1
|
Richards BK, Ch'ng SS, Simon AB, Pang TY, Kim JH, Lawrence AJ, Perry CJ. Relaxin family peptide receptor 3 (RXFP3) expressing cells in the zona incerta/lateral hypothalamus augment behavioural arousal. J Neurochem 2025; 169:e16217. [PMID: 39233365 PMCID: PMC11658188 DOI: 10.1111/jnc.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.
Collapse
Affiliation(s)
- Brandon K. Richards
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Sarah S. Ch'ng
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Ariel B. Simon
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Terence Y. Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Institute of Health and Sports (IHES)Victoria UniversityFootscrayVictoriaAustralia
| | - Jee Hyun Kim
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Christina J. Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
2
|
Morningstar MD, Lopez KM, Mayfield SS, Almeida-Mancero RN, Marquez J, Flores AM, Hafer BR, Estrada E, Holtzman GA, Goranson EV, Reid NM, Aldrich AR, Ghatalia DV, Patel JR, Padilla CM, Chavez GJ, Kelly-Roman J, Bhakta PA, Valenzuela CF, Linsenbardt DN. Connectivity of the neuronal network for contextual fear memory is disrupted in a mouse model of third-trimester binge-like ethanol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39672678 DOI: 10.1111/acer.15503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND In rodents, third-trimester-equivalent alcohol exposure (TTAE) produces significant deficits in hippocampal-dependent memory processes such as contextual fear conditioning (CFC). The present study sought to characterize changes in both behavior and Fos+ neurons following CFC in ethanol (EtOH)-treated versus saline-treated mice using TRAP2:Ai14 mice that permanently label Fos+ neurons following a tamoxifen injection. We hypothesized that TTAE would produce long-lasting disruptions to the networks engaged following CFC with a particular emphasis on the limbic memory system. METHODS On postnatal day 7, mice received either two injections of saline or 2.5 g/kg EtOH spaced 2 h apart. The mice were left undisturbed until they reached adulthood, at which point they underwent CFC. After context exposure on day 2, mice received a tamoxifen injection. Brain tissue was harvested. Slides were automatically imaged using a Zeiss AxioScanner. Manual counts on a priori regions of interest were conducted. Automated counts were performed on the whole brain using the QUINT 2D stitching pipeline. Last, novel network analyses were applied to identify future regions of interest. RESULTS TTAE reduced context recall on day 2 of CFC. Fos+ neural density increased in the CA1 and CA3. Fos+ counts were reduced in the anteroventral (AV) and anterodorsal thalamus. The limbic memory system showed significant hyperconnectivity in male TTAE mice, and the AV shifted affinity toward hippocampal subregions. Last, novel regions such as a subparafascicular area and basomedial amygdalar nucleus were implicated as important mediators. DISCUSSION These results suggest that CFC is mediated by the limbic memory system and is disrupted following TTAE. Given the increase in CA1 and CA3 activity, a potential hypothesis is that TTAE causes disruptions to memory encoding following day 1 conditioning. Future studies will aim to determine whether this disruption specifically affects the encoding or retrieval of fear memories.
Collapse
Affiliation(s)
- Mitchell D Morningstar
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Katalina M Lopez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Stefanie S Mayfield
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Roberto N Almeida-Mancero
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joshua Marquez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andres M Flores
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brooke R Hafer
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Edilberto Estrada
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gwen A Holtzman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Emerald V Goranson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Natalie M Reid
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Abigale R Aldrich
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Desna V Ghatalia
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Juhee R Patel
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Christopher M Padilla
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javier Kelly-Roman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pooja A Bhakta
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David N Linsenbardt
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Hubbard E, Derdeyn P, Galinato VM, Wu A, Bartas K, Mahler SV, Beier KT. Neural basis of adolescent THC-induced potentiation of opioid responses later in life. Neuropsychopharmacology 2024:10.1038/s41386-024-02033-8. [PMID: 39658631 DOI: 10.1038/s41386-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Use of one addictive drug typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood. We found that adolescent THC administration paradoxically prevented the development of anxiety-related behaviors that emerge during a forced abstinence period following morphine administration but facilitated reinstatement of morphine CPP. Following forced abstinence, we then mapped the whole-brain response to a moderate dose of morphine and found that adolescent THC administration led to an overall increase in brain-wide neuronal activity and increased the functional connectivity between frontal cortical regions and the ventral tegmental area. Last, we show using rabies virus-based circuit mapping that adolescent THC exposure triggers a long-lasting elevation in connectivity from the frontal cortex regions onto ventral tegmental dopamine cells. Our study adds to the rich literature on the interaction between drugs, including THC and opioids, and provides potential neural substates by which adolescent THC exposure influences responses to morphine later in life.
Collapse
Affiliation(s)
- Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, USA
| | | | - Andrew Wu
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
5
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex differences in neural networks recruited by frontloaded binge alcohol drinking. Addict Biol 2024; 29:e13434. [PMID: 39256902 PMCID: PMC11387202 DOI: 10.1111/adb.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed towards the onset of access. This study aimed to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female, 31 male) mice that underwent 8 days of binge drinking using drinking-in-the-dark (DID). On Days 1-7 mice received 20% (v/v) alcohol or water for 2 h. Intake was measured in 1-min bins using volumetric sippers. On Day 8 mice were perfused 80 min into the DID session and brains were extracted. Brains were processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For network analyses, Day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a change-point analysis. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (three modules in both frontloaders and non-frontloaders) as compared to water (seven modules). In females, an opposite effect was observed. Alcohol access (nine modules for frontloaders) increased modularity as compared to water (five modules). Further, different brain regions served as hubs in frontloaders as compared to control groups. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females and we identify several brain-wide signatures of frontloading.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical Engineering, College of EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology, and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
6
|
Wu S, Qin D, Zhu L, Guo S, Li X, Huang C, Hu J, Liu Z. Uveal melanoma distant metastasis prediction system: A retrospective observational study based on machine learning. Cancer Sci 2024; 115:3107-3126. [PMID: 38992984 PMCID: PMC11462970 DOI: 10.1111/cas.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000-2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural-urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.
Collapse
Affiliation(s)
- Shi‐Nan Wu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Dan‐Yi Qin
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Linfangzi Zhu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Shu‐Jia Guo
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Xiang Li
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Cai‐Hong Huang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
| | - Jiaoyue Hu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityXiamenFujianChina
| | - Zuguo Liu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityXiamenFujianChina
- Department of OphthalmologyThe First Affiliated Hospital of University of South ChinaHengyangHunanChina
| |
Collapse
|
7
|
Chan AE, Anderson JQ, Grigsby KB, Jensen BE, Ryabinin AE, Ozburn AR. Sex differences in nucleus accumbens core circuitry engaged by binge-like ethanol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608144. [PMID: 39229134 PMCID: PMC11370393 DOI: 10.1101/2024.08.15.608144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Growing parity in Alcohol Use Disorder (AUD) diagnoses in men and women necessitates consideration of sex as a biological variable. In humans and rodents, the nucleus accumbens core (NAcc) regulates alcohol binge drinking, a risk factor for developing AUD. We labeled NAcc inputs with a viral retrograde tracer and quantified whole-brain c-Fos to determine the regions and NAcc inputs differentially engaged in male and female mice during binge-like ethanol drinking. We found that binge-like ethanol drinking females had 129 brain areas with greater c-Fos than males. Moreover, ethanol engaged more NAcc inputs in binge-like ethanol drinking females (as compared with males), including GABAergic and glutamatergic inputs. Relative to water controls, ethanol increased network modularity and decreased connectivity in both sexes and did so more dramatically in males. These results demonstrate that early-stage binge-like ethanol drinking engages brain regions and NAcc-inputs and alters network dynamics in a sex-specific manner.
Collapse
Affiliation(s)
- Amy E Chan
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Justin Q Anderson
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Kolter B Grigsby
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Bryan E Jensen
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Andrey E Ryabinin
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| |
Collapse
|
8
|
Shankar K, Bonnet-Zahedi S, Milan K, D'argence AR, Sneddon E, Qiao R, Chonwattangul S, Carrette LLG, Kallupi M, George O. Acute nicotine activates orectic and inhibits anorectic brain regions in rats exposed to chronic nicotine. Neuropharmacology 2024; 253:109959. [PMID: 38648925 PMCID: PMC11734747 DOI: 10.1016/j.neuropharm.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Kristel Milan
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Andrea Ruiz D'argence
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth Sneddon
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Ran Qiao
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Supakorn Chonwattangul
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Cheng X, Nareddula S, Gao HC, Chen Y, Xiao T, Nadew YY, Xu F, Edens PA, Quinn CJ, Kimbrough A, Huang F, Chubykin AA. Impaired Experience-Dependent Theta Oscillation Synchronization and Inter-Areal Synaptic Connectivity in the Visual Cortex of Fmr1 KO Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.601989. [PMID: 39211264 PMCID: PMC11360911 DOI: 10.1101/2024.07.23.601989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FX) is the most prevalent inheritable form of autism spectrum disorder (ASD), characterized by hypersensitivity, difficulty in habituating to new sensory stimuli, and intellectual disability. Individuals with FX often experience visual perception and learning deficits. Visual experience leads to the emergence of the familiarity-evoked theta band oscillations in the primary visual cortex (V1) and the lateromedial area (LM) of mice. These theta oscillations in V1 and LM are synchronized with each other, providing a mechanism of sensory multi-areal binding. However, how this multi-areal binding and the corresponding theta oscillations are altered in FX is not known. Using iDISCO whole brain clearing with light-sheet microscopy, we quantified immediate early gene Fos expression in V1 and LM, identifying deficits in experience-dependent neural activity in FX mice. We performed simultaneous in vivo recordings with silicon probes in V1 and LM of awake mice and channelrhodopsin-2-assisted circuit mapping (CRACM) in acute brain slices to examine the neural activity and strength of long-range synaptic connections between V1 and LM in both wildtype (WT) and Fmr1 knockout (KO) mice, the model of FX, before and after visual experience. Our findings reveal synchronized familiarity-evoked theta oscillations in V1 and LM, the increased strength of V1→LM functional and synaptic connections, which correlated with the corresponding changes of presynaptic short-term plasticity in WT mice. The LM oscillations were attenuated in FX mice and correlated with impaired functional and synaptic connectivity and short-term plasticity in the feedforward (FF) V1→LM and feedback (FB) LM→V1 pathways. Finally, using 4Pi single-molecule localization microscopy (SMLM) in thick brain tissue, we identified experience-dependent changes in the density and shape of dendritic spines in layer 5 pyramidal cells of WT mice, which correlated with the functional synaptic measurements. Interestingly, there was an increased dendritic spine density and length in naïve FX mice that failed to respond to experience. Our study provides the first comprehensive characterization of the role of visual experience in triggering inter-areal neural synchrony and shaping synaptic connectivity in WT and FX mice.
Collapse
|
10
|
Kreifeldt M, Okhuarobo A, Dunning JL, Lopez C, Macedo G, Sidhu H, Contet C. Mouse parasubthalamic Crh neurons drive alcohol drinking escalation and behavioral disinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602357. [PMID: 39026704 PMCID: PMC11257461 DOI: 10.1101/2024.07.06.602357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Corticotropin-releasing factor (CRF, encoded by Crh) signaling is thought to play a critical role in the development of excessive alcohol drinking and the emotional and physical pain associated with alcohol withdrawal. Here, we investigated the parasubthalamic nucleus (PSTN) as a potential source of CRF relevant to the control of alcohol consumption, affect, and nociception in mice. We identified PSTN Crh neurons as a neuronal subpopulation that exerts a potent and unique influence on behavior by promoting not only alcohol but also saccharin drinking, while PSTN neurons are otherwise known to suppress consummatory behaviors. Furthermore, PSTN Crh neurons are causally implicated in the escalation of alcohol and saccharin intake produced by chronic intermittent ethanol (CIE) vapor inhalation, a mouse model of alcohol use disorder. In contrast to our predictions, the ability of PSTN Crh neurons to increase alcohol drinking is not mediated by CRF1 signaling. Moreover, the pattern of behavioral disinhibition and reduced nociception driven by their activation does not support a role of negative reinforcement as a motivational basis for the concomitant increase in alcohol drinking. Finally, silencing Crh expression in the PSTN slowed down the escalation of alcohol intake in mice exposed to CIE and accelerated their recovery from withdrawal-induced mechanical hyperalgesia. Altogether, our results suggest that PSTN Crh neurons may represent an important node in the brain circuitry linking alcohol use disorder with sweet liking and novelty seeking.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | | | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Giovana Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| |
Collapse
|
11
|
Hu Y, Du W, Qi J, Luo H, Zhang Z, Luo M, Wang Y. Comparative brain-wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in the mouse brain. eLife 2024; 12:RP88420. [PMID: 38512722 PMCID: PMC10957177 DOI: 10.7554/elife.88420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ketamine (KET) and isoflurane (ISO) are two widely used general anesthetics, yet their distinct and shared neurophysiological mechanisms remain elusive. In this study, we conducted a comparative analysis of the effects of KET and ISO on c-Fos expression across the mouse brain, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the responses of individual brain regions to each anesthetic. Our findings reveal that KET activates a wide range of brain regions, notably in the cortical and subcortical nuclei involved in sensory, motor, emotional, and reward processing, with the temporal association areas (TEa) as a strong hub, suggesting a top-down mechanism affecting consciousness by primarily targeting higher order cortical networks. In contrast, ISO predominantly influences brain regions in the hypothalamus, impacting neuroendocrine control, autonomic function, and homeostasis, with the locus coeruleus (LC) as a connector hub, indicating a bottom-up mechanism in anesthetic-induced unconsciousness. KET and ISO both activate brain areas involved in sensory processing, memory and cognition, reward and motivation, as well as autonomic and homeostatic control, highlighting their shared effects on various neural pathways. In conclusion, our results highlight the distinct but overlapping effects of KET and ISO, enriching our understanding of the mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
12
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex Differences in Neural Networks Recruited by Frontloaded Binge Alcohol Drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579387. [PMID: 38370732 PMCID: PMC10871329 DOI: 10.1101/2024.02.08.579387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed toward the onset of access. The goal of the current study was to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female and 31 male) mice that underwent 8 days of binge drinking using the drinking-in-the-dark (DID) model. On days 1-7, three hours into the dark cycle, mice received 20% (v/v) alcohol or water for two hours. Intake was measured in 1-minute bins using volumetric sippers, which facilitated analyses of drinking patterns. On day 8 mice were perfused 80 minutes into the DID session and brains were extracted. Brains were then processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For brain network analyses, day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a recently developed change-point analysis. Based on this analysis the groups were female frontloaders (n = 20), female non-frontloaders (n = 2), male frontloaders (n = 13) and male non-frontloaders (n = 8). There were no differences in total alcohol intake in animals that frontloaded versus those that did not. Only two female mice were characterized as non-frontloaders, thus preventing brain network analysis of this group. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and hierarchical clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (3 modules in both frontloaders and non-frontloaders) as compared to water drinkers (7 modules). In females, an opposite effect was observed. Alcohol access (9 modules for frontloaders) increased modularity as compared to water drinkers (5 modules). These results suggest sex differences in how alcohol consumption reorganizes the functional architecture of neural networks. Next, key brain regions in each network were identified. Connector hubs, which primarily facilitate communication between modules, and provincial hubs, which facilitate communication within modules, were of specific interest for their important and differing roles. In males, 4 connector hubs and 17 provincial hubs were uniquely identified in frontloaders (i.e., were brain regions that did not have this status in male non-frontloaders or water drinkers). These represented a group of hindbrain regions (e.g., locus coeruleus and the pontine gray) functionally connected to striatal/cortical regions (e.g., cortical amygdalar area) by the paraventricular nucleus of the thalamus. In females, 16 connector and 17 provincial hubs were uniquely identified which were distributed across 8 of the 9 modules in the female frontloader alcohol drinker network. Only one brain region (the nucleus raphe pontis) was a connector hub in both sexes, suggesting that frontloading in males and females may be driven by different brain regions. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females, and recruited different hub brain regions between the sexes. These results suggest that alcohol frontloading leads to a reduction in network efficiency in male mice.
Collapse
Affiliation(s)
- Cherish E Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN
| | - Nicholas J Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
- Stark Neuroscience Research Institute, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| |
Collapse
|
13
|
Xie Y, Brynildsen JK, Windisch K, Blendy JA. Neural Network Connectivity Following Opioid Dependence is Altered by a Common Genetic Variant in the µ-Opioid Receptor, OPRM1 A118G. J Neurosci 2024; 44:e1492232023. [PMID: 38124015 PMCID: PMC10866092 DOI: 10.1523/jneurosci.1492-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Opioid use disorder is a chronic, relapsing disease associated with persistent changes in brain plasticity. A common single nucleotide polymorphism (SNP) in the µ-opioid receptor gene, OPRM1 A118G, is associated with altered vulnerability to opioid addiction. Reconfiguration of neuronal connectivity may explain dependence risk in individuals with this SNP. Mice with the equivalent Oprm1 variant, A112G, demonstrate sex-specific alterations in the rewarding properties of morphine and heroin. To determine whether this SNP influences network-level changes in neuronal activity, we compared FOS expression in male and female mice that were opioid-naive or opioid-dependent. Network analyses identified significant differences between the AA and GG Oprm1 genotypes. Based on several graph theory metrics, including small-world analysis and degree centrality, we show that GG females in the opioid-dependent state exhibit distinct patterns of connectivity compared to other groups of the same genotype. Using a network control theory approach, we identified key cortical brain regions that drive the transition between opioid-naive and opioid-dependent brain states; however, these regions are less influential in GG females leading to sixfold higher average minimum energy needed to transition from the acute to the dependent state. In addition, we found that the opioid-dependent brain state is significantly less stable in GG females compared to other groups. Collectively, our findings demonstrate sex- and genotype-specific modifications in local, mesoscale, and global properties of functional brain networks following opioid exposure and provide a framework for identifying genotype differences in specific brain regions that play a role in opioid dependence.
Collapse
Affiliation(s)
- Yihan Xie
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Julia K Brynildsen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Kyle Windisch
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| |
Collapse
|
14
|
Carrette L, Santos A, Brennan M, Othman D, Collazo A, George O. Antagonists of the stress and opioid systems restore the functional connectivity of the prefrontal cortex during alcohol withdrawal through divergent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560339. [PMID: 37873478 PMCID: PMC10592857 DOI: 10.1101/2023.09.30.560339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic alcohol consumption leads to dependence and withdrawal symptoms upon cessation, contributing to persistent use. However, the brain network mechanisms by which the brain orchestrates alcohol withdrawal and how these networks are affected by pharmacological treatments remain elusive. Recent work revealed that alcohol withdrawal produces a widespread increase in coordinated brain activity and a decrease in modularity of the whole-brain functional network using single-cell whole-brain imaging of immediate early genes. This decreased modularity and functional hyperconnectivity are hypothesized to be novel biomarkers of alcohol withdrawal in alcohol dependence, which could potentially be used to evaluate the efficacy of new medications for alcohol use disorder. However, there is no evidence that current FDA-approved medications or experimental treatments known to reduce alcohol drinking in animal models can normalize the changes in whole-brain functional connectivity. In this report, we tested the effect of R121919, a CRF1 antagonist, and naltrexone, an FDA-approved treatment for alcohol use disorder, on whole-brain functional connectivity using the cellular marker FOS combined with graph theory and advanced network analyses. Results show that both R121919 and naltrexone restored the functional connectivity of the prefrontal cortex during alcohol withdrawal, but through divergent mechanisms. Specifically, R121919 increased FOS activation in the prefrontal cortex, partially restored modularity, and normalized connectivity, particularly in CRF1-rich regions, including the prefrontal, pallidum, and extended amygdala circuits. On the other hand, naltrexone decreased FOS activation throughout the brain, decreased modularity, and increased connectivity overall except for the Mu opioid receptor-rich regions, including the thalamus. These results identify the brain networks underlying the pharmacological effects of R121919 and naltrexone and demonstrate that these drugs restored different aspects of functional connectivity of the prefrontal cortex, pallidum, amygdala, and thalamus during alcohol withdrawal. Notably, these effects were particularly prominent in CRF1- and Mu opioid receptors-rich regions highlighting the potential of whole-brain functional connectivity using FOS as a tool for identifying neuronal network mechanisms underlying the pharmacological effects of existing and new medications for alcohol use disorder.
Collapse
Affiliation(s)
- L.L.G. Carrette
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - A. Santos
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - M. Brennan
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - D. Othman
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - A. Collazo
- Beckman Institute, CalTech, Passadena, CA, United States
| | - O. George
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
16
|
G Anversa R, Campbell EJ, Walker LC, S Ch'ng S, Muthmainah M, S Kremer F, M Guimarães A, O'Shea MJ, He S, Dayas CV, Andrews ZB, Lawrence AJ, Brown RM. A paraventricular thalamus to insular cortex glutamatergic projection gates "emotional" stress-induced binge eating in females. Neuropsychopharmacology 2023; 48:1931-1940. [PMID: 37474763 PMCID: PMC10584903 DOI: 10.1038/s41386-023-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
It is well-established that stress and negative affect trigger eating disorder symptoms and that the brains of men and women respond to stress in different ways. Indeed, women suffer disproportionately from emotional or stress-related eating, as well as associated eating disorders such as binge eating disorder. Nevertheless, our understanding of the precise neural circuits driving this maladaptive eating behavior, particularly in women, remains limited. We recently established a clinically relevant model of 'emotional' stress-induced binge eating whereby only female mice display binge eating in response to an acute "emotional" stressor. Here, we combined neuroanatomic, transgenic, immunohistochemical and pathway-specific chemogenetic approaches to investigate whole brain functional architecture associated with stress-induced binge eating in females, focusing on the role of Vglut2 projections from the paraventricular thalamus (PVTVglut2+) to the medial insular cortex in this behavior. Whole brain activation mapping and hierarchical clustering of Euclidean distances revealed distinct patterns of coactivation unique to stress-induced binge eating. At a pathway-specific level, PVTVglut2+ cells projecting to the medial insular cortex were specifically activated in response to stress-induced binge eating. Subsequent chemogenetic inhibition of this pathway suppressed stress-induced binge eating. We have identified a distinct PVTVglut2+ to insular cortex projection as a key driver of "emotional" stress-induced binge eating in female mice, highlighting a novel circuit underpinning this sex-specific behavior.
Collapse
Affiliation(s)
- Roberta G Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Muthmainah Muthmainah
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Amanda M Guimarães
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Mia J O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Suheng He
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Christopher V Dayas
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Zane B Andrews
- Biomedicine Discovery Institute and department of Physiology, Monash University, Clayton, Australia
| | - Andrew J Lawrence
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia.
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
17
|
Rivera-Irizarry JK, Zallar LJ, Levine OB, Skelly MJ, Boyce JE, Barney T, Kopyto R, Pleil KE. Sex differences in binge alcohol drinking and the behavioral consequences of protracted abstinence in C57BL/6J mice. Biol Sex Differ 2023; 14:83. [PMID: 37957762 PMCID: PMC10644501 DOI: 10.1186/s13293-023-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Binge alcohol drinking is a risk factor linked to numerous disease states including alcohol use disorder (AUD). While men binge drink more alcohol than women, this demographic gap is quickly shrinking, and preclinical studies demonstrate that females consistently consume more alcohol than males. Further, women are at increased risk for the co-expression of AUD with neuropsychiatric diseases such as anxiety and mood disorders. However, little is understood about chronic voluntary alcohol drinking and its long-term effects on behavior. Here, we sought to characterize sex differences in chronic binge drinking and the effects of protracted alcohol abstinence on anxiety- and affective-related behaviors in males and females. METHODS We assessed binge alcohol drinking patterns in male and female C57BL/6J mice using a modified Drinking in the Dark (DID) paradigm in which mice received home cage access to one bottle of 10% or 20% alcohol (EtOH) or water for 2 h per day on Days 1-3 and to two bottles (EtOH/H2O + H2O) for 24 h on Day 4 for 8 weekly cycles. Mice were then tested for the effects of protracted abstinence on avoidance, affective, and compulsive behaviors. RESULTS Female mice consumed more alcohol than males consistently across cycles of DID and at 2, 4, and 24-h timepoints within the day, with a more robust sex difference for 20% than 10% EtOH. Females also consumed more water than males, an effect that emerged at the later time points; this water consumption bias diminished when alcohol was available. Further, while increased alcohol consumption was correlated with decreased water consumption in males, there was no relationship between these two measures in females. Alcohol preference was higher in 10% vs. 20% EtOH for both sexes. During protracted abstinence following chronic binge drinking, mice displayed decreased avoidance behavior (elevated plus maze, open field, novelty suppressed feeding) and increased compulsive behavior (marble burying) that was especially robust in females. There was no effect of alcohol history on stress coping and negative affective behaviors (sucrose preference, forced swim test, tail suspension) in either sex. CONCLUSION Female mice engaged in higher volume binge drinking than their male counterparts. Although females also consumed more water than males, their higher alcohol consumption was not driven by increased total fluid intake. Further, the effects of protracted abstinence following chronic binge drinking was driven by behavioral disinhibition that was more pronounced in females. Given the reciprocal relationship between risk-taking and alcohol use in neuropsychiatric disease states, these results have implications for sex-dependent alcohol drinking patterns and their long-term negative neuropsychiatric/physiological health outcomes in humans.
Collapse
Affiliation(s)
- Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Jared E Boyce
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Thaddeus Barney
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ruth Kopyto
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
18
|
Rijsketic DR, Casey AB, Barbosa DAN, Zhang X, Hietamies TM, Ramirez-Ovalle G, Pomrenze MB, Halpern CH, Williams LM, Malenka RC, Heifets BD. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. Neuropsychopharmacology 2023; 48:1798-1807. [PMID: 37248402 PMCID: PMC10579391 DOI: 10.1038/s41386-023-01613-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
The effects of context on the subjective experience of serotonergic psychedelics have not been fully examined in human neuroimaging studies, partly due to limitations of the imaging environment. Here, we administered saline or psilocybin to mice in their home cage or an enriched environment, immunofluorescently-labeled brain-wide c-Fos, and imaged iDISCO+ cleared tissue with light sheet fluorescence microscopy (LSFM) to examine the impact of environmental context on psilocybin-elicited neural activity at cellular resolution. Voxel-wise analysis of c-Fos-immunofluorescence revealed clusters of neural activity associated with main effects of context and psilocybin-treatment, which were validated with c-Fos+ cell density measurements. Psilocybin increased c-Fos expression in subregions of the neocortex, caudoputamen, central amygdala, and parasubthalamic nucleus while it decreased c-Fos in the hypothalamus, cortical amygdala, striatum, and pallidum in a predominantly context-independent manner. To gauge feasibility of future mechanistic studies on ensembles activated by psilocybin, we confirmed activity- and Cre-dependent genetic labeling in a subset of these neurons using TRAP2+/-;Ai14+ mice. Network analyses treating each psilocybin-sensitive cluster as a node indicated that psilocybin disrupted co-activity between highly correlated regions, reduced brain modularity, and dramatically attenuated intermodular co-activity. Overall, our results indicate that main effects of context and psilocybin were robust, widespread, and reorganized network architecture, whereas context×psilocybin interactions were surprisingly sparse.
Collapse
Affiliation(s)
- Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Austen B Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tuuli M Hietamies
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grecia Ramirez-Ovalle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew B Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Chen Y, Knorr E, Boisvert A, Xiao T, Kimbrough A. Prior experience with flavored alcohol increases preference for flavored alcohol but flavor does not influence binge-like drinking behavior in mice. Physiol Behav 2023; 269:114275. [PMID: 37336280 PMCID: PMC10527159 DOI: 10.1016/j.physbeh.2023.114275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Binge drinking can lead to various negative consequences and in non-experimental settings, alcohol usually contains flavoring, which may promote increased binge drinking. Preclinical models of binge-like drinking have been well established, however, the influence of flavor on alcohol preference and binge-like drinking has not been fully explored. METHODS Male and female C57BL/6 J mice were tested via two-bottle choice with alcohol flavored with different concentrations of unsweetened Cherry flavor Kool-Aid and water. Next, mice were tested for preference for flavored alcohol over plain alcohol. Consumption of flavored alcohol versus water was examined over 48 h. Binge-like drinking with flavored alcohol was validated via drinking in the dark (DID). A separate cohort of mice underwent chronic DID for 6 weeks with either flavored or plain alcohol. After chronic DID, mice were then tested for preference for flavored versus plain alcohol and then alcohol consumption despite adverse effects was examined using the quinine adulteration test. RESULTS The 0.1% Kool-Aid concentration was chosen to use for further testing based on intake. Mice preferred Kool-Aid flavored alcohol over plain alcohol after the concentration test, but mice with no prior exposure to plain or flavored alcohol preferred plain over flavored alcohol. Throughout all initial testing, female mice showed increased alcohol intake compared to male mice. Both male and female mice showed binge-like drinking of flavored alcohol, with females having higher intake and blood alcohol levels. Kool-Aid flavor did not increase alcohol intake during chronic binge-like drinking. Previous exposure to flavored alcohol during DID increased the preference for flavored alcohol over plain alcohol but did not influence alcohol consumption despite adverse effects. CONCLUSION The present study indicates that prior experience with flavored alcohol increases preference and intake, suggesting an effect of learned safety from neophobia. However, flavor does not impact binge-like alcohol consumption or alcohol drinking despite negative consequences. Additionally, the current study shows that female mice will consume more flavored alcohol than males, similar to findings from other alcohol studies.
Collapse
Affiliation(s)
- Yueyi Chen
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Emily Knorr
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Alyssa Boisvert
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Tiange Xiao
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Adam Kimbrough
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America; Purdue Institute for Integrative Neuroscience, United States of America; Purdue University, Weldon School of Biomedical Engineering, United States of America; Purdue Institute of Inflammation, Immunology, and Infectious Disease, United States of America.
| |
Collapse
|
20
|
Rivera-Irizarry JK, Zallar LJ, Levine OB, Skelly MJ, Boyce JE, Barney T, Kopyto R, Pleil KE. Sex differences in binge alcohol drinking and the behavioral consequences of protracted abstinence in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540565. [PMID: 37808817 PMCID: PMC10557617 DOI: 10.1101/2023.05.12.540565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Binge alcohol drinking is a risk factor linked to numerous disease states including alcohol use disorder (AUD). While men binge drink more alcohol than women, this demographic gap is quickly shrinking, and preclinical studies demonstrate that females consistently consume more alcohol than males. Further, women are at increased risk for the co-expression of AUD with neuropsychiatric diseases such as anxiety and mood disorders. However, little is understood about chronic voluntary alcohol drinking and its long-term effects on behavior. Here, we sought to characterize sex differences in chronic binge drinking and the effects of protracted alcohol abstinence on anxiety- and affective-related behaviors in males and females. Methods We assessed binge alcohol drinking patterns in male and female C57BL/6J mice using a modified Drinking in the Dark (DID) paradigm in which mice received home cage access to one bottle of 10% or 20% alcohol (EtOH) or water for 2 hrs per day on Days 1-3 and to two bottles (EtOH/H2O + H2O) for 24 hrs on Day 4 for eight weekly cycles. Mice were then tested for the effects of protracted abstinence on avoidance, affective, and compulsive behaviors. Results Female mice consumed more alcohol than males consistently across cycles of DID and at 2, 4, and 24-hr timepoints within the day, with a more robust sex difference for 20% than 10% EtOH. Females also consumed more water than males, an effect that emerged at the later time points; this water consumption bias diminished when alcohol was available. Further, while increased alcohol consumption was correlated with decreased water consumption in males, there was no relationship between these two measures in females. Alcohol preference was higher in 10% vs. 20% EtOH for both sexes. During protracted abstinence following chronic binge drinking, mice displayed decreased avoidance behavior (elevated plus maze, open field, novelty suppressed feeding) and increased compulsive behavior (marble burying) that was especially robust in females. There was no effect of alcohol history on stress coping and negative affective behaviors (sucrose preference, forced swim test, tail suspension) in either sex. Conclusion Female mice engaged in higher volume binge drinking than their male counterparts. Although females also consumed more water than males, their higher alcohol consumption was not driven by increased total fluid intake. Further, the effects of protracted abstinence following chronic binge drinking was driven by behavioral disinhibition that was more pronounced in females. Given the reciprocal relationship between risk-taking and alcohol use in neuropsychiatric disease states, these results have implications for sex-dependent alcohol drinking patterns and their long-term negative neuropsychiatric/physiological health outcomes in humans.
Collapse
Affiliation(s)
- Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jared E Boyce
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Thaddeus Barney
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ruth Kopyto
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
21
|
Roland AV, Coelho CAO, Haun HL, Gianessi CA, Lopez MF, D'Ambrosio S, Machinski SN, Kroenke CD, Frankland PW, Becker HC, Kash TL. Alcohol Dependence Modifies Brain Networks Activated During Withdrawal and Reaccess: A c-Fos-Based Analysis in Mice. Biol Psychiatry 2023; 94:393-404. [PMID: 36736419 PMCID: PMC10517410 DOI: 10.1016/j.biopsych.2023.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations. METHODS We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior. RESULTS During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking. CONCLUSIONS Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.
Collapse
Affiliation(s)
- Alison V Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Cesar A O Coelho
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Carol A Gianessi
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha N Machinski
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Paul W Frankland
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Wills TA. Unveiling New Brain Circuits and Network Activity in Alcohol Use Disorder: Insights From Innovative Technologies. Biol Psychiatry 2023; 94:365-366. [PMID: 37558313 DOI: 10.1016/j.biopsych.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Tiffany A Wills
- Department of Anatomy and Cell Biology, Neuroscience Center of Excellence and Alcohol and Drug Abuse Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
23
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
24
|
Kodidela S, Shaik FB, Mittameedi CM, Mugudeeswaran S. Influence of green tea on alcohol aggravated neurodegeneration of cortex, cerebellum and hippocampus of STZ-induced diabetic rats. Heliyon 2023; 9:e17385. [PMID: 37449181 PMCID: PMC10336454 DOI: 10.1016/j.heliyon.2023.e17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The main aim of this study was to evaluate the cytotoxic effects of chronic alcohol consumption on various regions of diabetic brain and preventive role of GTE. Clinical, experimental and histopathological observations indicate chronic, excessive alcohol consumption aggravates the free radical-mediated oxidative and nitrosative stress in several tissues including brain. Treatment with Epigallocatechin gallate (EGCG) significantly reduced the levels of oxidative/nitrosative stress paradigms, increased glutathione (GSH) levels and enhanced the activities of antioxidant enzymes. Histopathology evaluation revealed the possible influence of EGCG in reversing alcohol exacerbated diabetes-induced damage in cortex, cerebellum and hippocampus of brain. Furthermore, these studies have provided evidence to show how EGCG can exactly occupy the position in functional sites of nNOS (neuronal nitric oxide synthase) and induce a conformational change, inhibition of enzymatic activity and prevention of neurodegeneration/necrotic changes of tissue, in comparison with the rosiglitazone and glibenclamide. To summarise, this research has offered useful information on the action of EGCG that would provide potential protection against ethanol exacerbated diabetic brain damageand additional evidence for the use of EGCG as a lead compound for drug discovery.
Collapse
Affiliation(s)
- Swarnalatha Kodidela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | - Sivanandam Mugudeeswaran
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamilnadu, India
| |
Collapse
|
25
|
Xiao T, Chen Y, Boisvert A, Cole M, Kimbrough A. Chronic Intermittent Ethanol Vapor Exposure Paired with Two-Bottle Choice to Model Alcohol Use Disorder. J Vis Exp 2023:10.3791/65320. [PMID: 37427930 PMCID: PMC11164185 DOI: 10.3791/65320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic alcohol-related disorder that typically presents as uncontrolled drinking and preoccupation with alcohol. A key component of AUD research is using translationally relevant preclinical models. Over the past several decades, a variety of animal models have been used to study AUD. One prominent model of AUD is the chronic intermittent ethanol vapor exposure (CIE) model, which is a well-established approach for inducing alcohol dependence in rodents through repeated cycles of ethanol exposure via inhalation. To model AUD in mice, the CIE exposure is paired with a voluntary two-bottle choice (2BC) of alcohol drinking and water to measure the escalation of alcohol drinking. The 2BC/CIE procedure involves alternating weeks of 2BC drinking and CIE, which repeat until the escalation of alcohol drinking is achieved. In the present study, we outline the procedures for performing 2BC/CIE, including the daily use of the CIE vapor chamber, and provide an example of escalated alcohol drinking in C57BL/6J mice using this approach.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Alyssa Boisvert
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | | | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University; Purdue Institute for Integrative Neuroscience; Weldon School of Biomedical Engineering, Purdue University; Purdue Institute of Inflammation, Immunology, and Infectious Disease;
| |
Collapse
|
26
|
Carrette LLG, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. eNeuro 2023; 10:ENEURO.0019-23.2023. [PMID: 37295945 PMCID: PMC10306126 DOI: 10.1523/eneuro.0019-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, California 92093
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Andres Collazo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Olivier George
- Department of Psychiatry, UC San Diego, California 92093
| |
Collapse
|
27
|
Carrette LL, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534836. [PMID: 37034602 PMCID: PMC10081261 DOI: 10.1101/2023.03.29.534836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| | - Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Andres Collazo
- Beckman Institute, CalTech, Pasadena, CA, 91125, United States
| | - Olivier George
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| |
Collapse
|
28
|
Stefaniuk M, Pawłowska M, Barański M, Nowicka K, Zieliński Z, Bijoch Ł, Legutko D, Majka P, Bednarek S, Jermakow N, Wójcik D, Kaczmarek L. Global brain c-Fos profiling reveals major functional brain networks rearrangements after alcohol reexposure. Neurobiol Dis 2023; 178:106006. [PMID: 36682503 DOI: 10.1016/j.nbd.2023.106006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland.
| | - Monika Pawłowska
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Institute of Experimental Physics, Section of Optics, Warsaw University, Warsaw, Poland
| | - Marcin Barański
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | | | - Łukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Laboratory of Neuronal Plasticity, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Diana Legutko
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Daniel Wójcik
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| |
Collapse
|
29
|
Rijsketic DR, Casey AB, Barbosa DA, Zhang X, Hietamies TM, Ramirez-Ovalle G, Pomrenze M, Halpern CH, Williams LM, Malenka RC, Heifets BD. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.528997. [PMID: 36865251 PMCID: PMC9980055 DOI: 10.1101/2023.02.19.528997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of context on the subjective experience of serotonergic psychedelics have not been fully examined in human neuroimaging studies, partly due to limitations of the imaging environment. Here, we administered saline or psilocybin to mice in their home cage or an enriched environment, immunofluorescently-labeled brain-wide c-Fos, and imaged cleared tissue with light sheet microscopy to examine the impact of context on psilocybin-elicited neural activity at cellular resolution. Voxel-wise analysis of c-Fos-immunofluorescence revealed differential neural activity, which we validated with c-Fos + cell density measurements. Psilocybin increased c-Fos expression in the neocortex, caudoputamen, central amygdala, and parasubthalamic nucleus and decreased c-Fos in the hypothalamus, cortical amygdala, striatum, and pallidum. Main effects of context and psilocybin-treatment were robust, widespread, and spatially distinct, whereas interactions were surprisingly sparse.
Collapse
Affiliation(s)
- Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austen B. Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel A.N. Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Tuuli M. Hietamies
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grecia Ramirez-Ovalle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Casey H. Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Robert C. Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Boris D. Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, Kaczmarek L, Beroun A. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023; 13:20. [PMID: 36683039 PMCID: PMC9868126 DOI: 10.1038/s41398-023-02318-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Natural rewards, such as food, and sex are appetitive stimuli available for animals in their natural environment. Similarly, addictive rewards such as drugs of abuse possess strong, positive valence, but their action relies on their pharmacological properties. Nevertheless, it is believed that both of these kinds of rewards activate similar brain circuitry. The present study aimed to discover which parts of the brain process the experience of natural and addictive rewards. To holistically address this question, we used a single-cell whole-brain imaging approach to find patterns of activation for acute and prolonged sucrose and cocaine exposure. We analyzed almost 400 brain structures and created a brain-wide map of specific, c-Fos-positive neurons engaged by these rewards. Acute but not prolonged sucrose exposure triggered a massive c-Fos expression throughout the brain. Cocaine exposure on the other hand potentiated c-Fos expression with prolonged use, engaging more structures than sucrose treatment. The functional connectivity analysis unraveled an increase in brain modularity after the initial exposure to both types of rewards. This modularity was increased after repeated cocaine, but not sucrose, intake. To check whether discrepancies between the processing of both types of rewards can be found on a cellular level, we further studied the nucleus accumbens, one of the most strongly activated brain structures by both sucrose and cocaine experience. We found a high overlap between natural and addictive rewards on the level of c-Fos expression. Electrophysiological measurements of cellular correlates of synaptic plasticity revealed that natural and addictive rewards alike induce the accumulation of silent synapses. These results strengthen the hypothesis that in the nucleus accumbens drugs of abuse cause maladaptive neuronal plasticity in the circuitry that typically processes natural rewards.
Collapse
Affiliation(s)
- Łukasz Bijoch
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Klos
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Monika Pawłowska
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland ,grid.12847.380000 0004 1937 1290Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Justyna Wiśniewska
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Diana Legutko
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szachowicz
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
31
|
de Guglielmo G, Simpson S, Kimbrough A, Conlisk D, Baker R, Cantor M, Kallupi M, George O. Voluntary and forced exposure to ethanol vapor produces similar escalation of alcohol drinking but differential recruitment of brain regions related to stress, habit, and reward in male rats. Neuropharmacology 2023; 222:109309. [PMID: 36334765 PMCID: PMC10022477 DOI: 10.1016/j.neuropharm.2022.109309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
A major limitation of the most widely used current animal models of alcohol dependence is that they use forced exposure to ethanol including ethanol-containing liquid diet and chronic intermittent ethanol (CIE) vapor to produce clinically relevant blood alcohol levels (BAL) and addiction-like behaviors. We recently developed a novel animal model of voluntary induction of alcohol dependence using ethanol vapor self-administration (EVSA). However, it is unknown whether EVSA leads to an escalation of alcohol drinking per se, and whether such escalation is associated with neuroadaptations in brain regions related to stress, reward, and habit. To address these issues, we compared the levels of alcohol drinking during withdrawal between rats passively exposed to alcohol (CIE) or voluntarily exposed to EVSA and measured the number of Fos+ neurons during acute withdrawal (16 h) in key brain regions important for stress, reward, and habit-related processes. CIE and EVSA rats exhibited similar BAL and similar escalation of alcohol drinking and motivation for alcohol during withdrawal. Acute withdrawal from EVSA and CIE recruited a similar number of Fos+ neurons in the Central Amygdala (CeA), however, acute withdrawal from EVSA recruited a higher number of Fos+ neurons in every other brain region analyzed compared to acute withdrawal from CIE. In summary, while the behavioral measures of alcohol dependence between the voluntary (EVSA) and passive (CIE) model were similar, the recruitment of neuronal ensembles during acute withdrawal was very different. The EVSA model may be particularly useful to unveil the neuronal networks and pharmacology responsible for the voluntary induction and maintenance of alcohol dependence and may improve translational studies by providing preclinical researchers with an animal model that highlights the volitional aspects of alcohol use disorder.
Collapse
Affiliation(s)
| | - Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47906, USA
| | - Dana Conlisk
- Univ. Bordeaux, INSERM, Neurocenter Magendie, Psychobiology of Drug Addiction Group, U1215, F-33000, Bordeaux, France
| | - Robert Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maxwell Cantor
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Terstege DJ, Epp JR. Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals. BIOLOGY 2022; 12:34. [PMID: 36671727 PMCID: PMC9855808 DOI: 10.3390/biology12010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions. Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal models. Here, we provide an overview of the necessary steps required to perform IEG-based analyses of functional connectivity. We also outline important considerations when designing such experiments and demonstrate the implications of these considerations using an IEG-based network dataset generated for the purpose of this review.
Collapse
Affiliation(s)
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
33
|
Madangopal R, Szelenyi ER, Nguyen J, Brenner MB, Drake OR, Pham DQ, Shekara A, Jin M, Choong JJ, Heins C, Komer LE, Weber SJ, Hope BT, Shaham Y, Golden SA. Incubation of palatable food craving is associated with brain-wide neuronal activation in mice. Proc Natl Acad Sci U S A 2022; 119:e2209382119. [PMID: 36603188 PMCID: PMC9659381 DOI: 10.1073/pnas.2209382119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Eric R. Szelenyi
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
| | - Joseph Nguyen
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Megan B. Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Olivia R. Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Diana Q. Pham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Aniruddha Shekara
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Jia Jie Choong
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Conor Heins
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Lauren E. Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Sophia J. Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Bruce T. Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Sam A. Golden
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
| |
Collapse
|
34
|
Wolstenholme JT, Saunders JM, Smith M, Kang JD, Hylemon PB, González-Maeso J, Fagan A, Zhao D, Sikaroodi M, Herzog J, Shamsaddini A, Peña-Rodríguez M, Su L, Tai YL, Zheng J, Cheng PC, Sartor RB, Gillevet PM, Zhou H, Bajaj JS. Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice. Nat Commun 2022; 13:6198. [PMID: 36261423 PMCID: PMC9581985 DOI: 10.1038/s41467-022-34054-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder is a major cause of morbidity, which requires newer treatment approaches. We previously showed in a randomized clinical trial that alcohol craving and consumption reduces after fecal transplantation. Here, to determine if this could be transmitted through microbial transfer, germ-free male C57BL/6 mice received stool or sterile supernatants collected from the trial participants pre-/post-fecal transplant. We found that mice colonized with post-fecal transplant stool but not supernatants reduced ethanol acceptance, intake and preference versus pre-fecal transplant colonized mice. Microbial taxa that were higher in post-fecal transplant humans were also associated with lower murine alcohol intake and preference. A majority of the differentially expressed genes (immune response, inflammation, oxidative stress response, and epithelial cell proliferation) occurred in the intestine rather than the liver and prefrontal cortex. These findings suggest a potential for therapeutically targeting gut microbiota and the microbial-intestinal interface to alter gut-liver-brain axis and reduce alcohol consumption in humans.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- VCU-Alcohol Research Center and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren Smith
- VCU-Alcohol Research Center and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason D Kang
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B Hylemon
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Derrick Zhao
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeremy Herzog
- National Gnotobiotic Rodent Research Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Marcela Peña-Rodríguez
- University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lianyong Su
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun-Ling Tai
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jing Zheng
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Po-Cheng Cheng
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - R Balfour Sartor
- National Gnotobiotic Rodent Research Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Huiping Zhou
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA.
| |
Collapse
|
35
|
Körber C, Sommer WH. From ensembles to meta-ensembles: Specific reward encoding by correlated network activity. Front Behav Neurosci 2022; 16:977474. [PMID: 36177094 PMCID: PMC9513968 DOI: 10.3389/fnbeh.2022.977474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal ensembles are local, sparsely distributed populations of neurons that are reliably re-activated by a specific stimulus, context or task. Such discrete cell populations can be defined either functionally, by electrophysiological recordings or in vivo calcium imaging, or anatomically, using the expression of markers such as the immediate early gene cFos. A typical example of tasks that involve the formation of neuronal ensembles is reward learning, such as the cue-reward pairing during operant conditioning. These ensembles are re-activated during cue-presentation and increasing evidence suggests that this re-activation is the neurophysiological basis for the execution of reward-seeking behavior. Whilst the pursuit of rewards is a common daily activity, it is also related to the consumption of drugs, such as alcohol, and may result in problematic behaviors including addiction. Recent research has identified neuronal ensembles in several reward-related brain regions that control distinct aspects of a conditioned response, e.g., contextual information about the availability of a specific reward or the actions needed to retrieve this reward under the given circumstances. Here, we review studies using the activity marker cFos to identify and characterize neuronal ensembles related to alcohol and non-drug rewards with a special emphasis on the discrimination between different rewards by meta-ensembles, i.e., by dynamic co-activation of multiple ensembles across different brain areas.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Sommer
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
36
|
Uzungil V, Tran H, Aitken C, Wilson C, Opazo CM, Li S, Payet JM, Mawal CH, Bush AI, Hale MW, Hannan AJ, Renoir T. Novel Antidepressant-Like Properties of the Iron Chelator Deferiprone in a Mouse Model of Depression. Neurotherapeutics 2022; 19:1662-1685. [PMID: 35861925 PMCID: PMC9606181 DOI: 10.1007/s13311-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/17/2022] Open
Abstract
Depressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT). Brain and blood iron levels were also measured following acute deferiprone. To determine the relevant brain regions activated by deferiprone, we then measured c-Fos expression and applied network-based analyses. We found that deferiprone reduced immobility time in the PST in 5-HTT KO mice and reduced latency to feed in the NSFT in both genotypes, suggesting potential antidepressant-like effects. There was no effect on brain or blood iron levels following deferiprone treatment, potentially indicating an acute iron-independent mechanism. Deferiprone reversed the increase in c-Fos expression induced by swim stress in 5-HTT KO mice in the lateral amygdala. Functional network analyses suggest that hub regions of activity in mice treated with deferiprone include the caudate putamen and prefrontal cortex. The PST-induced increase in network modularity in wild-type mice was not observed in 5-HTT KO mice. Altogether, our data show that the antidepressant-like effects of deferiprone could be acting via an iron-independent mechanism and that these therapeutic effects are underpinned by changes in neuronal activity in the lateral amygdala.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Connor Aitken
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
37
|
Goldfarb EV, Scheinost D, Fogelman N, Seo D, Sinha R. High-Risk Drinkers Engage Distinct Stress-Predictive Brain Networks. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:805-813. [PMID: 35272096 PMCID: PMC9378362 DOI: 10.1016/j.bpsc.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive alcohol intake is a major public health problem and can be triggered by stress. Heavy drinking in patients with alcohol use disorder also alters neural, physiological, and emotional stress responses. However, it is unclear whether adaptations in stress-predictive brain networks can be an early marker of risky drinking behavior. METHODS Risky social drinkers (regular bingers; n = 53) and light drinker control subjects (n = 51) aged 18 to 53 years completed a functional magnetic resonance imaging-based sustained stress protocol with repeated measures of subjective stress state, during which whole-brain functional connectivity was computed. This was followed by prospective daily ecological momentary assessment for 30 days. We used brain computational predictive modeling with cross-validation to identify unique brain connectivity predictors of stress in risky drinkers and determine the prospective utility of stress-brain networks for subsequent loss of control over drinking. RESULTS Risky drinkers had anatomically and functionally distinct stress-predictive brain networks (showing stronger predictions from visual and motor networks) compared with light drinkers (default mode and frontoparietal networks). Stress-predictive brain networks defined for risky drinkers selectively predicted future real-world stress levels for risky drinkers and successfully predicted prospective future real-world loss of control over drinking across all participants. CONCLUSIONS These results indicate adaptations in computationally derived stress-related brain circuitry among high-risk drinkers, suggesting potential targets for early preventive intervention and revealing the malleability of the neural processes that govern stress responses.
Collapse
Affiliation(s)
- Elizabeth V. Goldfarb
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511,Yale Stress Center, Yale School of Medicine, New Haven, CT 06519,Department of Psychology, Yale University, New Haven, CT 06511,Wu Tsai Institute, Yale University, New Haven, CT 06520
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven,,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520,Department of Statistics and Data Science, Yale University, New Haven, CT 06511,Child Study Center, Yale University School of Medicine, New Haven, CT 06519
| | - Nia Fogelman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511,Yale Stress Center, Yale School of Medicine, New Haven, CT 06519
| | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511,Yale Stress Center, Yale School of Medicine, New Haven, CT 06519
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut; Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
38
|
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T. Importin α3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front Neurosci 2022; 16:905991. [PMID: 35844217 PMCID: PMC9279672 DOI: 10.3389/fnins.2022.905991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin β1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro Yoneda
- National Institutes for Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Takatoshi Hikida,
| |
Collapse
|
39
|
Degiorgis L, Arefin TM, Ben-Hamida S, Noblet V, Antal C, Bienert T, Reisert M, von Elverfeldt D, Kieffer BL, Harsan LA. Translational Structural and Functional Signatures of Chronic Alcohol Effects in Mice. Biol Psychiatry 2022; 91:1039-1050. [PMID: 35654559 DOI: 10.1016/j.biopsych.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol. Here, we combined structural and functional magnetic resonance imaging and connectome mapping in mice to establish brain-wide fingerprints of alcohol effects with translatable potential. METHODS Mice underwent a chronic intermittent alcohol drinking protocol for 6 weeks before being imaged under medetomidine anesthesia. We performed open-ended multivariate analysis of structural data and functional connectivity mapping on the same subjects. RESULTS Structural analysis showed alcohol effects for the prefrontal cortex/anterior insula, hippocampus, and somatosensory cortex. Integration with microglia histology revealed distinct alcohol signatures, suggestive of advanced (prefrontal cortex/anterior insula, somatosensory cortex) and early (hippocampus) inflammation. Functional analysis showed major alterations of insula, ventral tegmental area, and retrosplenial cortex connectivity, impacting communication patterns for salience (insula), reward (ventral tegmental area), and default mode (retrosplenial cortex) networks. The insula appeared as a most sensitive brain center across structural and functional analyses. CONCLUSIONS This study demonstrates alcohol effects in mice, which possibly underlie lower top-down control and impaired hedonic balance documented at the behavioral level, and aligns with neuroimaging findings in humans despite the potential limitation induced by medetomidine sedation. This study paves the way to identify further biomarkers and to probe neurobiological mechanisms of alcohol effects using genetic and pharmacological manipulations in mouse models of alcohol drinking and dependence.
Collapse
Affiliation(s)
- Laetitia Degiorgis
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Tanzil Mahmud Arefin
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| | - Sami Ben-Hamida
- INSERM U1114, University Hospital of Strasbourg, Strasbourg, France; INSERM U1247, research group on alcohol and pharmacodependance (GRAP), University of Picardie Jules-Verne, Amiens, France
| | - Vincent Noblet
- Images, Learning, Geometry and Statistics team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Cristina Antal
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Faculty of Medicine, Histology Institute and Unité Fonctionnelle de Foetopathologie, University Hospital of Strasbourg, Strasbourg, France
| | - Thomas Bienert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | | | - Laura-Adela Harsan
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Department of Biophysics and Nuclear Medicine, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
40
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
41
|
Pérez-Ramírez Ú, López-Madrona VJ, Pérez-Segura A, Pallarés V, Moreno A, Ciccocioppo R, Hyytiä P, Sommer WH, Moratal D, Canals S. Brain Network Allostasis after Chronic Alcohol Drinking Is Characterized by Functional Dedifferentiation and Narrowing. J Neurosci 2022; 42:4401-4413. [PMID: 35437279 PMCID: PMC9145238 DOI: 10.1523/jneurosci.0389-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use disorder (AUD) causes complex alterations in the brain that are poorly understood. The heterogeneity of drinking patterns and the high incidence of comorbid factors compromise mechanistic investigations in AUD patients. Here we used male Marchigian Sardinian alcohol-preferring (msP) rats, a well established animal model of chronic alcohol drinking, and a combination of longitudinal resting-state fMRI and manganese-enhanced MRI to provide objective measurements of brain connectivity and activity, respectively. We found that 1 month of chronic alcohol drinking changed the correlation between resting-state networks. The change was not homogeneous, resulting in the reorganization of pairwise interactions and a shift in the equilibrium of functional connections. We identified two fundamentally different forms of network reorganization. First is functional dedifferentiation, which is defined as a regional increase in neuronal activity and overall correlation, with a concomitant decrease in preferential connectivity between specific networks. Through this mechanism, occipital cortical areas lost their specific interaction with sensory-insular cortex, striatal, and sensorimotor networks. Second is functional narrowing, which is defined as an increase in neuronal activity and preferential connectivity between specific brain networks. Functional narrowing strengthened the interaction between striatal and prefrontocortical networks, involving the anterior insular, cingulate, orbitofrontal, prelimbic, and infralimbic cortices. Importantly, these two types of alterations persisted after alcohol discontinuation, suggesting that dedifferentiation and functional narrowing rendered persistent network states. Our results support the idea that chronic alcohol drinking, albeit at moderate intoxicating levels, induces an allostatic change in the brain functional connectivity that propagates into early abstinence.SIGNIFICANCE STATEMENT Excessive consumption of alcohol is positioned among the top five risk factors for disease and disability. Despite this priority, the transformations that the nervous system undergoes from an alcohol-naive state to a pathologic alcohol drinking are not well understood. In our study, we use an animal model with proven translational validity to study this transformation longitudinally. The results show that shortly after chronic alcohol consumption there is an increase in redundant activity shared by brain structures, and the specific communication shrinks to a set of pathways. This functional dedifferentiation and narrowing are not reversed immediately after alcohol withdrawal but persist during early abstinence. We causally link chronic alcohol drinking with an early and abstinence-persistent retuning of the functional equilibrium of the brain.
Collapse
Affiliation(s)
- Úrsula Pérez-Ramírez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Víctor J López-Madrona
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrés Pérez-Segura
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Vicente Pallarés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, E-46022 Valencia, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
42
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
43
|
Jin M, Nguyen JD, Weber SJ, Mejias-Aponte CA, Madangopal R, Golden SA. SMART: An Open-Source Extension of WholeBrain for Intact Mouse Brain Registration and Segmentation. eNeuro 2022; 9:ENEURO.0482-21.2022. [PMID: 35396258 PMCID: PMC9070730 DOI: 10.1523/eneuro.0482-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mapping immediate early gene (IEG) expression across intact mouse brains allows for unbiased identification of brain-wide activity patterns underlying complex behaviors. Accurate registration of sample brains to a common anatomic reference is critical for precise assignment of IEG-positive ("active") neurons to known brain regions of interest (ROIs). While existing automated voxel-based registration methods provide a high-throughput solution, they require substantial computing power, can be difficult to implement and fail when brains are damaged or only partially imaged. Additionally, it is challenging to cross-validate these approaches or compare them to any preexisting literature based on serial coronal sectioning. Here, we present the open-source R package SMART (Semi-Manual Alignment to Reference Templates) that extends the WholeBrain R package framework to automated segmentation and semi-automated registration of intact mouse brain light-sheet fluorescence microscopy (LSFM) datasets. The SMART package was created for novice programmers and introduces a streamlined pipeline for aligning, registering, and segmenting LSFM volumetric datasets across the anterior-posterior (AP) axis, using a simple "choice game" and interactive menus. SMART provides the flexibility to register whole brains, partial brains or discrete user-chosen images, and is fully compatible with traditional sectioned coronal slice-based analyses. We demonstrate SMART's core functions using example datasets and provide step-by-step video tutorials for installation and implementation of the package. We also present a modified iDISCO+ tissue clearing procedure for uniform immunohistochemical labeling of the activity marker Fos across intact mouse brains. The SMART pipeline, in conjunction with the modified iDISCO+ Fos procedure, is ideally suited for examination and orthogonal cross-validation of brain-wide neuronal activation datasets.
Collapse
Affiliation(s)
- Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Joseph D Nguyen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Carlos A Mejias-Aponte
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle 98195, WA
| |
Collapse
|
44
|
Bloch S, Holleran KM, Kash TL, Vazey EM, Rinker JA, Lebonville CL, O'Hara K, Lopez MF, Jones SR, Grant KA, Becker HC, Mulholland PJ. Assessing negative affect in mice during abstinence from alcohol drinking: Limitations and future challenges. Alcohol 2022; 100:41-56. [PMID: 35181404 PMCID: PMC8983487 DOI: 10.1016/j.alcohol.2022.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.
Collapse
Affiliation(s)
- Solal Bloch
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Christina L Lebonville
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Krysten O'Hara
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Marcelo F Lopez
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Howard C Becker
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
45
|
N 6-substituated adenosine analog J4 attenuates anxiety-like behaviors in mice. Psychopharmacology (Berl) 2022; 239:887-895. [PMID: 35102423 PMCID: PMC9063204 DOI: 10.1007/s00213-022-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
RATIONALE Withdrawal from chronic alcohol exposure produces various physical and mental withdrawal symptoms. Activation of adenosine receptors is known to inhibit withdrawal-induced excitation. However, limited studies investigate how adenosine analogs may prove helpful tools to alleviate alcohol withdrawal-related affective behaviors. OBJECTIVES This study aimed to investigate the effects of J4 compared with saline using the mice vapor or voluntary ethanol drinking model on behavioral endpoints representing ethanol-withdrawal negative emotionality commonly observed during abstinence from chronic alcohol use. METHODS We subjected C57BL/6 J mice to chronic intermittent ethanol (CIE) exposure schedule to investigate how 72-h withdrawal from alcohol alters affective-like behavior. Next, we determined how treatment with J4, a second-generation adenosine analog, influenced affective behaviors produced by alcohol withdrawal. Finally, we determined how J4 treatment alters voluntary ethanol drinking using the two-bottle-choice drinking paradigm. RESULTS Our results show that 72-h withdrawal from chronic intermittent ethanol exposure produces limited affective-like disturbances in male C57BL/6 J mice exposed to 4 cycles ethanol vapor. Most importantly, J4 treatment irrespective of ethanol exposure decreases innate anxiety-like behavior in mice. CONCLUSIONS Withdrawal from chronic intermittent ethanol exposure and subsequent behavioral testing 72 h later produces minimal affective-like behavior. J4 treatment did however reduce marble-burying behavior and increased time spent in open arms of the elevated plus maze, suggesting J4 may be useful as a general anxiolytic.
Collapse
|
46
|
Muelbl MJ, Glaeser BL, Shah AS, Chiariello RA, Nawarawong NN, Stemper BD, Budde MD, Olsen CM. Repeated blast mild traumatic brain injury and oxycodone self-administration produce interactive effects on neuroimaging outcomes. Addict Biol 2022; 27:e13134. [PMID: 35229952 PMCID: PMC8896287 DOI: 10.1111/adb.13134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc) and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the blood oxygen level dependent (BOLD) response, and that intra-hemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional magnetic resonance imaging (MRI) measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.
Collapse
Affiliation(s)
- Matthew J. Muelbl
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Breanna L. Glaeser
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Rachel A. Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Natalie N. Nawarawong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Deparment of Pharmacology & Toxicology, University of Texas at Austin
| | - Brian D. Stemper
- Joint Department of Biomedical Engineering, Marquette University, 1515 W. Wisconsin Ave, Milwaukee WI, 53233, USA and Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Matthew D. Budde
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Corresponding author: Christopher M. Olsen, PhD, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Phone: (414) 955-7629,
| |
Collapse
|
47
|
Shah T, Dunning JL, Contet C. At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 2022; 204:108906. [PMID: 34856204 PMCID: PMC8688299 DOI: 10.1016/j.neuropharm.2021.108906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.
Collapse
Affiliation(s)
- Tanvi Shah
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
48
|
Zhang G, Liu H, Zheng H, Li N, Kong L, Zheng W. Analysis on topological alterations of functional brain networks after acute alcohol intake using resting-state functional magnetic resonance imaging and graph theory. Front Hum Neurosci 2022; 16:985986. [PMID: 36226262 PMCID: PMC9549745 DOI: 10.3389/fnhum.2022.985986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
AIMS Alcohol consumption could lead to a series of health problems and social issues. In the current study, we investigated the resting-state functional brain networks of healthy volunteers before and after drinking through graph-theory analysis, aiming to ascertain the effects of acute alcohol intake on topology and information processing mode of the functional brain networks. MATERIALS AND METHODS Thirty-three healthy volunteers were enrolled in this experiment. Each volunteer accepted alcohol breathalyzer tests followed by resting-state magnetic resonance imaging at three time points: before drinking, 0.5 h after drinking, and 1 h after drinking. The data obtained were grouped based on scanning time into control group, 0.5-h group and 1-h group, and post-drinking data were regrouped according to breath alcohol concentration (BrAC) into relative low BrAC group (A group; 0.5-h data, n = 17; 1-h data, n = 16) and relative high BrAC group (B group; 0.5-h data, n = 16; 1-h data, n = 17). The graph-theory approach was adopted to construct whole-brain functional networks and identify the differences of network topological properties among all the groups. RESULTS The network topology of most groups was altered after drinking, with the B group presenting the most alterations. For global network measures, B group exhibited increased global efficiency, Synchronization, and decreased local efficiency, clustering coefficient, normalized clustering coefficient, characteristic path length, normalized characteristic path length, as compared to control group. Regarding nodal network measures, nodal clustering coefficient and nodal local efficiency of some nodes were lower in B group than control group. These changes suggested that the network integration ability and synchrony improved, while the segregation ability diminished. CONCLUSION This study revealed the effects of acute alcohol intake on the topology and information processing mode of resting-state functional brain networks, providing new perceptions and insights into the effects of alcohol on the brain.
Collapse
Affiliation(s)
- Gengbiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Hongkun Liu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Hongyi Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Ni Li
- The Family Medicine Branch, Department of Radiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lingmei Kong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
49
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
50
|
Alderson Myers AB, Arienzo D, Molnar SM, Marinkovic K. Local and network-level dysregulation of error processing is associated with binge drinking. NEUROIMAGE-CLINICAL 2021; 32:102879. [PMID: 34768146 PMCID: PMC8591397 DOI: 10.1016/j.nicl.2021.102879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023]
Abstract
Go/NoGo performance does not differ between binge (BDs) and light drinkers. BDs show greater BOLD activity to inhibition errors primarily in prefrontal areas. Greater functional connectivity in the frontal cortex correlates with drinking. Observed increase in error-related activity may serve a compensatory role. This is consistent with allostatic hyperexcitability reflecting neuroadaptation.
Binge drinking refers to the pattern of alcohol consumption that brings blood alcohol levels to or above legal intoxication levels. Commonly practiced by young adults, it is associated with neurofunctional alterations, raising health-related concerns. Executive deficits may contribute to the inability to refrain from excessive alcohol intake. As a facet of cognitive control, error processing allows for flexible modification of behavior to optimize future outcomes. It is highly relevant to addiction research, as a failure to inhibit excessive drinking results in relapses, which is a hallmark of alcohol use disorder. However, research on local and system-level neural underpinnings of inhibition failures as a function of binge drinking is limited. To address these gaps, functional magnetic resonance imaging (fMRI) was used to examine local changes and interregional functional connectivity during response inhibition errors on a Go/NoGo task. Young adult binge drinkers (BDs) performed equally well as light drinkers (LDs), a group of demographically matched individuals who drink regularly but in low-risk patterns. In contrast, BDs exhibited greater fMRI activity to inhibition errors contrasted with correct NoGo trials in the rostral anterior (rACC) and posterior cingulate cortices (PCC), as well as right middle frontal gyrus (R-MFG). Furthermore, BDs showed increased connectivity between the rACC and right lateral prefrontal cortex, in addition to greater connectivity between the R-MFG and the left ventrolateral and superior frontal cortices. Imaging indices were positively correlated only with alcohol-related measures, but not with those related to moods, disposition, or cognitive capacity. Taken together, greater error-related activity and expanded functional connectivity among prefrontal regions may serve a compensatory role to maintain efficiency of inhibitory control. Aligned with prominent models of addiction, these findings accentuate the importance of top-down control in maintaining low-risk drinking levels. They provide insight into potentially early signs of deteriorating cognitive control functions in BDs and may help guide intervention strategies aimed at preventing excessive drinking habits.
Collapse
Affiliation(s)
- Austin B Alderson Myers
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Donatello Arienzo
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Sean M Molnar
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|