1
|
Barrett J, Naduthodi MIS, Mao Y, Dégut C, Musiał S, Salter A, Leake MC, Plevin MJ, McCormick AJ, Blaza JN, Mackinder LCM. A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage. NATURE PLANTS 2024:10.1038/s41477-024-01812-x. [PMID: 39384944 DOI: 10.1038/s41477-024-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mihris I S Naduthodi
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | | | - Sabina Musiał
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Aidan Salter
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mark C Leake
- Department of Biology, University of York, York, UK
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Michael J Plevin
- Department of Biology, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - James N Blaza
- York Structural Biology Laboratory, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York, UK.
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK.
| |
Collapse
|
2
|
Dossa EN, Shimelis H, Shayanowako AIT. Genome-wide association analysis of grain yield and Striga hermonthica and S. asiatica resistance in tropical and sub-tropical maize populations. BMC PLANT BIOLOGY 2024; 24:871. [PMID: 39294608 PMCID: PMC11411799 DOI: 10.1186/s12870-024-05590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Genetic improvement for Striga hermonthica (Sh) and S. asiatica (Sa) resistance is the most economical and effective control method to enhance the productivity of maize and other major cereal crops. Hence, identification of quantitative trait loci (QTL) associated with Striga resistance and economic traits will guide the pace and precision of resistance breeding in maize. The objective of this study was to undertake a genome-wide association analysis of grain yield and Sh and Sa resistance among tropical and sub-tropical maize populations to identify putative genetic markers and genes for resistance breeding. 126 maize genotypes were evaluated under controlled environment conditions using artificial infestation of Sh and Sa. The test genotypes were profiled for grain yield (GY), Striga emergence counts at 8 (SEC8) and 10 (SEC10) weeks after planting, and Striga damage rate scores at 8 (SDR8) and 10 (SDR10) weeks after planting. Population structure analysis and genome-wide association mapping were undertaken based on 16,000 single nucleotide polymorphism (SNP) markers. RESULTS A linkage disequilibrium (LD) analysis in 798,675 marker pairs revealed that 21.52% of pairs were in significant linkage (P < 0.001). Across the chromosomes, the LD between SNPs decayed below a critical level (r2 = 0.1) at a map distance of 0.19 Mbp. The genome-wide association study identified 50 significant loci associated with Sh resistance and 22 significant loci linked to Sa resistance, corresponding to 39 and 19 candidate genes, respectively. CONCLUSION The study found non-significant QTL associated with dual resistance to the two examined Striga species Some of the detected genes reportedly conditioned insect and pathogen resistance, plant cell development, variable senescence, and pollen fertility. The markers detected in the present study for Sa resistance were reported for the first time. The gene Zm00001eb219710 was pleiotropic, and conditioned GY and SEC10, while Zm00001eb165170 affected SDR8 and SDR10, and Zm00001eb112030 conditioned SDR8 and SDR10 associated with Sh resistance. The candidate genes may facilitate simultaneous selection for Sh and Sa resistance and grain yield in maize after further validation and introgression in breeding pipelines. Overall, we recommend breeding maize specifically for resistance to each Striga species using germplasm adapted to the endemic region of each parasite.
Collapse
Affiliation(s)
- Emeline N Dossa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Admire I T Shayanowako
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
3
|
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, McCormick AJ, Jonikas MC. Biogenesis, engineering and function of membranes in the CO 2 -fixing pyrenoid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.603944. [PMID: 39211136 PMCID: PMC11361040 DOI: 10.1101/2024.08.08.603944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Approximately one-third of global CO 2 assimilation is performed by the pyrenoid 1 , a liquid-like organelle found in most algae and some plants 2 . Specialized membranes are hypothesized to drive CO 2 assimilation in the pyrenoid by delivering concentrated CO 2 3,4 , but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana . SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO 2 -limiting conditions, providing evidence for the function of membrane tubules in CO 2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.
Collapse
|
4
|
Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD. A carboxysome-based CO 2 concentrating mechanism for C 3 crop chloroplasts: advances and the road ahead. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:940-952. [PMID: 38321620 DOI: 10.1111/tpj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Collapse
Affiliation(s)
- Nghiem D Nguyen
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, 137 Sullivan's Ck Rd, Acton, Australian Capital Territory, 2601, Australia
| | - Britta Förster
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sarah Rottet
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Benedict M Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, ARC Centre of Excellence in Synthetic Biology, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - G Dean Price
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
5
|
Moromizato R, Fukuda K, Suzuki S, Motomura T, Nagasato C, Hirakawa Y. Pyrenoid proteomics reveals independent evolution of the CO 2-concentrating organelle in chlorarachniophytes. Proc Natl Acad Sci U S A 2024; 121:e2318542121. [PMID: 38408230 PMCID: PMC10927497 DOI: 10.1073/pnas.2318542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.
Collapse
Affiliation(s)
- Rena Moromizato
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| | - Kodai Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba305-8506, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran051-0013, Japan
| | - Yoshihisa Hirakawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| |
Collapse
|
6
|
Xu S, Tao XY, Dang Z, Wang Y, Guan Y, Wu Z, Liu G, Tian Y, Tian LJ. Near-Native Imaging of Label-Free Silver Nanoparticles-Triggered 3D Subcellular Ultrastructural Reorganization in Microalgae. ACS NANO 2024; 18:2030-2046. [PMID: 38198284 DOI: 10.1021/acsnano.3c08514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Understanding the spatial orientation of nanoparticles and the corresponding subcellular architecture events favors uncovering fundamental toxic mechanisms and predicting response pathways of organisms toward environmental stressors. Herein, we map the spatial location of label-free citrate-coated Ag nanoparticles (Cit-AgNPs) and the corresponding subcellular reorganization in microalgae by a noninvasive 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). Cryo-SXT near-natively displays the 3D maps of Cit-AgNPs presenting in rarely identified sites, namely, extracellular polymeric substances (EPS) and the cytoplasm. By comparative 3D morphological assay, we observe that Cit-AgNPs disrupt the cellular ultrastructural homeostasis, triggering a severe malformation of cytoplasmic organelles with energy-producing and stress-regulating functions. AgNPs exposure causes evident disruption of the chloroplast membrane, significant attenuation of the pyrenoid matrix and starch sheath, extreme swelling of starch granules and lipid droplets, and shrinkage of the nucleolus. In accompaniment, the number and volume occupancy of starch granules are significantly increased. Meanwhile, the spatial topology of starch granules extends from the chloroplast to the cytoplasm with a dispersed distribution. Linking the dynamics of the internal structure and the alteration of physiological properties, we derive a comprehensive cytotoxic and response pathway of microalgae exposed to AgNPs. This work provides a perspective for assessing the toxicity at subcellular scales to achieve label-free nanoparticle-caused ultrastructure remodeling of phytoplankton.
Collapse
Affiliation(s)
- Shuai Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xia-Yu Tao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - YuTing Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - YangChao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Atkinson N, Stringer R, Mitchell SR, Seung D, McCormick AJ. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc Natl Acad Sci U S A 2024; 121:e2311013121. [PMID: 38241434 PMCID: PMC10823261 DOI: 10.1073/pnas.2311013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.
Collapse
Affiliation(s)
- Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Rhea Stringer
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Stephen R. Mitchell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - David Seung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| |
Collapse
|
8
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
10
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
11
|
Lau CS, Dowle A, Thomas GH, Girr P, Mackinder LCM. A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii. THE PLANT CELL 2023; 35:3260-3279. [PMID: 37195994 PMCID: PMC10473203 DOI: 10.1093/plcell/koad131] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
Phase separation underpins many biologically important cellular events such as RNA metabolism, signaling, and CO2 fixation. However, determining the composition of a phase-separated organelle is often challenging due to its sensitivity to environmental conditions, which limits the application of traditional proteomic techniques like organellar purification or affinity purification mass spectrometry to understand their composition. In Chlamydomonas reinhardtii, Rubisco is condensed into a crucial phase-separated organelle called the pyrenoid that improves photosynthetic performance by supplying Rubisco with elevated concentrations of CO2. Here, we developed a TurboID-based proximity labeling technique in which proximal proteins in Chlamydomonas chloroplasts are labeled by biotin radicals generated from the TurboID-tagged protein. By fusing 2 core pyrenoid components with the TurboID tag, we generated a high-confidence pyrenoid proxiome that contains most known pyrenoid proteins, in addition to new pyrenoid candidates. Fluorescence protein tagging of 7 previously uncharacterized TurboID-identified proteins showed that 6 localized to a range of subpyrenoid regions. The resulting proxiome also suggests new secondary functions for the pyrenoid in RNA-associated processes and redox-sensitive iron-sulfur cluster metabolism. This developed pipeline can be used to investigate a broad range of biological processes in Chlamydomonas, especially at a temporally resolved suborganellar resolution.
Collapse
Affiliation(s)
- Chun Sing Lau
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam Dowle
- Department of Biology, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Dahlin LR, Meyers AW, Stefani SW, Webb EG, Wachter B, Subramanian V, Guarnieri MT. Heterologous expression of formate dehydrogenase enables photoformatotrophy in the emerging model microalga, Picochlorum renovo. Front Bioeng Biotechnol 2023; 11:1162745. [PMID: 37706077 PMCID: PMC10497104 DOI: 10.3389/fbioe.2023.1162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO2-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in Picochlorum renovo, a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO2, underscoring the potential for bypass of conventional CO2 capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.
Collapse
Affiliation(s)
- Lukas R. Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alex W. Meyers
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Skylar W. Stefani
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ellsbeth G. Webb
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Benton Wachter
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Michael T. Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, United States
| |
Collapse
|
13
|
An Y, Wang D, Du J, Wang X, Xiao J. Pyrenoid: Organelle with efficient CO 2-Concentrating mechanism in algae. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154044. [PMID: 37392525 DOI: 10.1016/j.jplph.2023.154044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.
Collapse
Affiliation(s)
- Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Dong Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jingxia Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China.
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Shimamura D, Yamano T, Niikawa Y, Hu D, Fukuzawa H. A pyrenoid-localized protein SAGA1 is necessary for Ca 2+-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 156:181-192. [PMID: 36656499 DOI: 10.1007/s11120-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic affinity for dissolved inorganic carbon (Ci) under CO2-limiting conditions. In the model alga Chlamydomonas reinhardtii, the pyrenoid-localized Ca2+-binding protein CAS is required to express genes encoding the Ci-transporters, high-light activated 3 (HLA3), and low-CO2-inducible protein A (LCIA). To identify new factors related to the regulation or components of the CCM, we isolated CO2-requiring mutants KO-60 and KO-62. These mutants had insertions of a hygromycin-resistant cartridge in the StArch Granules Abnormal 1 (SAGA1) gene, which is necessary to maintain the number of pyrenoids and the structure of pyrenoid tubules in the chloroplast. In both KO-60 and the previously identified saga1 mutant, expression levels of 532 genes were significantly reduced. Among them, 10 CAS-dependent genes, including HLA3 and LCIA, were not expressed in the saga1 mutants. While CAS was expressed normally at the protein levels, the localization of CAS was dispersed through the chloroplast rather than in the pyrenoid, even under CO2-limiting conditions. These results suggest that SAGA1 is necessary not only for maintenance of the pyrenoid structure but also for regulation of the nuclear genes encoding Ci-transporters through CAS-dependent retrograde signaling under CO2-limiting stress.
Collapse
Affiliation(s)
- Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Donghui Hu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
15
|
Feng L, Guo W, Guo J, Zhang X, Zou X, Rao M, Ye J, Kuang C, Chen G, Chen C, Qin S, Yang W, Cheng J. FIB-SEM analysis on three-dimensional structures of growing organelles in wild Chlorella pyrenoidosa cells. PROTOPLASMA 2023; 260:885-897. [PMID: 36416933 DOI: 10.1007/s00709-022-01821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To clarify dynamic changes of organelle microstructures in Chlorella pyrenoidosa cells during photosynthetic growth with CO2 fixation, three-dimensional (3D) organelle microstructures in three growth periods of meristem, elongation, and maturity were quantitatively determined and comprehensively reconstructed with focused ion beam scanning electron microscopy (FIB-SEM). The single round-pancake mitochondria in each cell split into a dumbbell and then into a circular ring, while the barycenter distance of mitochondria to chloroplast and nucleus was reduced to 45.5% and 88.3% to strengthen energy transfer, respectively. The single pyrenoid consisting of a large part and another small part in each chloroplast gradually developed to a mature state in which the two parts were nearly equal in size. The nucleolus progressively became larger with euchromatin replication. The number of starch grains gradually increased, but the mean grain volume remained nearly unchanged.
Collapse
Affiliation(s)
- Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310027, China
| | - Xing Zhang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310027, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Gongda Chen
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Shiwei Qin
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd, Guangzhou, 510630, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
16
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
17
|
Ang WSL, How JA, How JB, Mueller-Cajar O. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:612-626. [PMID: 35903998 DOI: 10.1093/jxb/erac321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aquatic autotrophs that fix carbon using ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) frequently expend metabolic energy to pump inorganic carbon towards the enzyme's active site. A central requirement of this strategy is the formation of highly concentrated Rubisco condensates (or Rubiscondensates) known as carboxysomes and pyrenoids, which have convergently evolved multiple times in prokaryotes and eukaryotes, respectively. Recent data indicate that these condensates form by the mechanism of liquid-liquid phase separation. This mechanism requires networks of weak multivalent interactions typically mediated by intrinsically disordered scaffold proteins. Here we comparatively review recent rapid developments that detail the determinants and precise interactions that underlie diverse Rubisco condensates. The burgeoning field of biomolecular condensates has few examples where liquid-liquid phase separation can be linked to clear phenotypic outcomes. When present, Rubisco condensates are essential for photosynthesis and growth, and they are thus emerging as powerful and tractable models to investigate the structure-function relationship of phase separation in biology.
Collapse
Affiliation(s)
- Warren Shou Leong Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Ann How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Boon How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
18
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
19
|
Zhang N, Mattoon EM, McHargue W, Venn B, Zimmer D, Pecani K, Jeong J, Anderson CM, Chen C, Berry JC, Xia M, Tzeng SC, Becker E, Pazouki L, Evans B, Cross F, Cheng J, Czymmek KJ, Schroda M, Mühlhaus T, Zhang R. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 2022; 5:460. [PMID: 35562408 PMCID: PMC9106746 DOI: 10.1038/s42003-022-03359-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops. A systems-wide analysis of the single-cell green alga Chlamydomonas reinhardti reveals shared and unique responses to moderate and acute high temperatures using multiple-level investigation of transcriptomics, proteomics, cell physiology, photosynthetic parameters, and cellular ultrastructure.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Will McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | | | - David Zimmer
- TU Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Kresti Pecani
- The Rockefeller University, New York, New York, 10065, USA
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Cheyenne M Anderson
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Chen Chen
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Jeffrey C Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Eric Becker
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Bradley Evans
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Fred Cross
- The Rockefeller University, New York, New York, 10065, USA
| | - Jianlin Cheng
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
20
|
Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat Genet 2022; 54:705-714. [PMID: 35513725 PMCID: PMC9110296 DOI: 10.1038/s41588-022-01052-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles place uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism and ciliogenesis. We illustrate the value of this resource by validating phenotypes and gene functions, including three new components of an actin cytoskeleton defense pathway. The data also inform phenotype discovery in land plants; mutants in Arabidopsis thaliana genes exhibit phenotypes similar to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life. Systematic phenotyping of 58,101 mutants of the model eukaryotic alga Chlamydomonas reinhardtii under 121 environmental and chemical stress conditions provides a large resource for characterizing gene function.
Collapse
|
21
|
Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC. Modelling the pyrenoid-based CO 2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. NATURE PLANTS 2022; 8:583-595. [PMID: 35596080 PMCID: PMC9122830 DOI: 10.1038/s41477-022-01153-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/11/2022] [Indexed: 05/19/2023]
Abstract
Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2 to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green alga Chlamydomonas reinhardtii. Our model recapitulates all Chlamydomonas PCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2 leakage, as well as proper enzyme localization to reduce futile cycling between CO2 and HCO3-. Importantly, our model demonstrates the feasibility of a purely passive CO2 uptake strategy at air-level CO2, while active HCO3- uptake proves advantageous at lower CO2 levels. We propose a four-step engineering path to increase the rate of CO2 fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2 fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.
Collapse
Affiliation(s)
- Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Zhang B, Shi J, Zhao Y, Wang H, Chu Z, Chen Y, Wu Z, Jiang Z. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhang N, Pazouki L, Nguyen H, Jacobshagen S, Bigge BM, Xia M, Mattoon EM, Klebanovych A, Sorkin M, Nusinow DA, Avasthi P, Czymmek KJ, Zhang R. Comparative Phenotyping of Two Commonly Used Chlamydomonas reinhardtii Background Strains: CC-1690 (21gr) and CC-5325 (The CLiP Mutant Library Background). PLANTS (BASEL, SWITZERLAND) 2022; 11:585. [PMID: 35270055 PMCID: PMC8912731 DOI: 10.3390/plants11050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Huong Nguyen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Brae M. Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Anastasiya Klebanovych
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Maria Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| |
Collapse
|
24
|
Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 188:1081-1094. [PMID: 34791500 PMCID: PMC8825250 DOI: 10.1093/plphys/kiab528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 05/18/2023]
Abstract
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiki Matsuoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Neofotis P, Temple J, Tessmer OL, Bibik J, Norris N, Pollner E, Lucker B, Weraduwage SM, Withrow A, Sears B, Mogos G, Frame M, Hall D, Weissman J, Kramer DM. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in Chlamydomonas. eLife 2021; 10:67565. [PMID: 34936552 PMCID: PMC8694700 DOI: 10.7554/elife.67565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
In algae, it is well established that the pyrenoid, a component of the carbon-concentrating mechanism (CCM), is essential for efficient photosynthesis at low CO2. However, the signal that triggers the formation of the pyrenoid has remained elusive. Here, we show that, in Chlamydomonas reinhardtii, the pyrenoid is strongly induced by hyperoxia, even at high CO2 or bicarbonate levels. These results suggest that the pyrenoid can be induced by a common product of photosynthesis specific to low CO2 or hyperoxia. Consistent with this view, the photorespiratory by-product, H2O2, induced the pyrenoid, suggesting that it acts as a signal. Finally, we show evidence for linkages between genetic variations in hyperoxia tolerance, H2O2 signaling, and pyrenoid morphologies.
Collapse
Affiliation(s)
- Peter Neofotis
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joshua Temple
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Oliver L Tessmer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Jacob Bibik
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Nicole Norris
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Eric Pollner
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Ben Lucker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States
| | - Alecia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - Barbara Sears
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Greg Mogos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Melinda Frame
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - David Hall
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joseph Weissman
- Corporate Strategic Research, ExxonMobil, Annandale, United States
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| |
Collapse
|
26
|
Rai AK, Chen T, Moroney JV. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:1387-1398. [PMID: 34618049 PMCID: PMC8566214 DOI: 10.1093/plphys/kiab351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 05/19/2023]
Abstract
Chlamydomonas reinhardtii can grow photosynthetically using CO2 or in the dark using acetate as the carbon source. In the light in air, the CO2 concentrating mechanism (CCM) of C. reinhardtii accumulates CO2, enhancing photosynthesis. A combination of carbonic anhydrases (CAs) and bicarbonate transporters in the CCM of C. reinhardtii increases the CO2 concentration at Ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) in the chloroplast pyrenoid. Previously, CAs important to the CCM have been found in the periplasmic space, surrounding the pyrenoid and inside the thylakoid lumen. Two almost identical mitochondrial CAs, CAH4 and CAH5, are also highly expressed when the CCM is made, but their role in the CCM is not understood. Here, we adopted an RNAi approach to reduce the expression of CAH4 and CAH5 to study their possible physiological functions. RNAi mutants with low expression of CAH4 and CAH5 had impaired rates of photosynthesis under ambient levels of CO2 (0.04% CO2 [v/v] in air). These strains were not able to grow at very low CO2 (<0.02% CO2 [v/v] in air), and their ability to accumulate inorganic carbon (Ci = CO2 + HCO3-) was reduced. At low CO2 concentrations, the CCM is needed to both deliver Ci to Rubisco and to minimize the leak of CO2 generated by respiration and photorespiration. We hypothesize that CAH4 and CAH5 in the mitochondria convert the CO2 released from respiration and photorespiration as well as the CO2 leaked from the chloroplast to HCO3- thus "recapturing" this potentially lost CO2.
Collapse
Affiliation(s)
- Ashwani K Rai
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Timothy Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Author for communication:
| |
Collapse
|
27
|
Rillema R, Hoang Y, MacCready JS, Vecchiarelli AG. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942. mBio 2021; 12:e0269620. [PMID: 34340540 PMCID: PMC8406218 DOI: 10.1128/mbio.02696-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome-a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCE Photosynthetic cyanobacteria are responsible for almost half of global CO2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco.
Collapse
Affiliation(s)
- Rees Rillema
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S. MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
29
|
Emrich-Mills TZ, Yates G, Barrett J, Girr P, Grouneva I, Lau CS, Walker CE, Kwok TK, Davey JW, Johnson MP, Mackinder LCM. A recombineering pipeline to clone large and complex genes in Chlamydomonas. THE PLANT CELL 2021; 33:1161-1181. [PMID: 33723601 PMCID: PMC8633747 DOI: 10.1093/plcell/koab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
The ability to clone genes has greatly advanced cell and molecular biology research, enabling researchers to generate fluorescent protein fusions for localization and confirm genetic causation by mutant complementation. Most gene cloning is polymerase chain reaction (PCR)�or DNA synthesis-dependent, which can become costly and technically challenging as genes increase in size, particularly if they contain complex regions. This has been a long-standing challenge for the Chlamydomonas reinhardtii research community, as this alga has a high percentage of genes containing complex sequence structures. Here we overcame these challenges by developing a recombineering pipeline for the rapid parallel cloning of genes from a Chlamydomonas bacterial artificial chromosome collection. To generate fluorescent protein fusions for localization, we applied the pipeline at both batch and high-throughput scales to 203 genes related to the Chlamydomonas CO2 concentrating mechanism (CCM), with an overall cloning success rate of 77%. Cloning success was independent of gene size and complexity, with cloned genes as large as 23 kb. Localization of a subset of CCM targets confirmed previous mass spectrometry data, identified new pyrenoid components, and enabled complementation of mutants. We provide vectors and detailed protocols to facilitate easy adoption of this technology, which we envision will open up new possibilities in algal and plant research.
Collapse
Affiliation(s)
- Tom Z Emrich-Mills
- Department of Biology, University of York, York YO10 5DD, UK
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Gary Yates
- Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | - Irina Grouneva
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chun Sing Lau
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Tsz Kam Kwok
- Department of Biology, University of York, York YO10 5DD, UK
| | - John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew P Johnson
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK
- Author for correspondence: (L.C.M.M.)
| |
Collapse
|
30
|
Abstract
Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.
Collapse
|
31
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
32
|
Matsuzaki R, Suzuki S, Yamaguchi H, Kawachi M, Kanesaki Y, Yoshikawa H, Mori T, Nozaki H. The Rubisco small subunits in the green algal genus Chloromonas provide insights into evolutionary loss of the eukaryotic carbon-concentrating organelle, the pyrenoid. BMC Ecol Evol 2021; 21:11. [PMID: 33514317 PMCID: PMC7853309 DOI: 10.1186/s12862-020-01733-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Pyrenoids are protein microcompartments composed mainly of Rubisco that are localized in the chloroplasts of many photosynthetic organisms. Pyrenoids contribute to the CO2-concentrating mechanism. This organelle has been lost many times during algal/plant evolution, including with the origin of land plants. The molecular basis of the evolutionary loss of pyrenoids is a major topic in evolutionary biology. Recently, it was hypothesized that pyrenoid formation is controlled by the hydrophobicity of the two helices on the surface of the Rubisco small subunit (RBCS), but the relationship between hydrophobicity and pyrenoid loss during the evolution of closely related algal/plant lineages has not been examined. Here, we focused on, the Reticulata group of the unicellular green algal genus Chloromonas, within which pyrenoids are present in some species, although they are absent in the closely related species. Results Based on de novo transcriptome analysis and Sanger sequencing of cloned reverse transcription-polymerase chain reaction products, rbcS sequences were determined from 11 strains of two pyrenoid-lacking and three pyrenoid-containing species of the Reticulata group. We found that the hydrophobicity of the RBCS helices was roughly correlated with the presence or absence of pyrenoids within the Reticulata group and that a decrease in the hydrophobicity of the RBCS helices may have primarily caused pyrenoid loss during the evolution of this group. Conclusions Although we suggest that the observed correlation may only exist for the Reticulata group, this is still an interesting study that provides novel insight into a potential mechanism determining initial evolutionary steps of gain and loss of the pyrenoid.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Haruyo Yamaguchi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.,NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
33
|
Atkinson N, Mao Y, Chan KX, McCormick AJ. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat Commun 2020; 11:6303. [PMID: 33298923 PMCID: PMC7726157 DOI: 10.1038/s41467-020-20132-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic CO2 fixation in plants is limited by the inefficiency of the CO2-assimilating enzyme Rubisco. In most eukaryotic algae, Rubisco aggregates within a microcompartment known as the pyrenoid, in association with a CO2-concentrating mechanism that improves photosynthetic operating efficiency under conditions of low inorganic carbon. Recent work has shown that the pyrenoid matrix is a phase-separated, liquid-like condensate. In the alga Chlamydomonas reinhardtii, condensation is mediated by two components: Rubisco and the linker protein EPYC1 (Essential Pyrenoid Component 1). Here, we show that expression of mature EPYC1 and a plant-algal hybrid Rubisco leads to spontaneous condensation of Rubisco into a single phase-separated compartment in Arabidopsis chloroplasts, with liquid-like properties similar to a pyrenoid matrix. This work represents a significant initial step towards enhancing photosynthesis in higher plants by introducing an algal CO2-concentrating mechanism, which is predicted to significantly increase the efficiency of photosynthetic CO2 uptake.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kher Xing Chan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
34
|
Meyer MT, Itakura AK, Patena W, Wang L, He S, Emrich-Mills T, Lau CS, Yates G, Mackinder LCM, Jonikas MC. Assembly of the algal CO 2-fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif. SCIENCE ADVANCES 2020; 6:eabd2408. [PMID: 33177094 PMCID: PMC7673724 DOI: 10.1126/sciadv.abd2408] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 05/05/2023]
Abstract
Approximately one-third of the Earth's photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the CO2-fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid and how the organelle's subcompartments-membrane tubules, a surrounding phase-separated Rubisco matrix, and a peripheral starch sheath-are held together is unknown. Using the model alga Chlamydomonas reinhardtii, we found that pyrenoid proteins share a sequence motif. We show that the motif is necessary and sufficient to target proteins to the pyrenoid and that the motif binds to Rubisco, suggesting a mechanism for targeting. The presence of the Rubisco-binding motif on proteins that localize to the tubules and on proteins that localize to the matrix-starch sheath interface suggests that the motif holds the pyrenoid's three subcompartments together. Our findings advance our understanding of pyrenoid biogenesis and illustrate how a single protein motif can underlie the architecture of a complex multilayered phase-separated organelle.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alan K Itakura
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Chun S Lau
- Department of Biology, University of York, York YO10 5DD, UK
| | - Gary Yates
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Abt MR, Zeeman SC. Evolutionary innovations in starch metabolism. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:109-117. [PMID: 32428846 DOI: 10.1016/j.pbi.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
The traditional view of starch metabolism has focused on the multiplicity of enzymes and enzyme isoforms contributing to the production of the constituent polymers, amylopectin and amylose. However, knowledge of these enzymes has not provided a full insight into many aspects of starch biosynthesis. This enzyme-centered view has recently been augmented by the discovery and characterization of novel proteins with proposed regulatory, scaffolding, and interactive roles. This begins to reveal an unprecedented level of complexity beyond mere glucan biosynthesis, enabling us to envisage how starch granules are initiated and grow into specific forms, allowing it to serve biological roles beyond just carbohydrate storage. This review focuses on very recent findings in this vibrant field, highlighting the evolutionary novelty.
Collapse
Affiliation(s)
- Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
37
|
Terentyev VV, Shukshina AK, Ashikhmin AA, Tikhonov KG, Shitov AV. The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii. Life (Basel) 2020; 10:life10050063. [PMID: 32423065 PMCID: PMC7281441 DOI: 10.3390/life10050063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Photosystem II (PSII)-enriched membranes retain the original PSII architecture in contrast to PSII cores or PSII supercomplexes, which are usually isolated from Chlamydomonas reinhardtii. Here, we present data that fully characterize the structural and functional properties of PSII complexes in isolated PSII-enriched membranes from C. reinhardtii. The preparations were isolated from wild-type (WT) and CAH3-deficient mutant cia3 as the influence of CAH3 on the PSII function was previously proposed. Based on the equal chlorophyll content, the PSII-enriched membranes from WT and cia3 have the same amount of reaction centers (RCs), cytochrome b559, subunits of the water-oxidizing complex, Mn ions, and carotenes. They differ in the ratio of other carotenoids, the parts of low/intermediate redox forms of cytochrome b559, and the composition of outer light-harvesting complexes. The preparations had 40% more chlorophyll molecules per RC compared to higher plants. Functionally, PSII-enriched membranes from WT and cia3 show the same photosynthetic activity at optimal pH 6.5. However, the preparations from cia3 contained more closed RCs even at pH 6.5 and showed more pronounced suppression of PSII photosynthetic activity at shift pH up to 7.0, established in the lumen of dark-adapted cells. Nevertheless, the PSII photosynthetic capacities remained the same.
Collapse
|
38
|
Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO 2 Concentrating Mechanisms into Land Plants to Enhance Yields. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:461-485. [PMID: 32151155 PMCID: PMC7845915 DOI: 10.1146/annurev-arplant-081519-040100] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
39
|
Mukherjee A. CO 2 Concentration in Chlamydomonas reinhardtii: Effect of the Pyrenoid Starch Sheath. PLANT PHYSIOLOGY 2020; 182:1796-1797. [PMID: 32253326 PMCID: PMC7140950 DOI: 10.1104/pp.20.00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
40
|
Toyokawa C, Yamano T, Fukuzawa H. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO 2-Concentrating Mechanism in Green Algae. PLANT PHYSIOLOGY 2020; 182:1883-1893. [PMID: 32041908 PMCID: PMC7140920 DOI: 10.1104/pp.19.01587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
Aquatic photosynthetic organisms induce a CO2-concentrating mechanism (CCM) to overcome the difficulty of acquiring inorganic carbon under CO2-limiting conditions. As part of the CCM, the CO2-fixing enzyme Rubisco is enriched in the pyrenoid located in the chloroplast, and, in many green algae, several thick starch plates surround the pyrenoid to form a starch sheath. In Chlamydomonas reinhardtii, low-CO2-inducible protein B (LCIB), which is an essential factor for the CCM, displays altered cellular localization in response to a decrease in environmental CO2 concentration, moving from dispersed throughout the chloroplast stroma to around the pyrenoid. However, the mechanism behind LCIB migration remains poorly understood. Here, we report the characteristics of an Isoamylase1-less mutant (4-D1), which shows aberrant LCIB localization and starch sheath formation. Under very-low-CO2 conditions, 4-D1 showed retarded growth, lower photosynthetic affinities against inorganic carbon, and a decreased accumulation level of the HCO3 - transporter HLA3. The aberrant localization of LCIB was also observed in another starch-sheathless mutant sta11-1, but not in sta2-1, which possesses a thinned starch sheath. These results suggest that the starch sheath around the pyrenoid is required for the correct localization of LCIB and for the operation of CCM.
Collapse
Affiliation(s)
- Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
41
|
Iñiguez C, Capó-Bauçà S, Niinemets Ü, Stoll H, Aguiló-Nicolau P, Galmés J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO 2 concentrating mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:897-918. [PMID: 31820505 DOI: 10.1111/tpj.14643] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Heather Stoll
- Department of Earth Sciences, ETH Zürich, Sonnegstrasse 5, 8092, Zürich, Switzerland
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
42
|
Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q, Zhang Y, Zhang P, Riaz A, Chachar S, Ding Y, Wen J, Wu Y, Wang M, Zheng H, Wu Y, Demko V, Shen L, Han X, Zhang P, Gu X, Yu H. Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901850. [PMID: 31921561 PMCID: PMC6947507 DOI: 10.1002/advs.201901850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Indexed: 05/02/2023]
Abstract
The Streptophyta include unicellular and multicellular charophyte green algae and land plants. Colonization of the terrestrial habitat by land plants is a major evolutionary event that has transformed the planet. So far, lack of genome information on unicellular charophyte algae hinders the understanding of the origin and the evolution from unicellular to multicellular life in Streptophyta. This work reports the high-quality reference genome and transcriptome of Mesostigma viride, a single-celled charophyte alga with a position at the base of Streptophyta. There are abundant segmental duplications and transposable elements in M. viride, which contribute to a relatively large genome with high gene content compared to other algae and early diverging land plants. This work identifies the origin of genetic tools that multicellular Streptophyta have inherited and key genetic innovations required for the evolution of land plants from unicellular aquatic ancestors. The findings shed light on the age-old questions of the evolution of multicellularity and the origin of land plants.
Collapse
Affiliation(s)
- Zhe Liang
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Yuke Geng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Changmian Ji
- Biomarker TechnologiesBeijing101300China
- Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Hai Du
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Chui Eng Wong
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Qian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Ye Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Pingxian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Adeel Riaz
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Sadaruddin Chachar
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Yike Ding
- Department of EntomologyUniversity of California RiversideRiversideCA92521USA
| | - Jing Wen
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Yunwen Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | | | | | - Yanmin Wu
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Viktor Demko
- Department of Plant PhysiologyFaculty of Natural SciencesComenius University in BratislavaBratislava84215Slovakia
| | - Lisha Shen
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore117604Singapore
| | - Xiao Han
- College of Biological Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Pengpeng Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiaofeng Gu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Yu
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore117604Singapore
| |
Collapse
|