banacore
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Anastasya Shilova
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Uwe Mueller
- Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| |
Collapse
|
24
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
25
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
26
|
Sharma S, Ebrahim A, Keedy DA. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2023; 79:23-30. [PMID: 36598353 PMCID: PMC9813971 DOI: 10.1107/s2053230x22011645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Room-temperature X-ray crystallography provides unique insights into protein conformational heterogeneity, but obtaining sufficiently large protein crystals is a common hurdle. Serial synchrotron crystallography (SSX) helps to address this hurdle by allowing the use of many medium- to small-sized crystals. Here, a recently introduced serial sample-support chip system has been used to obtain the first SSX structure of a human phosphatase, specifically protein tyrosine phosphatase 1B (PTP1B) in the unliganded (apo) state. In previous apo room-temperature structures, the active site and allosteric sites adopted alternate conformations, including open and closed conformations of the active-site WPD loop and of a distal allosteric site. By contrast, in our SSX structure the active site is best fitted with a single conformation, but the distal allosteric site is best fitted with alternate conformations. This observation argues for additional nuance in interpreting the nature of allosteric coupling in this protein. Overall, our results illustrate the promise of serial methods for room-temperature crystallography, as well as future avant-garde crystallography experiments, for PTP1B and other proteins.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
27
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
28
|
Fernando NK, Bostrom HLB, Murray CA, Owen RL, Thompson AL, Dickerson JL, Garman EF, Cairns AB, Regoutz A. Variability in X-ray induced effects in [Rh(COD)Cl] 2 with changing experimental parameters. Phys Chem Chem Phys 2022; 24:28444-28456. [PMID: 36399064 PMCID: PMC7614095 DOI: 10.1039/d2cp03928a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.
Collapse
Affiliation(s)
- Nathalie K. Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hanna L. B. Bostrom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Claire A. Murray
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Amber L. Thompson
- Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Joshua L. Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrew B. Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, UK
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
29
|
Paredes-Mellone OA, Nielsen MH, Vinson J, Moua K, Skoien KD, Sokaras D, Willey TM. Investigating the electronic structure of high explosives with X-ray Raman spectroscopy. Sci Rep 2022; 12:19460. [PMID: 36376464 PMCID: PMC9663711 DOI: 10.1038/s41598-022-24066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
We investigate the sensitivity and potential of a synergistic experiment-theory X-ray Raman spectroscopy (XRS) methodology on revealing and following the static and dynamic electronic structure of high explosive molecular materials. We show that advanced ab-initio theoretical calculations accounting for the core-hole effect based on the Bethe-Salpeter Equation (BSE) approximation are critical for accurately predicting the shape and the energy position of the spectral features of C and N core-level spectra. Moreover, the incident X-ray dose typical XRS experiments require can induce, in certain unstable structures, a prominent radiation damage at room temperature. Upon developing a compatible cryostat module for enabling cryogenic temperatures ([Formula: see text] 10 K) we suppress the radiation damage and enable the acquisition of reliable experimental spectra in excellent agreement with the theory. Overall, we demonstrate the high sensitivity of the recently available state-of-the-art X-ray Raman spectroscopy capabilities in characterizing the electronic structure of high explosives. At the same time, the high accuracy of the theoretical approach may enable reliable identification of intermediate structures upon rapid chemical decomposition during detonation. Considering the increasing availability of X-ray free-electron lasers, such a combined experiment-theory approach paves the way for time-resolved dynamic studies of high explosives under detonation conditions.
Collapse
Affiliation(s)
| | - Michael H Nielsen
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94551, USA
| | - John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Konmeng Moua
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94551, USA
| | - K Dean Skoien
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA.
| | - Trevor M Willey
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94551, USA.
| |
Collapse
|
30
|
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, Oberthuer D. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCRJ 2022; 9:778-791. [PMID: 36381150 PMCID: PMC9634612 DOI: 10.1107/s2052252522010193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 05/22/2023]
Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.
Collapse
Affiliation(s)
- Kara A Zielinski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Prester
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lucrezia Catapano
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Olga Lorbeer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Eva Crosas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nadine Werner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Perbandt
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre of Cell and Molecular Biophysics, King’s College London, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova 35131, Italy
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
31
|
Reiser M, Girelli A, Ragulskaya A, Das S, Berkowicz S, Bin M, Ladd-Parada M, Filianina M, Poggemann HF, Begam N, Akhundzadeh MS, Timmermann S, Randolph L, Chushkin Y, Seydel T, Boesenberg U, Hallmann J, Möller J, Rodriguez-Fernandez A, Rosca R, Schaffer R, Scholz M, Shayduk R, Zozulya A, Madsen A, Schreiber F, Zhang F, Perakis F, Gutt C. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat Commun 2022; 13:5528. [PMID: 36130930 PMCID: PMC9490738 DOI: 10.1038/s41467-022-33154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy μs-1 in a time window up to 10 μs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.
Collapse
Affiliation(s)
- Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Hanna-Friederike Poggemann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.,Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Lisa Randolph
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Yuriy Chushkin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
| | - Ulrike Boesenberg
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Robert Rosca
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robert Schaffer
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Scholz
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Roman Shayduk
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexey Zozulya
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany.
| |
Collapse
|
32
|
Tandrup T, Muderspach SJ, Banerjee S, Santoni G, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Johansen KS, Meilleur F, Lo Leggio L. Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding. IUCRJ 2022; 9:666-681. [PMID: 36071795 PMCID: PMC9438499 DOI: 10.1107/s2052252522007175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti-acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 × 104 Gy, while the Cu+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa-coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θT. Thus, the θ2 and θ3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θT parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the θT increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.
Collapse
Affiliation(s)
- Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Gianluca Santoni
- ESRF, Structural Biology Group, 71 avenue des Martyrs, 38027 Grenoble cedex, France
| | - Johan Ø. Ipsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| |
Collapse
|
33
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front Chem 2022; 10:889203. [PMID: 36110139 PMCID: PMC9468540 DOI: 10.3389/fchem.2022.889203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
To understand the dynamic structure-function relationship of soft- and biomolecules, the determination of the three-dimensional (3D) structure of each individual molecule (nonaveraged structure) in its native state is sought-after. Cryo-electron tomography (cryo-ET) is a unique tool for imaging an individual object from a series of tilted views. However, due to radiation damage from the incident electron beam, the tolerable electron dose limits image contrast and the signal-to-noise ratio (SNR) of the data, preventing the 3D structure determination of individual molecules, especially at high-resolution. Although recently developed technologies and techniques, such as the direct electron detector, phase plate, and computational algorithms, can partially improve image contrast/SNR at the same electron dose, the high-resolution structure, such as tertiary structure of individual molecules, has not yet been resolved. Here, we review the cryo-electron microscopy (cryo-EM) and cryo-ET experimental parameters to discuss how these parameters affect the extent of radiation damage. This discussion can guide us in optimizing the experimental strategy to increase the imaging dose or improve image SNR without increasing the radiation damage. With a higher dose, a higher image contrast/SNR can be achieved, which is crucial for individual-molecule 3D structure. With 3D structures determined from an ensemble of individual molecules in different conformations, the molecular mechanism through their biochemical reactions, such as self-folding or synthesis, can be elucidated in a straightforward manner.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
34
|
Holmes S, Kirkwood HJ, Bean R, Giewekemeyer K, Martin AV, Hadian-Jazi M, Wiedorn MO, Oberthür D, Marman H, Adriano L, Al-Qudami N, Bajt S, Barák I, Bari S, Bielecki J, Brockhauser S, Coleman MA, Cruz-Mazo F, Danilevski C, Dörner K, Gañán-Calvo AM, Graceffa R, Fanghor H, Heymann M, Frank M, Kaukher A, Kim Y, Kobe B, Knoška J, Laurus T, Letrun R, Maia L, Messerschmidt M, Metz M, Michelat T, Mills G, Molodtsov S, Monteiro DCF, Morgan AJ, Münnich A, Peña Murillo GE, Previtali G, Round A, Sato T, Schubert R, Schulz J, Shelby M, Seuring C, Sellberg JA, Sikorski M, Silenzi A, Stern S, Sztuk-Dambietz J, Szuba J, Trebbin M, Vagovic P, Ve T, Weinhausen B, Wrona K, Xavier PL, Xu C, Yefanov O, Nugent KA, Chapman HN, Mancuso AP, Barty A, Abbey B, Darmanin C. Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers. Nat Commun 2022; 13:4708. [PMID: 35953469 PMCID: PMC9372077 DOI: 10.1038/s41467-022-32434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX. Free-electron lasers are capable of high repetition rates and it is assumed that protein crystals often do not survive the first X-ray pulse. Here the authors address these issues with a demonstration of multi-hit serial crystallography in which multiple FEL pulses interact with the sample without destroying it.
Collapse
Affiliation(s)
- Susannah Holmes
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Andrew V Martin
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Marjan Hadian-Jazi
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, 2234, Australia
| | - Max O Wiedorn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Hugh Marman
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Luigi Adriano
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Imrich Barák
- Institute of Molecular Biology, SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | | | - Mathew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Francisco Cruz-Mazo
- Dept. de Ingeniería Aeroespacial y Mecánica de Fluidos, ETSI, Universidad de Sevilla, 41092, Sevilla, Spain.,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | | | - Alfonso M Gañán-Calvo
- Dept. de Ingeniería Aeroespacial y Mecánica de Fluidos, ETSI, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Rita Graceffa
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Hans Fanghor
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 175, 22761, Hamburg, Germany.,University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Am Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Juraj Knoška
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Luis Maia
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marc Messerschmidt
- School of Molecular Science, Arizona State University, Tempe, AZ, 85281, USA
| | - Markus Metz
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Serguei Molodtsov
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger, Str. 23, 09599, Freiberg, Germany.,ITMO University, Kronverksky pr. 49, St. Petersburg, 197101, Russia
| | - Diana C F Monteiro
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany.,Hauptman-Woodward Medical Research Institute, 700 Ellicott St., Buffalo, NY, 14203, USA
| | - Andrew J Morgan
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Department of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Gisel E Peña Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | - Adam Round
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | | | | | - Megan Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Carolin Seuring
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Janusz Szuba
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Martin Trebbin
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger, Str. 23, 09599, Freiberg, Germany.,Department of Chemistry, State University of New York at Buffalo, 760 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | | | | | - Paul Lourdu Xavier
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 175, 22761, Hamburg, Germany
| | - Chen Xu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Keith A Nugent
- Department of Quantum Science and Technology, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg, 22761, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr 85, 22607, Hamburg, Germany
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Connie Darmanin
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
35
|
Huang CY, Aumonier S, Engilberge S, Eris D, Smith KML, Leonarski F, Wojdyla JA, Beale JH, Buntschu D, Pauluhn A, Sharpe ME, Metz A, Olieric V, Wang M. Probing ligand binding of endothiapepsin by `temperature-resolved' macromolecular crystallography. Acta Crystallogr D Struct Biol 2022; 78:964-974. [PMID: 35916221 PMCID: PMC9344481 DOI: 10.1107/s205979832200612x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Continuous developments in cryogenic X-ray crystallography have provided most of our knowledge of 3D protein structures, which has recently been further augmented by revolutionary advances in cryoEM. However, a single structural conformation identified at cryogenic temperatures may introduce a fictitious structure as a result of cryogenic cooling artefacts, limiting the overview of inherent protein physiological dynamics, which play a critical role in the biological functions of proteins. Here, a room-temperature X-ray crystallographic method using temperature as a trigger to record movie-like structural snapshots has been developed. The method has been used to show how TL00150, a 175.15 Da fragment, undergoes binding-mode changes in endothiapepsin. A surprising fragment-binding discrepancy was observed between the cryo-cooled and physiological temperature structures, and multiple binding poses and their interplay with DMSO were captured. The observations here open up new promising prospects for structure determination and interpretation at physiological temperatures with implications for structure-based drug discovery.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Sylvain Aumonier
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Kate Mary Louise Smith
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Justyna Aleksandra Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - John H. Beale
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Anuschka Pauluhn
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - May Elizabeth Sharpe
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Alexander Metz
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| |
Collapse
|
36
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Babnigg G, Sherrell D, Kim Y, Johnson JL, Nocek B, Tan K, Axford D, Li H, Bigelow L, Welk L, Endres M, Owen RL, Joachimiak A. Data collection from crystals grown in microfluidic droplets. Acta Crystallogr D Struct Biol 2022; 78:997-1009. [PMID: 35916224 PMCID: PMC9344473 DOI: 10.1107/s2059798322004661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.
Collapse
Affiliation(s)
- Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Darren Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Boguslaw Nocek
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Danny Axford
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Hui Li
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lance Bigelow
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lukas Welk
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Robin L. Owen
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
38
|
Liu J, Makowski L. Scanning x-ray microdiffraction: In situ molecular imaging of tissue and materials. Curr Opin Struct Biol 2022; 75:102421. [PMID: 35834949 PMCID: PMC11317818 DOI: 10.1016/j.sbi.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for the study of macromolecular structures in situ, providing information on the way molecular constituents are arranged and interact with their microenvironment. Acting as a bridge between high-resolution images of individual constituents and lower resolution microscopies that generate global views of material, scanning microdiffraction provides an approach to study the functioning of complex tissues across multiple length scales. Here, we discuss the methodology, summarize results from recent studies, and discuss the potential of the technique for future studies coordinated with other biophysical techniques.
Collapse
Affiliation(s)
- Jiliang Liu
- The European Radiation Synchrotron Facility (ESRF), Grenoble, France
| | - Lee Makowski
- Bioengineering Department, Northeastern University, Boston, MA, USA.
| |
Collapse
|
39
|
Martin-Garcia JM, Botha S, Hu H, Jernigan R, Castellví A, Lisova S, Gil F, Calisto B, Crespo I, Roy-Chowdhury S, Grieco A, Ketawala G, Weierstall U, Spence J, Fromme P, Zatsepin N, Boer DR, Carpena X. Serial macromolecular crystallography at ALBA Synchrotron Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:896-907. [PMID: 35511023 PMCID: PMC9070724 DOI: 10.1107/s1600577522002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The increase in successful adaptations of serial crystallography at synchrotron radiation sources continues. To date, the number of serial synchrotron crystallography (SSX) experiments has grown exponentially, with over 40 experiments reported so far. In this work, we report the first SSX experiments with viscous jets conducted at ALBA beamline BL13-XALOC. Small crystals (15-30 µm) of five soluble proteins (lysozyme, proteinase K, phycocyanin, insulin and α-spectrin-SH3 domain) were suspended in lipidic cubic phase (LCP) and delivered to the X-ray beam with a high-viscosity injector developed at Arizona State University. Complete data sets were collected from all proteins and their high-resolution structures determined. The high quality of the diffraction data collected from all five samples, and the lack of specific radiation damage in the structures obtained in this study, confirm that the current capabilities at the beamline enables atomic resolution determination of protein structures from microcrystals as small as 15 µm using viscous jets at room temperature. Thus, BL13-XALOC can provide a feasible alternative to X-ray free-electron lasers when determining snapshots of macromolecular structures.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Albert Castellví
- Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Fernando Gil
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Isidro Crespo
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| | - Shatabdi Roy-Chowdhury
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain
| | - Gihan Ketawala
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - John Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
- ARC Centre of Excellence in Advance Molecular Physics, La Trobe Institute for Molecular ScienceImaging, Department of Chemistry and Physics, La Trobe University, Melbourne, Australia
| | | | - Xavi Carpena
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
40
|
Shelley KL, Garman EF. Quantifying and comparing radiation damage in the Protein Data Bank. Nat Commun 2022; 13:1314. [PMID: 35288575 PMCID: PMC8921271 DOI: 10.1038/s41467-022-28934-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Radiation damage remains one of the major bottlenecks to accurate structure solution in protein crystallography. It can induce structural and chemical changes in protein crystals, and is hence an important consideration when assessing the quality and biological veracity of crystal structures in repositories like the Protein Data Bank (PDB). However, detection of radiation damage artefacts has traditionally proved very challenging. To address this, here we introduce the Bnet metric. Bnet summarises in a single value the extent of damage suffered by a crystal structure by comparing the B-factor values of damage-prone and non-damage-prone atoms in a similar local environment. After validating that Bnet successfully detects damage in 23 different crystal structures previously characterised as damaged, we calculate Bnet values for 93,978 PDB crystal structures. Our metric highlights a range of damage features, many of which would remain unidentified by the other summary statistics typically calculated for PDB structures.
Collapse
Affiliation(s)
- Kathryn L Shelley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
41
|
Chaussavoine I, Isabet T, Lener R, Montaville P, Vasireddi R, Chavas LMG. Implementation of wedged-serial protein crystallography at PROXIMA-1. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:439-446. [PMID: 35254307 PMCID: PMC8900848 DOI: 10.1107/s1600577521013242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
An approach for serial crystallography experiments based on wedged-data collection is described. This is an alternative method for recording in situ X-ray diffraction data on crystalline samples efficiently loaded in an X-ray compatible microfluidic chip. Proper handling of the microfluidic chip places crystalline samples at geometrically known positions with respect to the focused X-ray interaction area for serial data collection of small wedges. The integration of this strategy takes advantage of the greatly modular sample environment available on the endstation, which allows access to both in situ and more classical cryo-crystallography with minimum time loss. The method represents another optional data collection approach that adds up to the already large set of methods made available to users. Coupled with the advances in processing serial crystallography data, the wedged-data collection strategy proves highly efficient in minimizing the amount of required sample crystals for recording a complete dataset. From the advances in microfluidic technology presented here, high-throughput room-temperature crystallography experiments may become routine and should be easily extended to industrial use.
Collapse
Affiliation(s)
| | | | - Robin Lener
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
42
|
Formation of Co-O bonds and reversal of thermal annealing effects induced by X-ray irradiation in (Y, Co)-codoped CeO 2 nanocrystals. Sci Rep 2022; 12:1578. [PMID: 35091660 PMCID: PMC8799635 DOI: 10.1038/s41598-022-05691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
We report an unconventional effect of synchrotron X-ray irradiation in which Co–O bonds in thermally annealed (Y, Co)-codoped CeO2 nanocrystal samples were formed due to, instead of broken by, X-ray irradiation. Our experimental data indicate that escaping oxygen atoms from X-ray-broken Ce–O bonds may be captured by Co dopant atoms to form additional Co–O bonds. Consequently, the Co dopant atoms were pumped by X-rays from the energetically-favored thermally-stable Co-O4 square-planar structure to the metastable octahedral Co-O6 environment, practically a reversal of thermal annealing effects in (Y, Co)-codoped CeO2 nanocrystals. The band gap of doped CeO2 with Co dopant in the Co-O6 structure was previously found to be 1.61 eV higher than that with Co in the Co-O4 environment. Therefore, X-ray irradiation can work with thermal annealing in opposing directions to fine tune and optimize the band gap of the material for specific technological applications.
Collapse
|
43
|
Prangé T, Carpentier P, Dhaussy AC, van der Linden P, Girard E, Colloc'h N. Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization. Acta Crystallogr D Struct Biol 2022; 78:162-173. [DOI: 10.1107/s2059798321012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein–ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.
Collapse
|
44
|
Nam KH. Beef tallow injection matrix for serial crystallography. Sci Rep 2022; 12:694. [PMID: 35027663 PMCID: PMC8758675 DOI: 10.1038/s41598-021-04714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Serial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea. .,POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
45
|
Destro R, Barzaghi M, Soave R, Roversi P, Lo Presti L. Accurate experimental characterization of the labile N–Cl bond in N-chloro- N′-( p-fluorophenyl)-benzamidine crystal at 17.5 K. CrystEngComm 2022. [DOI: 10.1039/d2ce00957a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Very low temperature can preserve the photolabile N–Cl bond in a N-chloro-N-benzamidine derivative long enough to carry on an accurate experimental X-ray charge density study.
Collapse
Affiliation(s)
- Riccardo Destro
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy
| | - Mario Barzaghi
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Raffaella Soave
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze E Tecnologie Chimiche “Giulio Natta” (SCITEC), Via Golgi 19, 20133 Milano, Italy
| | - Pietro Roversi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia e Biotecnologia Agraria (IBBA), Via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, UK
| | - Leonardo Lo Presti
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Frascati, Italy
| |
Collapse
|
46
|
Schulz EC, Yorke BA, Pearson AR, Mehrabi P. Best practices for time-resolved serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2022; 78:14-29. [PMID: 34981758 PMCID: PMC8725164 DOI: 10.1107/s2059798321011621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.
Collapse
Affiliation(s)
- Eike C. Schulz
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Briony A. Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Arwen R. Pearson
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
47
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
48
|
Stachowski TR, Snell ME, Snell EH. A SAXS-based approach to rationally evaluate radical scavengers - toward eliminating radiation damage in solution and crystallographic studies. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1309-1320. [PMID: 34475280 PMCID: PMC8415334 DOI: 10.1107/s1600577521004045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/15/2021] [Indexed: 05/30/2023]
Abstract
X-ray-based techniques are a powerful tool in structural biology but the radiation-induced chemistry that results can be detrimental and may mask an accurate structural understanding. In the crystallographic case, cryocooling has been employed as a successful mitigation strategy but also has its limitations including the trapping of non-biological structural states. Crystallographic and solution studies performed at physiological temperatures can reveal otherwise hidden but relevant conformations, but are limited by their increased susceptibility to radiation damage. In this case, chemical additives that scavenge the species generated by radiation can mitigate damage but are not always successful and the mechanisms are often unclear. Using a protein designed to undergo a large-scale structural change from breakage of a disulfide bond, radiation damage can be monitored with small-angle X-ray scattering. Using this, we have quantitatively evaluated how three scavengers commonly used in crystallographic experiments - sodium nitrate, cysteine, and ascorbic acid - perform in solution at 10°C. Sodium nitrate was the most effective scavenger and completely inhibited fragmentation of the disulfide bond at a lower concentration (500 µM) compared with cysteine (∼5 mM) while ascorbic acid performed best at 5 mM but could only reduce fragmentation by ∼75% after a total accumulated dose of 792 Gy. The relative effectiveness of each scavenger matches their reported affinities for solvated electrons. Saturating concentrations of each scavenger shifted fragmentation from first order to a zeroth-order process, perhaps indicating the direct contribution of photoabsorption. The SAXS-based method can detect damage at X-ray doses far lower than those accessible crystallographically, thereby providing a detailed picture of scavenger processes. The solution results are also in close agreement with what is known about scavenger performance and mechanism in a crystallographic setting and suggest that a link can be made between the damage phenomenon in the two scenarios. Therefore, our engineered approach might provide a platform for more systematic and comprehensive screening of radioprotectants that can directly inform mitigation strategies for both solution and crystallographic experiments, while also clarifying fundamental radiation damage mechanisms.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St, Buffalo, NY 14203, USA
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA
| | - Mary E. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University at New York at Buffalo, 700 Ellicott St, Buffalo, NY 14203, USA
| |
Collapse
|
49
|
Garman EF, Weik M. Radiation damage to biological samples: still a pertinent issue. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1278-1283. [PMID: 34475277 PMCID: PMC8415327 DOI: 10.1107/s1600577521008845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
50
|
Kristensen LG, Holton JM, Rad B, Chen Y, Petzold CJ, Gupta S, Ralston CY. Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1333-1342. [PMID: 34475282 PMCID: PMC8415330 DOI: 10.1107/s1600577521004744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|