1
|
Yuan H, Mitchell CW, Ferenbach AT, Bonati MT, Feresin A, Benke PJ, Tan QKG, van Aalten DMF. Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants. Stem Cell Reports 2024:102380. [PMID: 39706180 DOI: 10.1016/j.stemcr.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants. Here, we develop a double-fluorescence strategy in mouse embryonic stem cells to measure disruption of O-GlcNAc homeostasis by quantifying the effects of variants on endogenous OGT expression. OGT-CDG variants generally elicited a lower feedback response than wild-type and Genome Aggregation Database (gnomAD) OGT variants. This approach was then used to dissect new putative OGT-CDG variants from pathogenic background variants in other disease-associated genes. Our work enables the prediction of pathogenicity for rapidly emerging de novo OGT-CDG variants and points to reduced disruption of O-GlcNAc homeostasis as a common mechanism underpinning OGT-CDG.
Collapse
Affiliation(s)
- Huijie Yuan
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Conor W Mitchell
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrew T Ferenbach
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Agnese Feresin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Queenie K G Tan
- Department of Clinical Genomics, Mayo Clinic, Rochester, NY, USA
| | - Daan M F van Aalten
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Czajewski I, Swain B, Xu J, McDowall L, Ferenbach AT, van Aalten DMF. Rescuable sleep and synaptogenesis phenotypes in a Drosophila model of O-GlcNAc transferase intellectual disability. eLife 2024; 13:e90376. [PMID: 39535175 PMCID: PMC11623933 DOI: 10.7554/elife.90376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.
Collapse
Affiliation(s)
- Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Bijayalaxmi Swain
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Jiawei Xu
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Laurin McDowall
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Andrew T Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Daan MF van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| |
Collapse
|
4
|
Wang Y, He Y, You Q, Wang L. Design of bifunctional molecules to accelerate post-translational modifications: achievements and challenges. Drug Discov Today 2024; 29:104194. [PMID: 39343161 DOI: 10.1016/j.drudis.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Post-translational modifications (PTMs) of proteins are crucial for regulating biological processes and their dysregulation is linked to various diseases, highlighting PTM regulation as a significant target for drug development. Traditional drug targets often interact with multiple proteins, resulting in lower selectivity and inevitable adverse effects, which limits their clinical applicability. Recent advancements in bifunctional molecules, such as proteolysis-targeting chimeras (PROTACs), have shown promise in targeting PTMs precisely. However, regulatory mechanisms for many of the >600 known PTMs remain underexplored. This review examines current progress and challenges in designing bifunctional molecules for PTM regulation, focusing on effector selection and ligand design strategies, aiming to propel the utilization and advancement of bifunctional molecules to the forefront of PTM research.
Collapse
Affiliation(s)
- Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Bell M, Kane MS, Ouyang X, Young ME, Jegga AG, Chatham JC, Darley-Usmar V, Zhang J. Acute increase of protein O-GlcNAcylation in mice leads to transcriptome changes in the brain opposite to what is observed in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613769. [PMID: 39345543 PMCID: PMC11429956 DOI: 10.1101/2024.09.19.613769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) is explored as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the mechanistic path of using OGA inhibition to treat AD. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using OGA inhibitor Thiamet G (TG), on normal mouse brains. We hypothesized that the transcritome signature in respones to TG treatment provides a comprehensive view of the effect of OGA inhibition. We sacrificed the mice and dissected their brains after 3 hours of saline or 50 mg/kg TG treatment, and then performed mRNA sequencing using NovaSeq PE 150 (n=5 each group). We identified 1,234 significant differentially expressed genes with TG versus saline treatment. Functional enrichment analysis of the upregulated genes identified several upregulated pathways, including genes normally down in AD. Among the downregulated pathways were the cell adhesion pathway as well as genes normally up in AD and aging. When comparing acute to chronic TG treatment, protein autophosphorylation and kinase activity pathways were upregulated, whereas cell adhesion and astrocyte markers were downregulated in both datasets. Interestingly, mitochondrial genes and genes normally down in AD were up in acute treatment and down in chronic treatment. Data from this analysis will enable the evaluation of the mechanisms underlying the potential benefits of OGA inhibition in the treatment of AD. In particular, although OGA inhibitors are promising to treat AD, their downstream chronic effects related to bioenergetics may be a limiting factor. Abstract Figure
Collapse
|
6
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
7
|
Murray M, Davidson L, Ferenbach AT, Lefeber D, van Aalten DMF. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Mol Genet Metab 2024; 142:108492. [PMID: 38759397 DOI: 10.1016/j.ymgme.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.
Collapse
Affiliation(s)
- Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark
| | - Dirk Lefeber
- Department of Neurology, Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NL, the Netherlands
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark.
| |
Collapse
|
8
|
Yu H, Liu D, Zhang Y, Tang R, Fan X, Mao S, Lv L, Chen F, Qin H, Zhang Z, van Aalten DMF, Yang B, Yuan K. Tissue-specific O-GlcNAcylation profiling identifies substrates in translational machinery in Drosophila mushroom body contributing to olfactory learning. eLife 2024; 13:e91269. [PMID: 38619103 PMCID: PMC11018347 DOI: 10.7554/elife.91269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Dandan Liu
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Yaowen Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Xunan Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan UniversityChangshaChina
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Daan MF van Aalten
- Department of Molecular Biology and Genetics, University of AarhusAarhusDenmark
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
9
|
Authier F, Ondruskova N, Ferenbach AT, McNeilly AD, van Aalten DMF. Neurodevelopmental defects in a mouse model of O-GlcNAc transferase intellectual disability. Dis Model Mech 2024; 17:dmm050671. [PMID: 38566589 PMCID: PMC11095632 DOI: 10.1242/dmm.050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.
Collapse
Affiliation(s)
- Florence Authier
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 128 08 Praha 2, Czech Republic
| | - Andrew T. Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Alison D. McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Daan M. F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Ayodele AO, Udosen B, Oluwagbemi OO, Oladipo EK, Omotuyi I, Isewon I, Nash O, Soremekun O, Fatumo S. An in-silico analysis of OGT gene association with diabetes mellitus. BMC Res Notes 2024; 17:89. [PMID: 38539217 PMCID: PMC10976716 DOI: 10.1186/s13104-024-06744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
O-GlcNAcylation is a nutrient-sensing post-translational modification process. This cycling process involves two primary proteins: the O-linked N-acetylglucosamine transferase (OGT) catalysing the addition, and the glycoside hydrolase OGA (O-GlcNAcase) catalysing the removal of the O-GlCNAc moiety on nucleocytoplasmic proteins. This process is necessary for various critical cellular functions. The O-linked N-acetylglucosamine transferase (OGT) gene produces the OGT protein. Several studies have shown the overexpression of this protein to have biological implications in metabolic diseases like cancer and diabetes mellitus (DM). This study retrieved 159 SNPs with clinical significance from the SNPs database. We probed the functional effects, stability profile, and evolutionary conservation of these to determine their fit for this research. We then identified 7 SNPs (G103R, N196K, Y228H, R250C, G341V, L367F, and C845S) with predicted deleterious effects across the four tools used (PhD-SNPs, SNPs&Go, PROVEAN, and PolyPhen2). Proceeding with this, we used ROBETTA, a homology modelling tool, to model the proteins with these point mutations and carried out a structural bioinformatics method- molecular docking- using the Glide model of the Schrodinger Maestro suite. We used a previously reported inhibitor of OGT, OSMI-1, as the ligand for these mutated protein models. As a result, very good binding affinities and interactions were observed between this ligand and the active site residues within 4Å of OGT. We conclude that these mutation points may be used for further downstream analysis as drug targets for treating diabetes mellitus.
Collapse
Affiliation(s)
- Abigail O Ayodele
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Brenda Udosen
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Olugbenga O Oluwagbemi
- Department of Computer Science and Information Technology, Faculty of Natural and Applied Sciences, Sol Plaatje University, 8301, Kimberley, South Africa
- Department of Mathematical Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Elijah K Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, 232104, Ede, Nigeria
- Genomics Unit, Helix Biogen Institute, 210214, Ogbomoso, Nigeria
| | - Idowu Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
- Molecular Biology and Molecular Simulation Center (Mols&Sims), Ado Ekiti, Nigeria
| | - Itunuoluwa Isewon
- Computer and Information Sciences Department, Covenant University, Ota, Ogun State, Nigeria
| | - Oyekanmi Nash
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Segun Fatumo
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria.
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda.
| |
Collapse
|
11
|
Yadav DK, Chang AC, Grooms NWF, Chung SH, Gabel CV. O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans. eLife 2024; 13:e86478. [PMID: 38334260 PMCID: PMC10857789 DOI: 10.7554/elife.86478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.
Collapse
Affiliation(s)
- Dilip Kumar Yadav
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
| | - Andrew C Chang
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
| | - Noa WF Grooms
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Samuel H Chung
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Christopher V Gabel
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
- Neurophotonics Center, Boston UniversityBostonUnited States
| |
Collapse
|
12
|
Zhang Y, Yu H, Wang D, Lei X, Meng Y, Zhang N, Chen F, Lv L, Pan Q, Qin H, Zhang Z, van Aalten DMF, Yuan K. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis. J Genet Genomics 2023; 50:948-959. [PMID: 37286164 DOI: 10.1016/j.jgg.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.
Collapse
Affiliation(s)
- Yaowen Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haibin Yu
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dandan Wang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lei
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yang Meng
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Lv
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhuohua Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daan M F van Aalten
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Lu P, Liu Y, He M, Cao T, Yang M, Qi S, Yu H, Gao H. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Nat Commun 2023; 14:6952. [PMID: 37907462 PMCID: PMC10618255 DOI: 10.1038/s41467-023-42427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
O-GlcNAcylation is a conserved post-translational modification that attaches N-acetyl glucosamine (GlcNAc) to myriad cellular proteins. In response to nutritional and hormonal signals, O-GlcNAcylation regulates diverse cellular processes by modulating the stability, structure, and function of target proteins. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of cancer, diabetes, and neurodegeneration. A single pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyzes the addition and removal of O-GlcNAc on over 3,000 proteins in the human proteome. However, how OGT selects its native substrates and maintains the homeostatic control of O-GlcNAcylation of so many substrates against OGA is not fully understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of human OGT and the OGT-OGA complex. Our studies reveal that OGT forms a functionally important scissor-shaped dimer. Within the OGT-OGA complex structure, a long flexible OGA segment occupies the extended substrate-binding groove of OGT and positions a serine for O-GlcNAcylation, thus preventing OGT from modifying other substrates. Conversely, OGT disrupts the functional dimerization of OGA and occludes its active site, resulting in the blocking of access by other substrates. This mutual inhibition between OGT and OGA may limit the futile O-GlcNAcylation cycles and help to maintain O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yusong Liu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Maozhou He
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ting Cao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Mengquan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shutao Qi
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hongtao Yu
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Haishan Gao
- New Cornerstone Science Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Zhang J, Wei K, Qu W, Wang M, Zhu Q, Dong X, Huang X, Yi W, Xu S, Li X. Ogt Deficiency Induces Abnormal Cerebellar Function and Behavioral Deficits of Adult Mice through Modulating RhoA/ROCK Signaling. J Neurosci 2023; 43:4559-4579. [PMID: 37225434 PMCID: PMC10286951 DOI: 10.1523/jneurosci.1962-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.
Collapse
Affiliation(s)
- Jinyu Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kaiyan Wei
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Xiaoxue Dong
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
15
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Liu F, Li S, Zhao X, Xue S, Li H, Yang G, Li Y, Wu Y, Zhu L, Chen L, Wu H. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants (Basel) 2023; 12:antiox12040806. [PMID: 37107182 PMCID: PMC10135177 DOI: 10.3390/antiox12040806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.
Collapse
|
17
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
18
|
Wang Y, Zhang Z, Liu X, Chen N, Zhao Y, Wang C. Molecular dynamic simulations identifying the mechanism of holoenzyme formation by O-GlcNAc transferase and active p38α. Phys Chem Chem Phys 2023; 25:8090-8102. [PMID: 36876722 DOI: 10.1039/d2cp05968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
O-N-Acetylglucosamine transferase (OGT) can catalyze the O-GlcNAc modification of thousands of proteins. The holoenzyme formation of OGT and adaptor protein is the precondition for further recognition and glycosylation of the target protein, while the corresponding mechanism is still open. Here, static and dynamic schemes based on statistics can successfully screen the feasible identifying, approaching, and binding mechanism of OGT and its typical adaptor protein p38α. The most favorable interface, energy contribution of hotspots, and conformational changes of fragments were discovered. The hydrogen bond interactions were verified as the main driving force for the whole process. The distinct characteristic of active and inactive p38α is explored and demonstrates that the phosphorylated tyrosine and threonine will form strong ion-pair interactions with Lys714, playing a key role in the dynamic identification stage. Multiple method combinations from different points of view may be helpful for exploring other systems of the protein-protein interactions.
Collapse
Affiliation(s)
- Yu Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Xiaoyuan Liu
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
19
|
Balsollier C, Tomašič T, Yasini D, Bijkerk S, Anderluh M, Pieters RJ. Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors. ChemMedChem 2023; 18:e202300001. [PMID: 36752318 DOI: 10.1002/cmdc.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Daniel Yasini
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
20
|
Huang Y, Wang J, Liu F, Wang C, Xiao Z, Zhou W. Liuwei Dihuang formula ameliorates chronic stress-induced emotional and cognitive impairments in mice by elevating hippocampal O-GlcNAc modification. Front Neurosci 2023; 17:1134176. [PMID: 37152609 PMCID: PMC10157057 DOI: 10.3389/fnins.2023.1134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
A substantial body of evidence has indicated that intracerebral O-linked N-acetyl-β-D-glucosamine (O-GlcNAc), a generalized post-translational modification, was emerging as an effective regulator of stress-induced emotional and cognitive impairments. Our previous studies showed that the Liuwei Dihuang formula (LW) significantly improved the emotional and cognitive dysfunctions in various types of stress mouse models. In the current study, we sought to determine the effects of LW on intracerebral O-GlcNAc levels in chronic unpredictable mild stress (CUMS) mice. The dynamic behavioral tests showed that anxiety- and depression-like behaviors and object recognition memory of CUMS mice were improved in a dose-dependent manner after LW treatment. Moreover, linear discriminate analysis (LEfSe) of genera abundance revealed a significant difference in microbiome among the study groups. LW showed a great impact on the relative abundance of these gut microbiota in CUMS mice and reinstated them to control mouse levels. We found that LW potentially altered the Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis process, and the abundance of O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) in CUMS mice, which was inferred using PICRUSt analysis. We further verified advantageous changes in hippocampal O-GlcNAc modification of CUMS mice following LW administration, as well as changes in the levels of OGA and OGT. In summary, LW intervention increased the levels of hippocampal O-GlcNAc modification and ameliorated the emotional and cognitive impairments induced by chronic stress in CUMS mice. LW therefore could be considered a potential prophylactic and therapeutic agent for chronic stress.
Collapse
Affiliation(s)
- Yan Huang
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Zhiyong Xiao,
| | - Wenxia Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
21
|
Cui Y, Cruz M, Palatnik A, Olivier-Van Stichelen S. O-GlcNAc transferase contributes to sex-specific placental deregulation in gestational diabetes. Placenta 2023; 131:1-12. [PMID: 36442303 PMCID: PMC9839643 DOI: 10.1016/j.placenta.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Gestational diabetes (GDM) is traditionally thought to emerge from placental endocrine dysregulations, but recent evidence suggests that fetal sex can also impact GDM development. Understanding the molecular mechanisms through which sex modulates placenta physiology can help identify novel molecular targets for future clinical care. Thus, we investigated the nutrient-sensing O-GlcNAc pathway as a potential mediator of sex-specific placenta dysfunction in GDM. METHODS Expression levels of O-GlcNAc enzymes were measured in male and female (n = 9+/gender) human placentas based on the maternal diagnosis of GDM. We then simulated the observed differences in both BeWo cells and human syncytiotrophoblasts primary cells (SCT) from male and female origins (n = 6/gender). RNA sequencing and targeted qPCR were performed to characterize the subsequent changes in the placenta transcriptome related to gestational diabetes. RESULTS O-GlcNAc transferase (OGT) expression was significantly reduced only in male placenta collected from mothers with GDM compared to healthy controls. Similar downregulation of OGT in trophoblast-like BeWo male cells demonstrated significant gene expression deregulations that overlapped with known GDM-related genes. Notably, placental growth hormone (GH) production was significantly elevated, while compensatory factors against GH-related insulin resistance were diminished. Inflammatory and immunologic factors with toxic effects on pancreatic β cell mass were also increased, altogether leaning toward a decompensatory diabetic profile. Similar changes in hormone expression were confirmed in male human primary SCTs transfected with siOGT. However, down-regulating OGT in female primary SCTs did not impact hormone production. CONCLUSION Our study demonstrated the significant deregulation of placental OGT levels in mothers with GDM carrying a male fetus. When simulated in vitro, such deregulation impacted hormonal production in BeWo trophoblast cells and primary SCTs purified from male placentas. Interestingly, female placentas were only modestly impacted by OGT downregulation, suggesting that the sex-specific presentation observed in gestational diabetes could be related to O-GlcNAc-mediated regulation of placental hormone production.
Collapse
Affiliation(s)
- Yiwen Cui
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meredith Cruz
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anna Palatnik
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
22
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
23
|
Burns MWN, Kohler JJ. Engineering Glyco‐Enzymes for Substrate Identification and Targeting. Isr J Chem 2022. [DOI: 10.1002/ijch.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mary W. N. Burns
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| | - Jennifer J. Kohler
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
24
|
Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, Lauzier B. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol 2022; 151:106289. [PMID: 36031106 DOI: 10.1016/j.biocel.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is a post-translational modification which affects approximately 5000 human proteins. Its involvement has been shown in many if not all biological processes. Variations in O-GlcNAcylation levels can be associated with the development of diseases. Deciphering the role of O-GlcNAcylation is an important issue to (i) understand its involvement in pathophysiological development and (ii) develop new therapeutic strategies to modulate O-GlcNAc levels. Over the past 30 years, despite the development of several approaches, knowledge of its role and regulation have remained limited. This review proposes an overview of the currently available tools to study O-GlcNAcylation and identify O-GlcNAcylated proteins. Briefly, we discuss pharmacological modulators, methods to study O-GlcNAcylation levels and approaches for O-GlcNAcylomic profiling. This review aims to contribute to a better understanding of the methods used to study O-GlcNAcylation and to promote efforts in the development of new strategies to explore this promising modification.
Collapse
Affiliation(s)
- Thomas Dupas
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
| | - Charlotte Betus
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Thomas Pelé
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Persello
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
25
|
O-GlcNAc Modification and Its Role in Diabetic Retinopathy. Metabolites 2022; 12:metabo12080725. [PMID: 36005597 PMCID: PMC9415332 DOI: 10.3390/metabo12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and has emerged as a significant health problem. Currently, there are no effective therapeutic strategies owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the mechanism of molecular pathogenesis requires further elucidation to identify potential targets that can aid in the prevention of DR. As a type of protein translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc modification might represent a novel alternative therapeutic target for DR in the future.
Collapse
|
26
|
Muniz de Queiroz R, Moon SH, Prives C. O-GlcNAc tranferase regulates p21 protein levels and cell proliferation through the FoxM1-Skp2 axis in a p53-independent manner. J Biol Chem 2022; 298:102289. [PMID: 35868563 PMCID: PMC9418910 DOI: 10.1016/j.jbc.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
The protein product of the CDKN1A gene, p21, has been extensively characterized as a negative regulator of the cell cycle. Nevertheless, it is clear that p21 has manifold complex and context-dependent roles that can be either tumor suppressive or oncogenic. Most well studied as a transcriptional target of the p53 tumor suppressor protein, there are other means by which p21 levels can be regulated. In this study, we show that pharmacological inhibition or siRNA-mediated reduction of O-GlcNAc transferase (OGT), the enzyme responsible for glycosylation of intracellular proteins, increases expression of p21 in both p53-dependent and p53-independent manners in nontransformed and cancer cells. In cells harboring WT p53, we demonstrate that inhibition of OGT leads to p53-mediated transactivation of CDKN1A, while in cells that do not express p53, inhibiting OGT leads to increased p21 protein stabilization. p21 is normally degraded by the ubiquitin-proteasome system following ubiquitination by, among others, the E3 ligase Skp-Cullin-F-box complex; however, in this case, we show that blocking OGT causes impairment of the Skp-Cullin-F-box ubiquitin complex as a result of disruption of the FoxM1 transcription factor–mediated induction of Skp2 expression. In either setting, we conclude that p21 levels induced by OGT inhibition correlate with cell cycle arrest and decreased cancer cell proliferation.
Collapse
Affiliation(s)
| | - Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Mitchell CW, Czajewski I, van Aalten DM. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J Biol Chem 2022; 298:102276. [PMID: 35863433 PMCID: PMC9428853 DOI: 10.1016/j.jbc.2022.102276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic posttranslational modification that is catalyzed by the enzyme O-GlcNAc transferase (OGT) and is essential for neurodevelopment and postnatal neuronal function. Missense mutations in OGT segregate with a novel X-linked intellectual disability syndrome, the OGT congenital disorder of glycosylation (OGT-CDG). One hypothesis for the etiology of OGT-CDG is that loss of OGT activity leads to hypo-O-GlcNAcylation of as yet unidentified, specific neuronal proteins, affecting essential embryonic, and postnatal neurodevelopmental processes; however, the identity of these O-GlcNAcylated proteins is not known. Here, we used bioinformatic techniques to integrate sequence conservation, structural data, clinical data, and the available literature to identify 22 candidate proteins that convey OGT-CDG. We found using gene ontology and PANTHER database data that these candidate proteins are involved in diverse processes including Ras/MAPK signaling, translational repression, cytoskeletal dynamics, and chromatin remodeling. We also identify pathogenic missense variants at O-GlcNAcylation sites that segregate with intellectual disability. This work establishes a preliminary platform for the mechanistic dissection of the links between protein O-GlcNAcylation and neurodevelopment in OGT-CDG.
Collapse
Affiliation(s)
- Conor W. Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacy Czajewski
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M.F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom,For correspondence: Daan M. F. van Aalten
| |
Collapse
|
28
|
Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet 2022; 18:e1010159. [PMID: 35500025 PMCID: PMC9140282 DOI: 10.1371/journal.pgen.1010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/27/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.
Collapse
Affiliation(s)
- Michaela Fenckova
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ignacy Czajewski
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura E. R. Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew T. Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. F. van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Parween S, Alawathugoda TT, Prabakaran AD, Dheen ST, Morse RH, Emerald BS, Ansari SA. Nutrient sensitive protein O-GlcNAcylation modulates the transcriptome through epigenetic mechanisms during embryonic neurogenesis. Life Sci Alliance 2022; 5:5/8/e202201385. [PMID: 35470239 PMCID: PMC9039347 DOI: 10.26508/lsa.202201385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic, nutrient-sensitive mono-glycosylation deposited on numerous nucleo-cytoplasmic and mitochondrial proteins, including transcription factors, epigenetic regulators, and histones. However, the role of protein O-GlcNAcylation on epigenome regulation in response to nutrient perturbations during development is not well understood. Herein we recapitulated early human embryonic neurogenesis in cell culture and found that pharmacological up-regulation of O-GlcNAc levels during human embryonic stem cells' neuronal differentiation leads to up-regulation of key neurogenic transcription factor genes. This transcriptional de-repression is associated with reduced H3K27me3 and increased H3K4me3 levels on the promoters of these genes, perturbing promoter bivalency possibly through increased EZH2-Thr311 phosphorylation. Elevated O-GlcNAc levels also lead to increased Pol II-Ser5 phosphorylation and affect H2BS112O-GlcNAc and H2BK120Ub1 on promoters. Using an in vivo rat model of maternal hyperglycemia, we show similarly elevated O-GlcNAc levels and epigenetic dysregulations in the developing embryo brains because of hyperglycemia, whereas pharmacological inhibition of O-GlcNAc transferase (OGT) restored these molecular changes. Together, our results demonstrate O-GlcNAc mediated sensitivity of chromatin to nutrient status, and indicate how metabolic perturbations could affect gene expression during neurodevelopment.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thilina T Alawathugoda
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Randall H Morse
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates .,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
30
|
Bisnett BJ, Condon BM, Linhart NA, Lamb CH, Huynh DT, Bai J, Smith TJ, Hu J, Georgiou GR, Boyce M. Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation. Glycobiology 2021; 31:1102-1120. [PMID: 34142147 PMCID: PMC8457363 DOI: 10.1093/glycob/cwab055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Noah A Linhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingyi Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
31
|
Shen H, Zhao X, Chen J, Qu W, Huang X, Wang M, Shao Z, Shu Q, Li X. O-GlcNAc transferase Ogt regulates embryonic neuronal development through modulating Wnt/β-catenin signaling. Hum Mol Genet 2021; 31:57-68. [PMID: 34346496 DOI: 10.1093/hmg/ddab223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
Ogt-mediated O-GlcNAcylation is enriched in the nervous system, and involves in neuronal development, brain function and neurological diseases. However, the roles of Ogt and O-GlcNAcylation in embryonic neurogenesis has remained largely unknown. Here, we show that Ogt is highly expressed in embryonic brain, and Ogt depletion reduces the proliferation of embryonic neural stem cells and migration of new born neurons. Furthermore, Ogt in cultured hippocampal neurons impaires neuronal maturation including reduced dendritic numbers and length, and immature development of spines. Mechanistically, Ogt depletion decreases the activity of Wnt/β-catenin signaling. Ectopic β-catenin rescues neuronal developmental deficits caused by Ogt depletion. Ogt also regulates human cortical neurogenesis in forebrain organoids derived from induced pluripotent stem cells. Our findings reveal the essential roles and mechanisms of Ogt-mediated O-GlcNAc modification in regulating mammalian neuronal development.
Collapse
Affiliation(s)
- Hui Shen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Junchen Chen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaoli Huang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengxuan Wang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China.,Zhejiang University cancer center, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
32
|
Mueller T, Ouyang X, Johnson MS, Qian WJ, Chatham JC, Darley-Usmar V, Zhang J. New Insights Into the Biology of Protein O-GlcNAcylation: Approaches and Observations. FRONTIERS IN AGING 2021; 1:620382. [PMID: 35822169 PMCID: PMC9261361 DOI: 10.3389/fragi.2020.620382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a protein posttranslational modification that results in the addition of O-GlcNAc to Ser/Thr residues. Since its discovery in the 1980s, it has been shown to play an important role in a broad range of cellular functions by modifying nuclear, cytosolic, and mitochondrial proteins. The addition of O-GlcNAc is catalyzed by O-GlcNAc transferase (OGT), and its removal is catalyzed by O-GlcNAcase (OGA). Levels of protein O-GlcNAcylation change in response to nutrient availability and metabolic, oxidative, and proteotoxic stress. OGT and OGA levels, activity, and target engagement are also regulated. Together, this results in adaptive and, on occasions, detrimental responses that affect cellular function and survival, which impact a broad range of pathologies and aging. Over the past several decades, approaches and tools to aid the investigation of the regulation and consequences of protein O-GlcNAcylation have been developed and enhanced. This review is divided into two sections: 1) We will first focus on current standard and advanced technical approaches for assessing enzymatic activities of OGT and OGT, assessing the global and specific protein O-GlcNAcylation and 2) we will summarize in vivo findings of functional consequences of changing protein O-GlcNAcylation, using genetic and pharmacological approaches.
Collapse
Affiliation(s)
- Toni Mueller
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S. Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianhua Zhang,
| |
Collapse
|
33
|
Chen J, Dong X, Cheng X, Zhu Q, Zhang J, Li Q, Huang X, Wang M, Li L, Guo W, Sun B, Shu Q, Yi W, Li X. Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep 2021; 34:108905. [PMID: 33789105 DOI: 10.1016/j.celrep.2021.108905] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Ogt catalyzed O-linked N-acetylglucosamine (O-GlcNAcylation, O-GlcNAc) plays an important function in diverse biological processes and diseases. However, the roles of Ogt in regulating neurogenesis remain largely unknown. Here, we show that Ogt deficiency or depletion in adult neural stem/progenitor cells (aNSPCs) leads to the diminishment of the aNSPC pool and aberrant neurogenesis and consequently impairs cognitive function in adult mice. RNA sequencing reveals that Ogt deficiency alters the transcription of genes relating to cell cycle, neurogenesis, and neuronal development. Mechanistic studies show that Ogt directly interacts with Notch1 and catalyzes the O-GlcNAc modification of Notch TM/ICD fragment. Decreased O-GlcNAc modification of TM/ICD increases the binding of E3 ubiquitin ligase Itch to TM/ICD and promotes its degradation. Itch knockdown rescues neurogenic defects induced by Ogt deficiency in vitro and in vivo. Our findings reveal the essential roles and mechanisms of Ogt and O-GlcNAc modification in regulating mammalian neurogenesis and cognition.
Collapse
Affiliation(s)
- Junchen Chen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaoxue Dong
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qian Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaoli Huang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Binggui Sun
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
34
|
Muha V, Authier F, Szoke-Kovacs Z, Johnson S, Gallagher J, McNeilly A, McCrimmon RJ, Teboul L, van Aalten DMF. Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. J Biol Chem 2021; 296:100439. [PMID: 33610549 PMCID: PMC7988489 DOI: 10.1016/j.jbc.2021.100439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification that has been implicated in neurodevelopmental and neurodegenerative disorders. O-GlcNAcase (OGA), the sole enzyme catalyzing the removal of O-GlcNAc from proteins, has emerged as a potential drug target. OGA consists of an N-terminal OGA catalytic domain and a C-terminal pseudo histone acetyltransferase (HAT) domain with unknown function. To investigate phenotypes specific to loss of OGA catalytic activity and dissect the role of the HAT domain, we generated a constitutive knock-in mouse line, carrying a mutation of a catalytic aspartic acid to alanine. These mice showed perinatal lethality and abnormal embryonic growth with skewed Mendelian ratios after day E18.5. We observed tissue-specific changes in O-GlcNAc homeostasis regulation to compensate for loss of OGA activity. Using X-ray microcomputed tomography on late gestation embryos, we identified defects in the kidney, brain, liver, and stomach. Taken together, our data suggest that developmental defects during gestation may arise upon prolonged OGA inhibition specifically because of loss of OGA catalytic activity and independent of the function of the HAT domain.
Collapse
Affiliation(s)
- Villő Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Florence Authier
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Sara Johnson
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Jennifer Gallagher
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Alison McNeilly
- System Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Rory J McCrimmon
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
35
|
Stephen HM, Praissman JL, Wells L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J Proteome Res 2021; 20:1229-1242. [PMID: 33356293 PMCID: PMC8577549 DOI: 10.1021/acs.jproteome.0c00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with β-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.
Collapse
Affiliation(s)
- Hannah M. Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Jeremy L. Praissman
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| |
Collapse
|
36
|
Kositzke A, Fan D, Wang A, Li H, Worth M, Jiang J. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. Int J Biol Macromol 2021; 169:51-59. [PMID: 33333092 PMCID: PMC7856287 DOI: 10.1016/j.ijbiomac.2020.12.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The essential human O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme responsible for modifying thousands of intracellular proteins with the monosaccharide O-GlcNAc. This unique modification plays crucial roles in human health and disease, but the substrate recognition of OGT remains poorly understood. Intriguingly, the only human enzyme reported to remove this modification, O-GlcNAcase (OGA), is O-GlcNAc modified. Here, we exploited a GlcNAc electrophilic probe (GEP1A) to rapidly screen OGT mutants in a fluorescence assay that can discriminate between altered OGT-sugar and -protein substrate binding to help elucidate the binding mode of OGT toward OGA protein substrate. Since OGT tetratricopeptide repeat (TPR) domain plays a key role in OGT-OGA binding, we screened 30 OGT TPR mutants, which revealed 15 "ladder like" asparagine or aspartate residues spanning TPRs 3-7 and 10-13.5 that affect OGA O-GlcNAcylation. By applying a truncated OGA construct, we found that OGA's N-terminal region or pseudo histone acetyltransferase domain is not required for its O-GlcNAcylation, suggesting OGT functionally interacts with OGA through its catalytic and/or stalk domains. This work represents the first effort to systemically investigate each OGT TPR and our findings will facilitate the development of new strategies to investigate the role of substrate-specific O-GlcNAcylation.
Collapse
Affiliation(s)
- Adam Kositzke
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew Worth
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
37
|
Itkonen HM, Loda M, Mills IG. O-GlcNAc Transferase - An Auxiliary Factor or a Full-blown Oncogene? Mol Cancer Res 2021; 19:555-564. [PMID: 33472950 DOI: 10.1158/1541-7786.mcr-20-0926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
The β-linked N-acetyl-d-glucosamine (GlcNAc) is a posttranslational modification of serine and threonine residues catalyzed by the enzyme O-GlcNAc transferase (OGT). Increased OGT expression is a feature of most human cancers and inhibition of OGT decreases cancer cell proliferation. Antiproliferative effects are attributed to posttranslational modifications of known regulators of cancer cell proliferation, such as MYC, FOXM1, and EZH2. In general, OGT amplifies cell-specific phenotype, for example, OGT overexpression enhances reprogramming efficiency of mouse embryonic fibroblasts into stem cells. Genome-wide screens suggest that certain cancers are particularly dependent on OGT, and understanding these addictions is important when considering OGT as a target for cancer therapy. The O-GlcNAc modification is involved in most cellular processes, which raises concerns of on-target undesirable effects of OGT-targeting therapy. Yet, emerging evidence suggest that, much like proteasome inhibitors, specific compounds targeting OGT elicit selective antiproliferative effects in cancer cells, and can prime malignant cells to other treatments. It is, therefore, essential to gain mechanistic insights on substrate specificity for OGT, develop reagents to more specifically enrich for O-GlcNAc-modified proteins, identify O-GlcNAc "readers," and develop OGT small-molecule inhibitors. Here, we review the relevance of OGT in cancer progression and the potential targeting of this metabolic enzyme as a putative oncogene.
Collapse
Affiliation(s)
- Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,The New York Genome Center, New York, New York
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom. .,PCUK/Movember Centre of Excellence for Prostate Cancer Research, Patrick G Johnston Centre, for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
38
|
Chen X, Raimi OG, Ferenbach AT, van Aalten DM. A missense mutation in a patient with developmental delay affects the activity and structure of the hexosamine biosynthetic pathway enzyme AGX1. FEBS Lett 2021; 595:110-122. [PMID: 33098688 PMCID: PMC7839538 DOI: 10.1002/1873-3468.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
O-GlcNAcylation is a post-translational modification catalysed by O-GlcNAc transferase (OGT). Missense mutations in OGT have been associated with developmental disorders, OGT-linked congenital disorder of glycosylation (OGT-CDG), which are characterized by intellectual disability. OGT relies on the hexosamine biosynthetic pathway (HBP) for provision of its UDP-GlcNAc donor. We considered whether mutations in UDP-N-acetylhexosamine pyrophosphorylase (UAP1), which catalyses the final step in the HBP, would phenocopy OGT-CDG mutations. A de novo mutation in UAP1 (NM_001324114:c.G685A:p.A229T) was reported in a patient with intellectual disability. We show that this mutation is pathogenic and decreases the stability and activity of the UAP1 isoform AGX1 in vitro. X-ray crystallography reveals a structural shift proximal to the mutation, leading to a conformational change of the N-terminal domain. These data suggest that the UAP1A229T missense mutation could be a contributory factor to the patient phenotype.
Collapse
Affiliation(s)
- Xiping Chen
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Olawale G. Raimi
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Andrew T. Ferenbach
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Daan M.F. van Aalten
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
39
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Jaeken J. Congenital disorders of glycosylation: A multi-genetic disease family with multiple subcellular locations. JOURNAL OF MOTHER AND CHILD 2020; 24:14-20. [PMID: 33554500 PMCID: PMC8518092 DOI: 10.34763/jmotherandchild.20202402si.2005.000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review discusses a selection of congenital disorders of glycosylation that show peculiar features, such as an unusual presentation, different phenotypes, a novel biochemical/genetic mechanism, a relatively high frequency or a relatively efficient treatment.
Collapse
Affiliation(s)
- Jaak Jaeken
- Department of Development and Regeneration, Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Hachim MY, Al Heialy S, Senok A, Hamid Q, Alsheikh-Ali A. Molecular Basis of Cardiac and Vascular Injuries Associated With COVID-19. Front Cardiovasc Med 2020; 7:582399. [PMID: 33240937 PMCID: PMC7669624 DOI: 10.3389/fcvm.2020.582399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is a viral respiratory illness caused by the novel coronavirus SARS-CoV-2. The presence of the pre-existing cardiac disease is associated with an increased likelihood of severe clinical course and mortality in patients with COVID-19. Besides, current evidence indicates that a significant number of patients with COVID-19 also exhibit cardiovascular involvement even in the absence of known cardiac risk factors. Therefore, there is a need to understand the underlying mechanisms and genetic predispositions that explain cardiovascular involvement in COVID-19. Objectives:In silico analysis of publicly available datasets to decipher the molecular basis, potential pathways, and the role of the endothelium in the pathogenesis of cardiac and vascular injuries in COVID-19. Materials and Methods: Consistent significant differentially expressed genes (DEGs) shared by endothelium and peripheral immune cells were identified in five microarray transcriptomic profiling datasets in patients with venous thromboembolism “VTE,” acute coronary syndrome, heart failure and/or cardiogenic shock (main cardiovascular injuries related to COVID-19) compared to healthy controls. The identified genes were further examined in the publicly available transcriptomic dataset for cell/tissue specificity in lung tissue, in different ethnicities and in SARS-CoV-2 infected vs. mock-infected lung tissues and cardiomyocytes. Results: We identified 36 DEGs in blood and endothelium known to play key roles in endothelium and vascular biology, regulation of cellular response to stress as well as endothelial cell migration. Some of these genes were upregulated significantly in SARS-CoV-2 infected lung tissues. On the other hand, some genes with cardioprotective functions were downregulated in SARS-CoV-2 infected cardiomyocytes. Conclusion: In conclusion, our findings from the analysis of publicly available transcriptomic datasets identified shared core genes pertinent to cardiac and vascular-related injuries and their probable role in genetic susceptibility to cardiovascular injury in patients with COVID-19.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada.,College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
42
|
Abstract
O-GlcNAcylation is an abundant and dynamic protein posttranslational modification (PTM), with crucial roles in metazoans. Studies of this modification are hampered by the lack of convenient methods for detecting native O-GlcNAcylation. Here, we describe a novel gel-based approach, Separation of O-GlcNAcylated Proteins by Polyacrylamide Gel Electrophoresis (SOPAGE), which enables detection of O-GlcNAc levels and dynamics.
Collapse
Affiliation(s)
- Chuan Fu
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| | | |
Collapse
|
43
|
Urso SJ, Comly M, Hanover JA, Lamitina T. The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. PLoS Genet 2020; 16:e1008821. [PMID: 33006972 PMCID: PMC7556452 DOI: 10.1371/journal.pgen.1008821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
The conserved O-GlcNAc transferase OGT O-GlcNAcylates serine and threonine residues of intracellular proteins to regulate their function. OGT is required for viability in mammalian cells, but its specific roles in cellular physiology are poorly understood. Here we describe a conserved requirement for OGT in an essential aspect of cell physiology: the hypertonic stress response. Through a forward genetic screen in Caenorhabditis elegans, we discovered OGT is acutely required for osmoprotective protein expression and adaptation to hypertonic stress. Gene expression analysis shows that ogt-1 functions through a post-transcriptional mechanism. Human OGT partially rescues the C. elegans phenotypes, suggesting that the osmoregulatory functions of OGT are ancient. Intriguingly, expression of O-GlcNAcylation-deficient forms of human or worm OGT rescue the hypertonic stress response phenotype. However, expression of an OGT protein lacking the tetracopeptide repeat (TPR) domain does not rescue. Our findings are among the first to demonstrate a specific physiological role for OGT at the organismal level and demonstrate that OGT engages in important molecular functions outside of its well described roles in post-translational O-GlcNAcylation of intracellular proteins.
Collapse
Affiliation(s)
- Sarel J. Urso
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Marcella Comly
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
44
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
46
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
47
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
48
|
Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur J Hum Genet 2020; 28:706-714. [PMID: 32080367 PMCID: PMC7253464 DOI: 10.1038/s41431-020-0589-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with β-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions.
Collapse
Affiliation(s)
- Veronica M. Pravata
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Michaela Omelková
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Marios P. Stavridis
- 0000 0004 0397 2876grid.8241.fDivision of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chelsea M. Desbiens
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Hannah M. Stephen
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Dirk J. Lefeber
- 0000 0004 0444 9382grid.10417.33Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jozef Gecz
- 0000 0004 1936 7304grid.1010.0Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA Australia
| | - Mehmet Gundogdu
- 0000 0001 2193 314Xgrid.8756.cInstitute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Katrin Õunap
- 0000 0001 0585 7044grid.412269.aDepartment of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia ,0000 0001 0943 7661grid.10939.32Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Charles E. Schwartz
- 0000 0000 8571 0933grid.418307.9Greenwood Genetic Center, Greenwood, SC 29646 USA
| | - Lance Wells
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Daan M. F. van Aalten
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK ,0000 0001 0379 7164grid.216417.7Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Moulton MJ, Humphreys GB, Kim A, Letsou A. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev Cell 2020; 53:330-343.e3. [DOI: 10.1016/j.devcel.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
50
|
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O’Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS Chem Biol 2020; 15:1059-1066. [PMID: 32119511 DOI: 10.1021/acschembio.0c00074] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.
Collapse
Affiliation(s)
- Daniel H. Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeffrey A. Naftaly
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Stephanie Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy R. O’Meara
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|