1
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
|
2
|
Sotgia S, Mangoni AA, Zoroddu S, Di Lorenzo B, Zinellu A, Carru C, McEvoy M. Higher scores of the Kessler Psychological Distress Scale (K10) are associated with lower serum ergothioneine and higher serum asymmetric dimethyl-l-arginine concentrations in a cohort of middle-aged and older adults. Clin Nutr ESPEN 2024; 64:107-113. [PMID: 39349102 DOI: 10.1016/j.clnesp.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Ergothioneine (ERT) and asymmetric dimethyl-l-arginine (ADMA) have been associated with cognitive decline and dementia in older adults, but their interplay with psychological distress remains unexplored. This study aimed to measure the serum concentrations of ERT and ADMA in a representative sample of older community-dwelling adults and to determine their association with psychological distress. METHODS Data on clinical, lifestyle, demographic characteristics, and serum concentrations of ERT and ADMA were collected from a population-based sample of older Australian adults (mean age 65.5 ± 7.5 years) from the Hunter Community Study. Psychological distress was assessed using the self-reported Kessler Psychological Distress Scale (K10). RESULTS In individuals with psychological distress, serum ERT concentrations decreased by 24 %, while ADMA concentrations increased by 6 %. In adjusted analysis, accounting for age and sex, only ERT remained independently associated with psychological distress. For each unit increase in ERT, the odds of experiencing psychological distress decreased by approximately 68 %. CONCLUSION The trend of decreasing serum ERT concentrations observed in older adults with increasing psychological distress suggests a potential link between this compound and mental health. Given the dietary origin of ERT, its integration offers therapeutic opportunities that warrant investigation in intervention studies.
Collapse
Affiliation(s)
- Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Stefano Zoroddu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Mark McEvoy
- Department of Rural Health, La Trobe Rural Health School, College of Science, Health and Engineering, La Trobe University, Bendigo, Australia
| |
Collapse
|
3
|
Pu Y, Sun Z, Zhang H, Huang Q, Wang Z, Mei Z, Wang P, Kong M, Yang W, Lin C, Zhou X, Lin S, Huang Q, Huang L, Sun L, Yuan C, Xu Q, Tang H, Wang X, Zheng Y. Gut microbial features and circulating metabolomic signatures of frailty in older adults. NATURE AGING 2024; 4:1249-1262. [PMID: 39054372 DOI: 10.1038/s43587-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Frailty, a multidimensional indicator of suboptimal aging, reflects cumulative declines across multiple physiological systems. Although age-related changes have been reported in gut microbiota, their role in healthy aging remains unclear. In this study, we calculated frailty index (FI) from 33 health-related items to reflect the overall health status of 1,821 older adults (62-96 years, 55% female) and conducted multi-omics analysis using gut metagenomic sequencing data and plasma metabolomic data. We identified 18 microbial species and 17 metabolites shifted along with frailty severity, with stronger links observed in females. The associations of nine species, including various Clostridium species and Faecalibacterium prausnitzii, with FI were reproducible in two external populations. Plasma glycerol levels, white blood cell count and kidney function partially mediated these associations. A composite microbial score derived from FI significantly predicted 2-year mortality (adjusted hazard ratio across extreme quartiles, 2.86; 95% confidence interval, 1.38-5.93), highlighting the potential of microbiota-based strategies for risk stratification in older adults.
Collapse
Affiliation(s)
- Yanni Pu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengdong Wang
- Department of Gastroenterology, Rugao People's Hospital, Rugao, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peilu Wang
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Mengmeng Kong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjun Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuchun Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiumin Huang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Huang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Sun
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xu
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Fermín-Martínez CA, Ramírez-García D, Antonio-Villa NE, López-Teros MT, Seiglie JA, Pérez RCC, Peña CG, Gutiérrez-Robledo LM, Bello-Chavolla OY. Disentangling the relationship between biological age and frailty in community-dwelling older Mexican adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.20.24312308. [PMID: 39228729 PMCID: PMC11370533 DOI: 10.1101/2024.08.20.24312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Older adults have heterogeneous aging rates. Here, we explored the impact of biological age (BA) and accelerated aging on frailty in community-dwelling older adults. METHODS We assessed 735 community-dwelling older adults from the Coyocan Cohort. BA was measured using AnthropoAge, accelerated aging with AnthropoAgeAccel, and frailty using both Fried's phenotype and the frailty index. We explored the association of BA and accelerated aging (AnthropoAgeAccel ≥0) with frailty at baseline and characterized the impact of both on body composition and physical function. We also explored accelerated aging as a risk factor for frailty progression after 3-years of follow-up. RESULTS Older adults with accelerated aging have higher frailty prevalence and indices, lower handgrip strength and gait speed. AnthropoAgeAccel was associated with higher frailty indices (β=0.0053, 95%CI 0.0027-0.0079), and increased odds of frailty at baseline (OR 1.16, 95%CI 1.09-1.25). We observed a sexual dimorphism in body composition and physical function linked to accelerated aging in non-frail participants; however, this dimorphism was absent in pre-frail/frail participants. Accelerated aging at baseline was associated with higher risk of frailty progression over time (OR 1.74, 95%CI 1.11-2.75). CONCLUSIONS Despite being intertwined, biological accelerated aging is largely independent of frailty in community-dwelling older adults.
Collapse
Affiliation(s)
- Carlos A. Fermín-Martínez
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Ramírez-García
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Miriam Teresa López-Teros
- Universidad Iberoamericana, Mexico City, Mexico
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición. Salvador Zubirán, Mexico City, Mexico
| | - Jacqueline A. Seiglie
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
5
|
Schomakers BV, Jillings SL, van Weeghel M, Vaz FM, Salomons GS, Janssens GE, Houtkooper RH. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J 2024; 291:3317-3330. [PMID: 38245827 DOI: 10.1111/febs.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.
Collapse
Affiliation(s)
- Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Sonia L Jillings
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| |
Collapse
|
6
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Lin D, Wu S, Li W, Ye P, Pan X, Zheng T, Gao F. A cross-tissue transcriptome-wide association study identifies new susceptibility genes for frailty. Front Genet 2024; 15:1404456. [PMID: 39071775 PMCID: PMC11272547 DOI: 10.3389/fgene.2024.1404456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Background: Although genome-wide association studies (GWAS) have identified 14 loci associated with frailty index (FI) susceptibility, the underlying causative genes and biological mechanisms remain elusive. Methods: A cross-tissue transcriptome-wide association study (TWAS) was conducted utilizing the Unified Test for Molecular Markers (UTMOST), which integrates GWAS summary statistics from 164,610 individuals of European ancestry and 10,616 Swedish participants, alongside gene expression matrices from the Genotype-Tissue Expression (GTEx) Project. Validation of the significant genes was performed through three distinct methods: FUSION, FOCUS, and Multiple Marker Analysis of Genome-wide Annotation (MAGMA). Exploration of tissue and functional enrichment for FI-associated SNPs was conducted using MAGMA. Conditional and joint analyses, along with fine mapping, were employed to enhance our understanding of FI's genetic architecture. Mendelian randomization was employed to ascertain causal relationships between significant genes and FI, and co-localization analysis was utilized to investigate shared SNPs between significant genes and FI. Results: In this study, two novel susceptibility genes associated with the risk of FI were identified through the application of four TWAS methods. Mendelian randomization demonstrated that HTT may elevate the risk of developing frailty, whereas LRPPRC could offer protection against the onset of frailty. Additionally, co-localization analysis identified a shared SNP between LRPPRC and FI. Tissue enrichment analyses revealed that genomic regions linked to SNPs associated with frailty were predominantly enriched in various brain regions, including the frontal cortex, cerebral cortex, and cerebellar hemispheres. Conditional, combined analyses, and fine mapping collectively identified two genetic regions associated with frailty: 2p21 and 4q16.3. Functional enrichment analyses revealed that the pathways associated with frailty were primarily related to the MHC complex, PD-1 signaling, cognition, inflammatory response to antigenic stimuli, and the production of second messenger molecules. Conclusion: This investigation uncovers two newly identified genes with forecasted expression levels associated with the risk of FI, offering new perspectives on the genetic architecture underlying FI.
Collapse
Affiliation(s)
- Daoyi Lin
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Wangyu Li
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Peng Ye
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, China
| | - Xuan Pan
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ting Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, China
- Fujian Provincial Co-Constructed Laboratory of “Belt and Road”, Fujian Emergency Medical Center, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, China
- Fujian Provincial Co-Constructed Laboratory of “Belt and Road”, Fujian Emergency Medical Center, Fuzhou, China
| |
Collapse
|
8
|
Zhao W, Wu F, Hu R, Lou J, Chen G, Cai Z, Chen S. The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss through the Nrf2 Pathway. Antioxid Redox Signal 2024. [PMID: 38770822 DOI: 10.1089/ars.2024.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aims: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. Results: In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both in vitro and in vivo. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. Innovation: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. Conclusion: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.
Collapse
Affiliation(s)
- Wenji Zhao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Abdullah G, Akpan A, Phelan MM, Wright HL. New insights into healthy ageing, inflammageing and frailty using metabolomics. FRONTIERS IN AGING 2024; 5:1426436. [PMID: 39044748 PMCID: PMC11263002 DOI: 10.3389/fragi.2024.1426436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Human ageing is a normal process and does not necessarily result in the development of frailty. A mix of genetic, environmental, dietary, and lifestyle factors can have an impact on ageing, and whether an individual develops frailty. Frailty is defined as the loss of physiological reserve both at the physical and cellular levels, where systemic processes such as oxidative stress and inflammation contribute to physical decline. The newest "omics" technology and systems biology discipline, metabolomics, enables thorough characterisation of small-molecule metabolites in biological systems at a particular time and condition. In a biological system, metabolites-cellular intermediate products of metabolic reactions-reflect the system's final response to genomic, transcriptomic, proteomic, epigenetic, or environmental alterations. As a relatively newer technique to characterise metabolites and biomarkers in ageing and illness, metabolomics has gained popularity and has a wide range of applications. We will give a comprehensive summary of what is currently known about metabolomics in studies of ageing, with a focus on biomarkers for frailty. Metabolites related to amino acids, lipids, carbohydrates, and redox metabolism may function as biomarkers of ageing and/or frailty development, based on data obtained from human studies. However, there is a complexity that underpins biological ageing, due to both genetic and environmental factors that play a role in orchestrating the ageing process. Therefore, there is a critical need to identify pathways that contribute to functional decline in people with frailty.
Collapse
Affiliation(s)
- Genna Abdullah
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Division of Internal Medicine, University of Western Australia, Bunbury, WA, Australia
- Faculty of Health Sciences, Curtis University, Bunbury, WA, Australia
- Department of Geriatric Medicine, Bunbury Regional Hospital, Bunbury, WA, Australia
| | - Marie M. Phelan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool, United Kingdom
| | - Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Wang S, Wang L, Wang Y, Zong S, Fan H, Jiang Y, Li X. Association between frailty index based on laboratory tests and all-cause mortality in critically ill patients with heart failure. ESC Heart Fail 2024. [PMID: 38979803 DOI: 10.1002/ehf2.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The frailty index based on laboratory tests (FI-lab) can identify individuals at increased risk for adverse health outcomes. The association between the FI-lab and all-cause mortality in patients with heart failure (HF) in the intensive care unit (ICU) remains unknown. This study aimed to determine the correlation between FI-lab and all-cause mortality to evaluate the impact of FI-lab on the prognosis of critically ill patients with HF. METHODS This retrospective observational study utilized data extracted from the Medical Information Mart for Intensive Care IV database. The FI-lab, which consists of 33 laboratory tests, was constructed. Patients were then grouped into quartiles (Q1-Q4) based on their FI-lab scores. Kaplan-Meier analysis was used to compare all-cause mortality among the four groups. A Cox proportional hazard analysis was conducted to examine the association between the FI-lab score and all-cause mortality. The incremental predictive value of adding FI-lab to classical disease severity scores was assessed using Harrell's C statistic, integrated discrimination improvement (IDI) and net reclassification improvement (NRI). RESULTS Among 3021 patients, 838 (27.74%) died within 28 days, and 1400 (46.34%) died within a 360 day follow-up period. Kaplan-Meier analysis indicated that patients with higher FI-lab scores had significantly higher risks of all-cause mortality (log-rank P < 0.001). Multivariable Cox regression suggested that FI-lab, evaluated as a continuous variable (for each 0.01 increase), was associated with increased 28 day mortality [hazard ratio (HR) 1.02, 95% confidence interval (CI) (1.01-1.03), P < 0.001] and 360 day mortality [HR 1.02, 95% CI (1.01-1.02), P < 0.001]. When assessed in quartiles, the 28 day mortality risk [HR 1.66, 95% CI (1.28-2.15), P < 0.001] and 360 day mortality risk [HR 1.48, 95% CI (1.23-1.8), P < 0.001] were significantly higher for FI-lab Q4 compared with FI-lab Q1. FI-lab significantly improved the predictive capability of classical disease severity scores for 28 and 360 day mortality. CONCLUSIONS In ICU patients diagnosed with HF, the FI-lab is a potent predictor of short-term and long-term mortality in critically ill patients with HF. The active use of FI-lab to identify high-risk groups among critically ill HF patients and initiate timely interventions may have significant value in improving the prognosis of critically ill patients with HF.
Collapse
Affiliation(s)
- Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shuli Zong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hesong Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xiao Li
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
11
|
Imarisio A, Yahyavi I, Gasparri C, Hassan A, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Monti MC, Pacchetti C, Errico F, Rondanelli M, Usiello A, Valente EM. Serum dysregulation of serine and glycine metabolism as predictive biomarker for cognitive decline in frail elderly subjects. Transl Psychiatry 2024; 14:281. [PMID: 38982054 PMCID: PMC11233661 DOI: 10.1038/s41398-024-02991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Frailty is a common age-related clinical syndrome characterized by a decline in the function of multiple organ systems, increased vulnerability to stressors, and a huge socio-economic burden. Despite recent research efforts, the physiopathological mechanisms underlying frailty remain elusive and biomarkers able to predate its occurrence in the early stages are still lacking. Beyond its physical component, cognitive decline represents a critical domain of frailty associated with higher risk of adverse health outcomes. We measured by High-Performance Liquid Chromatography (HPLC) a pool of serum amino acids including L-glutamate, L-aspartate, glycine, and D-serine, as well as their precursors L-glutamine, L-asparagine, and L-serine in a cohort of elderly subjects encompassing the entire continuum from fitness to frailty. These amino acids are known to orchestrate excitatory and inhibitory neurotransmission, and in turn, to play a key role as intermediates of energy homeostasis and in liver, kidney, muscle, and immune system metabolism. To comprehensively assess frailty, we employed both the Edmonton Frail Scale (EFS), as a practical tool to capture the multidimensionality of frailty, and the frailty phenotype, as a measure of physical function. We found that D-serine and D-/Total serine ratio were independent predictors of EFS but not of physical frailty. Furthermore, higher levels of glycine, glycine/L-serine and D-/Total serine were associated with worse cognition and depressive symptoms in the frail group. These findings suggest that changes in peripheral glycine and serine enantiomers homeostasis may represent a novel biochemical correlate of frailty.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, Italy
| | - Amber Hassan
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Nazzi C, Avenanti A, Battaglia S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants (Basel) 2024; 13:701. [PMID: 38929140 PMCID: PMC11200558 DOI: 10.3390/antiox13060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
With neurodegenerative disorders being on the rise, a great deal of research from multiple fields is being conducted in order to further knowledge and propose novel therapeutic interventions. Among these investigations, research on the role of antioxidants in contrasting cognitive decline is putting forward interesting and promising results. In this review, we aim to collect evidence that focused on the role of a variety of antioxidants and antioxidant-rich foods in improving or stabilizing cognitive functions, memory, and Alzheimer's disease, the most common neurodegenerative disorder. Specifically, we considered evidence collected on humans, either through longitudinal studies or randomized, placebo-controlled ones, which evaluated cognitive performance, memory abilities, or the progression level of neurodegeneration. Overall, despite a great deal of variety between study protocols, cohorts of participants involved, neuropsychological tests used, and investigated antioxidants, there is a solid trend that suggests that the properties of antioxidants may be helpful in hampering cognitive decline in older people. Thus, the help of future research that will further elucidate the role of antioxidants in neuroprotection will lead to the development of novel interventions that will take into account such findings to provide a more global approach to treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Claudio Nazzi
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - Simone Battaglia
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| |
Collapse
|
13
|
Hanayama M, Mori K, Ishimoto T, Kato Y, Kawai J. Effects of an ergothioneine-rich Pleurotus sp. on skin moisturizing functions and facial conditions: a randomized, double-blind, placebo-controlled trial. Front Med (Lausanne) 2024; 11:1396783. [PMID: 38887673 PMCID: PMC11182000 DOI: 10.3389/fmed.2024.1396783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Background L-ergothioneine (EGT), an antioxidative and anti-inflammatory amino acid, is abundant in various mushroom fruiting bodies. Meanwhile, the effects of EGT-containing mushrooms on human skin are unknown. This study investigated the effects of oral ingestion of a novel EGT-rich strain of Pleurotus species (hiratake) on skin conditions in humans. Methods We conducted a 12-week, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate skin moisturizing functions and facial conditions in 80 healthy women who were randomly assigned to either a group that was supplemented with hiratake tablets containing 25 mg of EGT/day or a placebo group. Skin moisture content, transepidermal water loss (TEWL), and facial scores (VISIA scores) were measured at baseline, 8 weeks, and 12 weeks of supplementation. Results At 8 weeks, the skin moisture content was significantly higher on the temple in the hiratake group than in the placebo group. The hiratake group also exhibited a significant increase in skin moisture content on the arm at 8 and 12 weeks compared with baseline. At 12 weeks, wrinkle and texture scores were significantly better in the hiratake group than in the placebo group, and plasma EGT concentrations in the hiratake group were 4.7-fold higher than baseline (from 3.4 to 15.9 μM). Furthermore, EGT concentrations in plasma were significantly correlated with improvements in skin moisture content and TEWL on the arm, implying that these skin moisturizing benefits could be partly attributed to EGT. A stratified analysis of participants with a low baseline plasma EGT concentration (< 3.3 μM) revealed that skin moisture content on the temple was significantly higher at 8 and 12 weeks, and skin moisture content on the arm at 12 weeks tended to be higher (p = 0.074), in the hiratake group than in the placebo group. These findings suggested that oral ingestion of EGT-rich hiratake can improve skin moisturizing functions. Conclusion EGT-rich hiratake may help maintain skin conditions in healthy women, and EGT may play a role in these beneficial effects.
Collapse
Affiliation(s)
- Motoki Hanayama
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| |
Collapse
|
14
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
15
|
Liu Y, Han Y, Gao Y, Yao N, Wang Y, Wang F, Wu Z, Dong Y, Wang S, Li B. The association between oxidative balance score and frailty in adults across a wide age spectrum: NHANES 2007-2018. Food Funct 2024; 15:5041-5049. [PMID: 38651948 DOI: 10.1039/d4fo00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Background: Frailty has been one of the most serious global public health challenges we will ever face. Oxidative stress is associated with the pathogenesis of frailty, and may be accurately reflected by the oxidative balance score (OBS). However, there have been no studies examining the effect of OBS on frailty. Therefore, we aimed to explore the association between OBS and frailty and whether there was an interaction between the outcomes. Methods: 22 914 participants aged over 20 years taking part in the National Health and Nutrition Examination Survey (NHANES) in 2007-2018 were involved in the study. Sixteen dietary factors and four lifestyle factors were selected to score the OBS. A modified 36-item deficit cumulative frailty index (FI) was used to assess the degree of frailty. The association between OBS and frailty was analyzed using binary logistic regression. Subgroup analysis and interaction tests were used to investigate whether this association was stable across populations. Results: A negative association between OBS and the prevalence of frailty was found in this study. There was also an interaction between OBS and age in their association with frailty. High OBS was significantly and negatively associated with the prevalence of frailty in the 20-39 and 40-64 age groups. In addition, higher OBS combined with a population in the 20-39 age group resulted in a stronger negative association with frailty. Conclusion: High OBS was significantly associated with lower odds of frailty. An interaction existed between OBS and age. Individuals, especially in relatively young populations, are advised to increase OBS through greater intake of antioxidant nutrients and healthier lifestyles, thereby reducing the adverse effects of frailty.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yu Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yuqi Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Fengdan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Zibo Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yibo Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Sizhe Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| |
Collapse
|
16
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
17
|
Wu Q, Hatse S, Kenis C, Fernández-García J, Altea-Manzano P, Billen J, Planque M, Vandekeere A, Lambrechts Y, Richard F, Punie K, Neven P, Smeets A, Nevelsteen I, Floris G, Desmedt C, Gomes AP, Fendt SM, Wildiers H. Serum methylmalonic acid concentrations at breast cancer diagnosis significantly correlate with clinical frailty. GeroScience 2024; 46:1489-1498. [PMID: 37632634 PMCID: PMC10828366 DOI: 10.1007/s11357-023-00908-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
Methylmalonic acid (MMA), a by-product of propionate metabolism, is known to increase with age. This study investigates the potential of serum MMA concentrations as a biomarker for age-related clinical frailty in older patients with breast cancer. One hundred nineteen patients ≥ 70 years old with early-stage breast cancer were included (median age 76 years). G8 screening, full geriatric assessment, clinical parameters (i.e., estimated glomerular filtration rate (eGFR) and body mass index (BMI)), and serum sample collection were collected at breast cancer diagnosis before any therapy was administered. MMA concentrations were measured via liquid chromatography with tandem mass spectrometry. MMA concentrations significantly increased with age and eGFR (all P < 0.001) in this older population. The group with an abnormal G8 (≤ 14, 51% of patients) had significantly higher MMA levels than the group with normal G8 (> 14, 49%): 260 nmol/L vs. 188 nmol/L, respectively (P = 0.0004), even after correcting for age and eGFR (P = 0.001). Furthermore, in the detailed assessment, MMA concentrations correlated most with mobility (Eastern Cooperative Oncology Group (ECOG) Performance Status and Activities of Daily Living (ADL) tools, all P ≤ 0.02), comorbidity (Charlson Comorbidity Index (CCI) tool, P = 0.005), and polypharmacy (P < 0.001), whereas no significant associations were noted for instrumental ADL (IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale-15 (GDS15), Mini Nutritional Assessment-Short Form (MNA-SF), and pain (all P > 0.1). In addition, our results showed that higher MMA levels correlate with poor overall survival in breast cancer patients (P = 0.003). Elevated serum MMA concentrations at initial diagnosis are significantly associated, not only with age but also independently with clinical frailty, suggesting a possible influence of MMA on clinical frailty in older patients with early-stage breast cancer.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Louvain, Belgium
| | - Cindy Kenis
- Department of General Medical Oncology, University Hospitals Leuven, Louvain, Belgium
- Department of Geriatric Medicine, University Hospitals Leuven, Louvain, Belgium
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, KU Leuven, Louvain, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium
| | - Jaak Billen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Disease and Metabolism, KU Leuven, Louvain, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Louvain, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, Louvain, Belgium
- Department of Geriatric Medicine, University Hospitals Leuven, Louvain, Belgium
- Multidisciplinary Breast Center, University Hospitals Leuven, Louvain, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Louvain, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Louvain, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Louvain, Belgium
| | - Ines Nevelsteen
- Multidisciplinary Breast Center, University Hospitals Leuven, Louvain, Belgium
| | - Giuseppe Floris
- Laboratory for Cell and Tissue Translational Research, Department of Imaging and Radiology, KU Leuven, Louvain, Belgium
- Department of Pathology, University Hospitals Leuven, Louvain, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Louvain, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Louvain, Belgium.
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Louvain, Belgium.
- Department of General Medical Oncology, University Hospitals Leuven, Louvain, Belgium.
- Department of Geriatric Medicine, University Hospitals Leuven, Louvain, Belgium.
- Multidisciplinary Breast Center, University Hospitals Leuven, Louvain, Belgium.
| |
Collapse
|
18
|
Ma T, Chen M, Cheng X, Bai Y. Assessment of Bidirectional Relationships between Frailty and Mental Disorders: A Bidirectional Mendelian Randomization Study. J Am Med Dir Assoc 2024; 25:506-513.e29. [PMID: 37979598 DOI: 10.1016/j.jamda.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Although observational studies have reported the association between frailty and mental disorders, the causality remains unclear. We aimed to evaluate the bidirectional causal association between frailty levels and mental disorders using a 2-sample Mendelian randomization (MR) analysis. DESIGN A bidirectional, 2-sample Mendelian randomization (MR) analysis. SETTING AND PARTICIPANTS Instrumental variables were obtained from large-scale genome-wide association study (GWAS) of a European-descent population for frailty index (FI, n = 175,226), Fried Frailty Score (FFS, n = 386,565), major depressive disorder (MDD, n = 674,452), bipolar disorder (n = 353,899), anxiety and stress-related disorder (ASRD, n = 31,880), and schizophrenia (n = 127,906). METHODS Two-sample MR analyses were conducted using inverse variance-weighted method, with sensitivity analyses using MR-Egger, weighted median, and simple median methods. RESULTS Per SD increase in genetically predicted FI and FFS increased the risk of MDD [odds ratio (OR) 1.56, 95% CI 1.27-1.94, P = 3.65 × 10-5, and OR 1.67, 95% CI 1.26-2.20, P = 3.02 × 10-4, respectively]. Per-SD increase in genetically predicted FI also increased the risk of ASRD (OR 2.76, 95% CI 1.36-5.60, P = .005). No significant effect was observed for frailty levels on the risk of bipolar disorder and schizophrenia. In the reverse direction, genetically predicted MDD was associated with higher FI (β 0.182, 95% CI 0.087-0.277, P = 1.79 × 10-4) and FFS (β 0.121, 95% CI 0.087-0.155, P = 4.43 × 10-12). No reliable evidence supported the effects of genetically predicted bipolar disorder, ASRD, or schizophrenia on frailty levels. CONCLUSIONS AND IMPLICATIONS A bidirectionally causal association exists between frailty levels and MDD, and higher FI is associated with a higher risk of ASRD. No reliable evidence suggested the causal associations of other mental disorders with frailty. Our findings provided evidence for introduction of psychological-related strategies in management of frailty.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Minghong Chen
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xunjie Cheng
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Kondoh H, Kameda M. Metabolites in aging and aging-relevant diseases: Frailty, sarcopenia and cognitive decline. Geriatr Gerontol Int 2024; 24 Suppl 1:44-48. [PMID: 37837183 PMCID: PMC11503595 DOI: 10.1111/ggi.14684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Aging shows biologically complex features with high individual variability, which reflects the exposure to several stimuli and the adaptation to them. Among them, metabolic changes are well observed as consequences or possible causes of aging. Calorie restriction extends organismal life span in experimental models. Several metabolites; for example, resveratrol or nicotinamide mononucleotide, are reported to mimic calorie restriction effects in vivo. Metabolomic research would be useful to evaluate metabolites as biomarkers in aging-relevant events and to identify metabolic regulation of aging. We recently developed the metabolomic approach for whole blood analysis, which functions as strong tool for this purpose. We review the update findings in aging-relevant metabolites detected by this method. Geriatr Gerontol Int 2024; 24: 44-48.
Collapse
Affiliation(s)
- Hiroshi Kondoh
- Geriatric Unit, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Kameda
- Geriatric Unit, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
20
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Qian Z, Huang Y, Zhang Y, Yang N, Fang Z, Zhang C, Zhang L. Metabolic clues to aging: exploring the role of circulating metabolites in frailty, sarcopenia and vascular aging related traits and diseases. Front Genet 2024; 15:1353908. [PMID: 38415056 PMCID: PMC10897029 DOI: 10.3389/fgene.2024.1353908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background: Physical weakness and cardiovascular risk increase significantly with age, but the underlying biological mechanisms remain largely unknown. This study aims to reveal the causal effect of circulating metabolites on frailty, sarcopenia and vascular aging related traits and diseases through a two-sample Mendelian Randomization (MR) analysis. Methods: Exposures were 486 metabolites analyzed in a genome-wide association study (GWAS), while outcomes included frailty, sarcopenia, arterial stiffness, atherosclerosis, peripheral vascular disease (PAD) and aortic aneurysm. Primary causal estimates were calculated using the inverse-variance weighted (IVW) method. Methods including MR Egger, weighted median, Q-test, and leave-one-out analysis were used for the sensitive analysis. Results: A total of 125 suggestive causative associations between metabolites and outcomes were identified. Seven strong causal links were ultimately identified between six metabolites (kynurenine, pentadecanoate (15:0), 1-arachidonoylglycerophosphocholine, androsterone sulfate, glycine and mannose) and three diseases (sarcopenia, PAD and atherosclerosis). Besides, metabolic pathway analysis identified 13 significant metabolic pathways in 6 age-related diseases. Furthermore, the metabolite-gene interaction networks were constructed. Conclusion: Our research suggested new evidence of the relationship between identified metabolites and 6 age-related diseases, which may hold promise as valuable biomarkers.
Collapse
Affiliation(s)
- Zonghao Qian
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Fang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
He J, Jin Y, He C, Li Z, Yu W, Zhou J, Luo R, Chen Q, Wu Y, Wang S, Song Z, Cheng S. Danggui Shaoyao San: comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer's disease-related pathology. Front Pharmacol 2024; 14:1338804. [PMID: 38283834 PMCID: PMC10811133 DOI: 10.3389/fphar.2023.1338804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, currently lacks effective clinical therapeutics. Traditional Chinese Medicine (TCM) holds promising potential in AD treatment, exemplified by Danggui Shaoyao San (DSS), a TCM formulation. The precise therapeutic mechanisms of DSS in AD remain to be fully elucidated. This study aims to uncover the therapeutic efficacy and underlying mechanisms of DSS in AD, employing an integrative approach encompassing gut microbiota and metabolomic analyses. Methods: Thirty Sprague-Dawley (SD) rats were allocated into three groups: Blank Control (Con), AD Model (M), and Danggui Shaoyao San (DSS). AD models were established via bilateral intracerebroventricular injections of streptozotocin (STZ). DSS was orally administered at 24 g·kg-1·d-1 (weight of raw herbal materials) for 14 days. Cognitive functions were evaluated using the Morris Water Maze (MWM) test. Pathological alterations were assessed through hematoxylin and eosin (HE) staining. Bloodstream metabolites were characterized, gut microbiota profiled through 16S rDNA sequencing, and cortical metabolomics analyzed. Hippocampal proinflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using RT-qPCR, and oxidative stress markers (SOD, CAT, GSH-PX, MDA) in brain tissues were measured with biochemical assays. Results: DSS identified a total of 1,625 bloodstream metabolites, predominantly Benzene derivatives, Carboxylic acids, and Fatty Acyls. DSS significantly improved learning and spatial memory in AD rats and ameliorated cerebral tissue pathology. The formulation enriched the probiotic Ligilactobacillus, modulating metabolites like Ophthalmic acid (OA), Phosphocreatine (PCr), Azacridone A, Inosine, and NAD. DSS regulated Purine and Nicotinate-nicotinamide metabolism, restoring balance in the Candidatus Saccharibacteria-OA interplay and stabilizing gut microbiota-metabolite homeostasis. Additionally, DSS reduced hippocampal IL-1β, IL-6, TNF-α expression, attenuating the inflammatory state. It elevated antioxidative enzymes (SOD, CAT, GSH-PX) while reducing MDA levels, indicating diminished oxidative stress in AD rat brains. Conclusion: DSS addresses AD pathology through multifaceted mechanisms, encompassing gut microbiome regulation, specific metabolite modulation, and the mitigation of inflammation and oxidative stress within the brain. This holistic intervention through the Microbial-Gut-Brain Axis (MGBA) underscores DSS's potential as an integrative therapeutic agent in combatting AD.
Collapse
Affiliation(s)
- Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yijie Jin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixiao Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shiwei Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Office of Science and Technology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Chiu HH, Lin SY, Zhang CG, Tsai CC, Tang SC, Kuo CH. A comparative study of plasma and dried blood spot metabolomics and its application to diabetes mellitus. Clin Chim Acta 2024; 552:117655. [PMID: 37977234 DOI: 10.1016/j.cca.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Metabolomics has become a promising method for understanding pathological mechanisms. Plasma (PLS) is the most common sample type used for metabolomics studies, and dried blood spot (DBS) sampling has been regarded as a good strategy due to its unique characteristics. However, how results obtained from DBS can be correlated to results obtained from PLS remains unclear. To bridge the results and to investigate the feasibility of using DBS to study metabolomics, we performed a comparative study using 64 paired PLS and DBS samples. The number of features extracted from the two different sample types was investigated. The concentration correlations of the identified metabolites between the DBS and PLS were individually studied. Approximately 47 % showed a strong correlation, 19 % showed a moderate correlation, and 34 % showed a low or even negligible correlation. Finally, we applied both PLS- and DBS-based metabolomics to explore the dysregulated metabolites in diabetes mellitus (DM) patients. Thirty-two non-DM subjects and 32 DM patients were enrolled, and 2 significant metabolites were found in both PLS and DBS samples. In summary, detailed correlation information between PLS and DBS metabolites was first explored in this study, and it is anticipated that these results could facilitate future applications in DBS-based metabolomics.
Collapse
Affiliation(s)
- Huai-Hsuan Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yi Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Guang Zhang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chuan-Ching Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Milos T, Rojo D, Nedic Erjavec G, Konjevod M, Tudor L, Vuic B, Svob Strac D, Uzun S, Mimica N, Kozumplik O, Barbas C, Zarkovic N, Pivac N, Nikolac Perkovic M. Metabolic profiling of Alzheimer's disease: Untargeted metabolomics analysis of plasma samples. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110830. [PMID: 37454721 DOI: 10.1016/j.pnpbp.2023.110830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is often not recognized or is diagnosed very late, which significantly reduces the effectiveness of available pharmacological treatments. Metabolomic analyzes have great potential for improving existing knowledge about the pathogenesis and etiology of AD and represent a novel approach towards discovering biomarkers that could be used for diagnosis, prognosis, and therapy monitoring. In this study, we applied the untargeted metabolomic approach to investigate the changes in biochemical pathways related to AD pathology. We used gas chromatography and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively) to identify metabolites whose levels have changed in subjects with AD diagnosis (N = 40) compared to healthy controls (N = 40) and individuals with mild cognitive impairment (MCI, N = 40). The GC-MS identified significant differences between groups in levels of metabolites belonging to the classes of benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids and derivatives, keto acids and derivatives, and organooxygen compounds. Most of the compounds identified by the LC-MS were various fatty acyls, glycerolipids and glycerophospholipids. All of these compounds were decreased in AD patients and in subjects with MCI compared to healthy controls. The results of the study indicate disturbed metabolism of lipids and amino acids and an imbalance of metabolites involved in energy metabolism in individuals diagnosed with AD, compared to healthy controls and MCI subjects.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Lucija Tudor
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | | | - Suzana Uzun
- School of Medicine, University of Zagreb, Zagreb, Croatia; Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | - Neven Zarkovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| | | |
Collapse
|
25
|
Azad TD, Ran KR, Liu J, Vattipally VN, Khela H, Leite E, Materi JD, Davidar AD, Bettegowda C, Theodore N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023; 28:703-713. [PMID: 38126897 DOI: 10.1080/1354750x.2023.2298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute spinal cord injury (SCI) requires prompt diagnosis and intervention to minimize the risk of permanent neurologic deficit. Presently, SCI diagnosis and interventional planning rely on magnetic resonance imaging (MRI), which is not always available or feasible for severely injured patients. Detection of disease-specific biomarkers in biofluids via liquid biopsy may provide a more accessible and objective means of evaluating patients with suspected SCI. Cell-free DNA, which has been used for diagnosing and monitoring oncologic disease, may detect damage to spinal cord neurons via tissue-specific methylation patterns. Other types of biomarkers, including proteins and RNA species, have also been found to reflect neuronal injury and may be included as part of a multi-analyte assay to improve liquid biopsy performance. The feasibility of implementing liquid biopsy into current practices of SCI management is supported by the relative ease of blood sample collection as well as recent advancements in droplet digital polymerase chain reaction technology. In this review, we detail the current landscape of biofluid biomarkers for acute SCI and propose a framework for the incorporation of a putative blood test into the clinical management of SCI.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jiaqi Liu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Harmon Khela
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Enzo Leite
- Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil
| | - Joshua D Materi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
26
|
Kmiołek T, Filipowicz G, Bogucka D, Wajda A, Ejma-Multański A, Stypińska B, Modzelewska E, Kaliberda Y, Radkowski M, Targowski T, Wrona J, Paradowska-Gorycka A. Aging and the impact of global DNA methylation, telomere shortening, and total oxidative status on sarcopenia and frailty syndrome. Immun Ageing 2023; 20:61. [PMID: 37964387 PMCID: PMC10644469 DOI: 10.1186/s12979-023-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Aging is a biological event that influences many organs and systems. Both sarcopenia and frailty syndrome refer to geriatric conditions with overlapping phenotypes. Many mechanisms are involved in the aging process such as DNA methylation telomeres which are susceptible to oxidative stress, and inflammations which result in telomere shortening, leading to chromosomal instability. The study aimed to determine the associations between these processes, frailty and sarcopenia syndrome. Global DNA methylation was analyzed using the ELISA method. Telomere length was analyzed using qPCR. Total oxidative status (TOS) was analyzed using a colorimetric method. The present study revealed that the main factor affecting methylation, telomeres length and level of total oxidant stress was age.
Collapse
Affiliation(s)
- Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland.
| | - Gabriela Filipowicz
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Diana Bogucka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Ewa Modzelewska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Yana Kaliberda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| | - Marcin Radkowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Tomasz Targowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Julia Wrona
- Collegium Medicum University of Jan Kochanowski, 25-317, Kielce, Poland
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsawm, Poland
| |
Collapse
|
27
|
Perry AS, Zhao S, Gajjar P, Murthy VL, Lehallier B, Miller P, Nair S, Neill C, Carr JJ, Fearon W, Kapadia S, Kumbhani D, Gillam L, Lindenfeld J, Farrell L, Marron MM, Tian Q, Newman AB, Murabito J, Gerszten RE, Nayor M, Elmariah S, Lindman BR, Shah R. Proteomic architecture of frailty across the spectrum of cardiovascular disease. Aging Cell 2023; 22:e13978. [PMID: 37731195 PMCID: PMC10652351 DOI: 10.1111/acel.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | | | | | - Patricia Miller
- Department of Medicine, and Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sangeeta Nair
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Colin Neill
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - J. Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - William Fearon
- Department of Medicine, Division of CardiologyStanford Medical CenterPalo AltoCaliforniaUSA
| | - Samir Kapadia
- Department of Medicine, Division of CardiologyCleveland Clinic FoundationClevelandOhioUSA
| | - Dharam Kumbhani
- Department of Medicine, Division of CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Linda Gillam
- Department of Cardiovascular MedicineMorristown Medical CenterMorristownNew JerseyUSA
| | - JoAnn Lindenfeld
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Laurie Farrell
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Megan M. Marron
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qu Tian
- National Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Medicine and Clinical and Translational ScienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joanne Murabito
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Robert E. Gerszten
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Sammy Elmariah
- Department of Medicine, Division of CardiologyThe University of CaliforniaSan FranciscoCaliforniaUSA
| | - Brian R. Lindman
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
28
|
Tang YP, Zhang XB, Hu ZX, Lin K, Lin Z, Chen TY, Wu RH, Chi ZL. Vitreous metabolomic signatures of pathological myopia with complications. Eye (Lond) 2023; 37:2987-2993. [PMID: 36841867 PMCID: PMC10516974 DOI: 10.1038/s41433-023-02457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Pathological myopia (PM) is closely associated with blinding ocular morbidities. Identifying biomarkers can provide clues on pathogeneses. This study aimed to identify metabolic biomarkers and underlying mechanisms in the vitreous humour (VH) of PM patients with complications. METHODS VH samples were collected from 39 PM patients with rhegmatogenous retinal detachment (RRD) (n = 23) or macular hole (MH)/myopic retinoschisis (MRS) (n = 16) and 23 controls (MH with axial length < 26 mm) who underwent surgical treatment. VH metabolomic profiles were investigated using ultra-performance liquid chromatography‒mass spectrometry. The area under the receiver operating characteristic curve (AUC) was computed to identify potential biomarkers for PM diagnosis. RESULTS Bioinformatics analysis identified nineteen and four metabolites altered in positive and negative modes, respectively, and these metabolites were involved in tryptophan metabolism. Receiver operating characteristic analysis showed that seventeen metabolites (AUC > 0.6) in the positive mode and uric acid in the negative mode represent potential biomarkers for PM with complications (AUC = 0.894). Pairwise and pathway analyses among the RRD-PM, MH/MRS-PM and control groups showed that tryptophan metabolism and uric acid were closely correlated with PM. Altered metabolites and pathways in our study were characterized by increased oxidative stress and altered energy metabolism. These results contribute to a better understanding of myopia progression with or without related complications. CONCLUSIONS Our study provides metabolomic signatures and related immunopathological features in the VH of PM patients, revealing new insight into the prevention and treatment of PM and related complications.
Collapse
Affiliation(s)
- Yong-Ping Tang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Bo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Xiang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ke Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhong Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tian-Yu Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Rong-Han Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
29
|
Yan Y, Li B, Li F, Zhou X, Li T, Li Y, Liu C, Wang S, Cong Y, Deng Y, Wang Z, Zhou J, Rong S. The relationship between mushroom consumption and cognitive performance among middle-aged and older adults: a cross-sectional study. Food Funct 2023; 14:7663-7671. [PMID: 37540100 DOI: 10.1039/d3fo01101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Objectives: Bioactive compounds in mushrooms may protect the brain from neurodegeneration by inhibiting the production of amyloid-β and playing an antioxidant role. This study aimed at examining the associations of mushroom consumption with cognitive function and mild cognitive impairment (MCI) among middle-aged and older adults in China. Design: A cross-sectional study. Setting and participants: This study was conducted in seven cities in China and included 2203 middle-aged and older adults. Methods: Data on mushroom consumption were collected using a semi-quantitative food frequency questionnaire. Cognitive function was evaluated by the Auditory Verbal Learning Test (AVLT), Verbal Fluency Test (VFT), Digit Symbol Substitution Test (DSST), and Trail Making Test-B (TMT-B). The composite z score was used to reflect global cognition. MCI was determined according to the Petersen criteria. Multiple linear regression and logistic regression were used to examine the relationship between mushroom consumption and cognitive performance. Results: This study included 2203 participants aged 55 years and above (mean age = 63.43 years). After controlling demographic characteristics, lifestyle factors, other dietary factors, and history of chronic disease, higher mushroom consumption was associated with better global cognition. Compared to the lowest quartile (Q1, 0-4.00 g day-1), the βs (95% confidence intervals, 95% CIs) were 0.10 (0.03, 0.18) for Q2 (4.01-10.42 g day-1), 0.13 (0.06, 0.20) for Q3 (10.43-20.84 g day-1), and 0.13 (0.06, 0.20) for Q4 (>20.84 g day-1). The higher mushroom consumption was positively related to better performance in DSST and TMT-B (P-values < 0.05). A 10 g day-1 increment in mushroom consumption was related to 12% lower odds of MCI (odds ratio = 0.88, 95% CI: 0.80-0.97). Conclusions: Higher mushroom consumption was positively related to better cognitive function and associated with lower odds of MCI. Further studies are needed to replicate our findings in other populations and determine the underlying mechanisms.
Collapse
Affiliation(s)
- Yaqiong Yan
- Department of Non-communicable Chronic Disease Prevention and Control, Wuhan Center for Disease Control and Prevention, 288 Machang Road, Wuhan 430024, China
| | - Benchao Li
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Fengping Li
- Department of Nutrition, School of Public Health, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, No.115 Donghu Road, Wuhan 430071, China
| | - Xiaoqi Zhou
- Department of Non-communicable Chronic Disease Prevention and Control, Wuhan Center for Disease Control and Prevention, 288 Machang Road, Wuhan 430024, China
| | - Tingting Li
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuanyuan Li
- Department of Nutrition, School of Public Health, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, No.115 Donghu Road, Wuhan 430071, China
| | - Changshu Liu
- Standard Foods (China) Co., Ltd., Taicang Port Economic and Technological Development Zone New Zone, No. 88 Dalian West Road, Suzhou, China
| | - Sai Wang
- Standard Foods (China) Co., Ltd., Taicang Port Economic and Technological Development Zone New Zone, No. 88 Dalian West Road, Suzhou, China
| | - Yang Cong
- Standard Foods (China) Co., Ltd., Taicang Port Economic and Technological Development Zone New Zone, No. 88 Dalian West Road, Suzhou, China
| | - Yan Deng
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jin Zhou
- Chinese Nutrition Society (CNS) Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute), China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- Department of Nutrition, School of Public Health, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, No.115 Donghu Road, Wuhan 430071, China
| |
Collapse
|
30
|
Ye Y, Noche RB, Szejko N, Both CP, Acosta JN, Leasure AC, Brown SC, Sheth KN, Gill TM, Zhao H, Falcone GJ. A genome-wide association study of frailty identifies significant genetic correlation with neuropsychiatric, cardiovascular, and inflammation pathways. GeroScience 2023; 45:2511-2523. [PMID: 36928559 PMCID: PMC10651618 DOI: 10.1007/s11357-023-00771-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Frailty is an aging-related clinical phenotype defined as a state in which there is an increase in a person's vulnerability for dependency and/or mortality when exposed to a stressor. While underlying mechanisms leading to the occurrence of frailty are complex, the importance of genetic factors has not been fully investigated. We conducted a large-scale genome-wide association study (GWAS) of frailty, as defined by the five criteria (weight loss, exhaustion, physical activity, walking speed, and grip strength) captured in the Fried Frailty Score (FFS), in 386,565 European descent participants enrolled in the UK Biobank (mean age 57 [SD 8] years, 208,481 [54%] females). We identified 37 independent, novel loci associated with the FFS (p < 5 × 10-8), including seven loci without prior described associations with other traits. The variants associated with FFS were significantly enriched in brain tissues as well as aging-related pathways. Our post-GWAS bioinformatic analyses revealed significant genetic correlations between FFS and cardiovascular-, neurological-, and inflammation-related diseases/traits, and subsequent Mendelian Randomization analyses identified causal associations with chronic pain, obesity, diabetes, education-related traits, joint disorders, and depressive/neurological, metabolic, and respiratory diseases. The GWAS signals were replicated in the Health and Retirement Study (HRS, n = 9,720, mean age 73 [SD 7], 5,582 [57%] females), where the polygenic risk score built from UKB GWAS was significantly associated with the FFS in HRS individuals (OR per SD of the score 1.27, 95% CI 1.22-1.31, p = 1.3 × 10-11). These results provide new insight into the biology of frailty by comprehensively evaluating its genetic architecture.
Collapse
Affiliation(s)
- Yixuan Ye
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Rommell B Noche
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
| | - Natalia Szejko
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Cameron P Both
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
| | - Julian N Acosta
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
| | - Audrey C Leasure
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
| | - Stacy C Brown
- University of Hawai'I, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA
| | - Thomas M Gill
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Biostatistics, Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, CT, 06520, USA.
| | - Guido J Falcone
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT, 06510, USA.
| |
Collapse
|
31
|
Hondal RJ. Selenium vitaminology: The connection between selenium, vitamin C, vitamin E, and ergothioneine. Curr Opin Chem Biol 2023; 75:102328. [PMID: 37236134 PMCID: PMC10524500 DOI: 10.1016/j.cbpa.2023.102328] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a "vitamin-like" compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.
Collapse
Affiliation(s)
- Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT, 05405, USA.
| |
Collapse
|
32
|
Posa DK, Miller J, Hoetker D, Ramage MI, Gao H, Zhao J, Doelling B, Bhatnagar A, Wigmore SJ, Skipworth RJ, Baba SP. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:1802-1814. [PMID: 37199284 PMCID: PMC10401540 DOI: 10.1002/jcsm.13258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Muscle wasting during cancer cachexia is mediated by protein degradation via autophagy and ubiquitin-linked proteolysis. These processes are sensitive to changes in intracellular pH ([pH]i ) and reactive oxygen species, which in skeletal muscle are partly regulated by histidyl dipeptides, such as carnosine. These dipeptides, synthesized by the enzyme carnosine synthase (CARNS), remove lipid peroxidation-derived aldehydes, and buffer [pH]i . Nevertheless, their role in muscle wasting has not been studied. METHODS Histidyl dipeptides in the rectus abdominis (RA) muscle and red blood cells (RBCs) of male and female controls (n = 37), weight stable (WS: n = 35), and weight losing (WL; n = 30) upper gastrointestinal cancer (UGIC) patients, were profiled by LC-MS/MS. Expression of enzymes and amino acid transporters, involved in carnosine homeostasis, was measured by Western blotting and RT-PCR. Skeletal muscle myotubes were treated with Lewis lung carcinoma conditioned medium (LLC CM), and β-alanine to study the effects of enhancing carnosine production on muscle wasting. RESULTS Carnosine was the predominant dipeptide present in the RA muscle. In controls, carnosine levels were higher in men (7.87 ± 1.98 nmol/mg tissue) compared with women (4.73 ± 1.26 nmol/mg tissue; P = 0.002). In men, carnosine was significantly reduced in both the WS (5.92 ± 2.04 nmol/mg tissue, P = 0.009) and WL (6.15 ± 1.90 nmol/mg tissue; P = 0.030) UGIC patients, compared with controls. In women, carnosine was decreased in the WL UGIC (3.42 ± 1.33 nmol/mg tissue; P = 0.050), compared with WS UGIC patients (4.58 ± 1.57 nmol/mg tissue), and controls (P = 0.025). Carnosine was significantly reduced in the combined WL UGIC patients (5.12 ± 2.15 nmol/mg tissue) compared with controls (6.21 ± 2.24 nmol/mg tissue; P = 0.045). Carnosine was also significantly reduced in the RBCs of WL UGIC patients (0.32 ± 0.24 pmol/mg protein), compared with controls (0.49 ± 0.31 pmol/mg protein, P = 0.037) and WS UGIC patients (0.51 ± 0.40 pmol/mg protein, P = 0.042). Depletion of carnosine diminished the aldehyde-removing ability in the muscle of WL UGIC patients. Carnosine levels were positively associated with decreases in skeletal muscle index in the WL UGIC patients. CARNS expression was decreased in the muscle of WL UGIC patients and myotubes treated with LLC-CM. Treatment with β-alanine, a carnosine precursor, enhanced endogenous carnosine production and decreased ubiquitin-linked protein degradation in LLC-CM treated myotubes. CONCLUSIONS Depletion of carnosine could contribute to muscle wasting in cancer patients by lowering the aldehyde quenching abilities. Synthesis of carnosine by CARNS in myotubes is particularly affected by tumour derived factors and could contribute to carnosine depletion in WL UGIC patients. Increasing carnosine in skeletal muscle may be an effective therapeutic intervention to prevent muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Janice Miller
- Department of Clinical SurgeryUniversity of EdinburghEdinburghUK
| | - David Hoetker
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | - Hong Gao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Jingjing Zhao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Benjamin Doelling
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Aruni Bhatnagar
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | | | - Shahid P. Baba
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| |
Collapse
|
33
|
Mak JKL, Kananen L, Qin C, Kuja‐Halkola R, Tang B, Lin J, Wang Y, Jääskeläinen T, Koskinen S, Lu Y, Magnusson PKE, Hägg S, Jylhävä J. Unraveling the metabolic underpinnings of frailty using multicohort observational and Mendelian randomization analyses. Aging Cell 2023; 22:e13868. [PMID: 37184129 PMCID: PMC10410014 DOI: 10.1111/acel.13868] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Identifying metabolic biomarkers of frailty, an age-related state of physiological decline, is important for understanding its metabolic underpinnings and developing preventive strategies. Here, we systematically examined 168 nuclear magnetic resonance-based metabolomic biomarkers and 32 clinical biomarkers for their associations with frailty. In up to 90,573 UK Biobank participants, we identified 59 biomarkers robustly and independently associated with the frailty index (FI). Of these, 34 associations were replicated in the Swedish TwinGene study (n = 11,025) and the Finnish Health 2000 Survey (n = 6073). Using two-sample Mendelian randomization, we showed that the genetically predicted level of glycoprotein acetyls, an inflammatory marker, was statistically significantly associated with an increased FI (β per SD increase = 0.37%, 95% confidence interval: 0.12-0.61). Creatinine and several lipoprotein lipids were also associated with increased FI, yet their effects were mostly driven by kidney and cardiometabolic diseases, respectively. Our findings provide new insights into the causal effects of metabolites on frailty and highlight the role of chronic inflammation underlying frailty development.
Collapse
Affiliation(s)
- Jonathan K. L. Mak
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Laura Kananen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
| | - Chenxi Qin
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ralf Kuja‐Halkola
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Bowen Tang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Jake Lin
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science HiLIFE, University of HelsinkiHelsinkiFinland
| | - Yunzhang Wang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Department of Clinical Sciences, Danderyd HospitalKarolinska InstitutetStockholmSweden
| | | | | | - Yi Lu
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Sara Hägg
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
| |
Collapse
|
34
|
Zhu M, Wei C, Yang X, Huang Y, Xu Y, Xiong Z. Lower haemoglobin-to-red blood cell distribution width ratio is independently associated with frailty in community-dwelling older adults: a cross-sectional study. BMJ Open 2023; 13:e069141. [PMID: 37423632 DOI: 10.1136/bmjopen-2022-069141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVES The importance of blood cell markers in frailty has been studied. However, research on haemoglobin-to-red blood cell distribution width ratio (HRR) and frailty in older persons is still limited. We investigated the association between HRR and frailty in older adults. DESIGN Cross-sectional population-based study. SETTING Community-dwelling older adults older than 65 years were recruited from September 2021 to December 2021. PARTICIPANTS A total of 1296 community-dwelling older adults (age ≥65 years) in Wuhan were included in the study. MAIN OUTCOME MEASURES The main outcome was the presence of frailty. The Fried Frailty Phenotype Scale was used to evaluate the frailty status of the participants. Multivariable logistic regression analysis was performed to determine the relationship between HRR and frailty. RESULTS A total of 1296 (564 men) older adults were included in this cross-sectional study. Their mean age was 70.89±4.85 years. Receiver operating characteristic curve analysis showed that HRR is a good predictor of frailty in older people, the area under the curve (AUC) was 0.802 (95% CI: 0.755 to 0.849), and the highest sensitivity was 84.5% and the specificity was 61.9% with the optimal critical values 9.97 (p<0.001). Multiple logistic regression analysis indicated that lower HRR (<9.97) (OR: 3.419, 1.679 to 6.964, p=0.001) is independently associated with frailty in older people, even after adjusting confounding factors. CONCLUSION Lower HRR is closely associated with an increased risk of frailty in older people. Lower HRR may be an independent risk factor for frailty in community-dwelling older adults.
Collapse
Affiliation(s)
- Mengpei Zhu
- Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Wei
- Wuhan Geriatric Hospital, Wuhan, Hubei, China
| | - Xiongjun Yang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Huang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yushuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Osawa Y, Candia J, Abe Y, Tajima T, Oguma Y, Arai Y. Plasma amino acid signature for sarcopenic phenotypes in community-dwelling octogenarians: Results from the Kawasaki Aging Wellbeing Project. Exp Gerontol 2023; 178:112230. [PMID: 37286061 DOI: 10.1016/j.exger.2023.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Sarcopenia is one of the primary risk factors for various adverse health events in later life. However, its pathophysiology in the very old population remains unclear. Hence, this study aimed to examine whether plasma free amino acids (PFAAs) correlate with major sarcopenic phenotypes (i.e., muscle mass, muscle strength, and physical performance) in community-dwelling adults aged 85-89 years living in Japan. Cross-sectional data from the Kawasaki Aging Well-being Project were used. We included 133 adults aged 85-89 years. In this study, fasting blood was collected to measure 20 plasma PFAAs. Measures for the three major sarcopenic phenotypes included appendicular lean mass assessed by multifrequency bioimpedance, isometric handgrip strength, and gait speed from a 5 m walk at a usual pace. Furthermore, we used phenotype-specific elastic net regression models adjusted for age centered at 85 years, sex, body mass index, education level, smoking status, and drinking habit to identify significant PFAAs for each sarcopenic phenotype. Higher histidine and lower alanine levels were associated with poor gait speed, but no PFAAs correlated with muscle strength or mass. In conclusion, PFAAs such as plasma histidine and alanine are novel blood biomarkers associated with physical performance in community-dwelling adults aged 85 years or older.
Collapse
Affiliation(s)
- Yusuke Osawa
- Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan; Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, United States.
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, United States
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Tajima
- Sports Medicine Research Center, Keio University, Kanagawa, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Oguma
- Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan; Faculty of Nursing and Medical Care, Keio University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
36
|
Nakamura K, Ueki K, Matsuo R, Kiyohara T, Irie F, Wakisaka Y, Ago T, Kamouchi M, Kitazono T. Association between decreases in serum uric acid levels and unfavorable outcomes after ischemic stroke: A multicenter hospital-based observational study. PLoS One 2023; 18:e0287721. [PMID: 37384778 PMCID: PMC10309981 DOI: 10.1371/journal.pone.0287721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The association between clinical outcomes in ischemic stroke patients and decreases in serum uric acid levels, which often occur during the acute phase, remains unknown. Herein, we aimed to investigate the association using a large-scale, multicenter stroke registry. METHODS We analyzed 4,621 acute ischemic stroke patients enrolled in the Fukuoka Stroke Registry between June 2007 and September 2019 whose uric acid levels were measured at least twice during hospitalization (including on admission). The study outcomes were poor functional outcome (modified Rankin Scale score ≥3) and functional dependence (modified Rankin Scale score 3-5) at 3 months after stroke onset. Changes in uric acid levels after admission were evaluated using a decrease rate that was classified into 4 sex-specific grades ranging from G1 (no change/increase after admission) to G4 (most decreased). Multivariable logistic regression analyses were used to assess the associations between decreases in uric acid levels and the outcomes. RESULTS The frequencies of the poor functional outcome and functional dependence were lowest in G1 and highest in G4. The odds ratios (95% confidence intervals) of G4 were significantly higher for poor functional outcome (2.66 [2.05-3.44]) and functional dependence (2.61 [2.00-3.42]) when compared with G1 after adjusting for confounding factors. We observed no heterogeneity in results for subgroups categorized according to age, sex, stroke subtype, neurological severity, chronic kidney disease, or uric acid level on admission. CONCLUSIONS Decreases in serum uric acid levels were independently associated with unfavorable outcomes after acute ischemic stroke.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryu Matsuo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumi Irie
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
37
|
Jia X, Zhu X, Chen S, Wang Y, Liu J, Liu T, Dong Y. Systematic Exploration of the Potential Material Basis and Molecular Mechanism of the Mongolian Medicine Shudage-4 in Attenuating Stress-Induced Gastric Ulcer in Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8998368. [PMID: 37362100 PMCID: PMC10289874 DOI: 10.1155/2023/8998368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Shudage-4, an ancient and well-known formula in traditional Mongolian medicine comprising four different types of traditional Chinese medicine, is widely used in the treatment of gastric ulcers. However, the potential material basis and molecular mechanism of Shudage-4 in attenuating stress-induced gastric ulcers remain unclear. This study aimed to first explore the potential material basis and molecular mechanism of Shudage-4 in attenuating gastric ulcers in rats. The chemical constituents and transitional components in the blood of Shudage-4 were identified by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). The rat gastric ulcer model was induced by water immersion restraint stress (WIRS). The ulcer damage to gastric tissue was measured at the gross anatomical level and pathological level by hematoxylin-eosin (HE) staining of gastric tissue. RNA sequencing of gastric tissue and plasma metabolomics were performed to analyze the mechanism of Shudage-4 against gastric ulcers. A Pearson correlation analysis was performed to explore the association between serum metabolites and gene expression of gastric tissue. A total of 30 chemical constituents were identified in Shudage-4 by UPLC-TOF-MS. Among 30 constituents, 13 transitional components in the blood were considered as the potential material basis. Shudage-4 treatment had a significant effect on WIRS-induced gastric ulcers in rats. HE staining of gastric tissue illustrated that WIRS-induced ulcer damage was suppressed by Shudage-4 treatment. RNA sequencing of gastric tissue showed that 282 reversed expression genes in gastric tissue were related to Shudage-4 treatment, and gene set enrichment analysis revealed that Shudage-4 treatment significantly inhibited gene set expression related to reactive oxygen species (ROS), which was also validated by detecting rat gastric tissue MDA, GSH, SOD, GSH-Px, and CAT activities. The plasma metabolomic data demonstrated that 23 significantly differential metabolites were closely associated with the Shudage-4 treatment. The further multiomics joint analysis found that significantly upregulated 5 plasma metabolites in Shudage-4-treated rats compared to model rats were negatively correlated with gene set expression related to ROS in gastric tissue. Shudage-4 alleviated WIRS-induced gastric ulcers by inhibiting ROS generation, which was achieved by regulating plasma metabolites level.
Collapse
Affiliation(s)
- Xin Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
| | - Xiaoling Zhu
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
- Inner Mongolian International Mongolian Hospital, Wulanchabudong Street, Hohhot 010090, China
| | - Siyuan Chen
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yuexuan Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
- Key Laboratory of Clinical and Basic Research on Cardiovascular Diseases, Basic Research Team of Cardiovascular Diseases, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yu Dong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, China
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
38
|
Fulinara CP, Huynh A, Goldwater D, Abdalla B, Schaenman J. Frailty and Age-Associated Assessments Associated with Chronic Kidney Disease and Transplantation Outcomes. J Transplant 2023; 2023:1510259. [PMID: 37038595 PMCID: PMC10082678 DOI: 10.1155/2023/1510259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023] Open
Abstract
Background. Frailty is often defined as a decrease in physiological reserve and has been shown to be correlated with adverse health outcomes and mortality in the general population. This condition is highly prevalent in the chronic kidney disease (CKD) patient population as well as in kidney transplant (KT) recipients. Other age-associated changes include sarcopenia, nutrition, cognition, and depression. In assessing the contributions of these components to patient outcomes and their prevalence in the CKD and KT patient population, it can be determined how such variables may be associated with frailty and the extent to which they may impact the adverse outcomes an individual may experience. Objectives. We sought to perform a systematic literature review to review published data on frailty and associated age-associated syndromes in CKD and KT patients. Results. Over 80 references pertinent to frailty, sarcopenia, nutrition, cognition, or depression in patients with CKD or KT were identified. Systematic review was performed to evaluate the data supporting the use of the following approaches: Fried Frailty, Short Physical Performance Battery, Frailty Index, Sarcopenia Index, CT scan quantification of muscle mass, health-related quality of life, and assessment tools for nutrition, cognition, and depression. Conclusion. This report represents a comprehensive review of previously published research articles on this topic. The intersectionality between all these components in contributing to the patient’s clinical status suggests a need for a multifaceted approach to developing comprehensive care and treatment for the CKD and KT population to improve outcomes before and after transplantation.
Collapse
Affiliation(s)
- Christian P. Fulinara
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alina Huynh
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Deena Goldwater
- Divisions of Geriatrics and Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Basmah Abdalla
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Joanna Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Zhang Y, Cao G, Li X, Piao Z. Effects of Exogenous Ergothioneine on Brassica rapa Clubroot Development Revealed by Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24076380. [PMID: 37047350 PMCID: PMC10094275 DOI: 10.3390/ijms24076380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae that leads to a serious yield reduction in cruciferous plants. In this study, ergothioneine (EGT) was used to culture P. brassicae resting spores, the germination of which was significantly inhibited. Further exogenous application of EGT and P. brassicae inoculation in Chinese cabbage showed that EGT promoted root growth and significantly reduced the incidence rate and disease index. To further explore the mechanism by which EGT improves the resistance of Chinese cabbage to clubroot, a Chinese cabbage inbred line BJN3-2 susceptible to clubroot treated with EGT was inoculated, and a transcriptome analysis was conducted. The transcriptome sequencing analysis showed that the differentially expressed genes induced by EGT were significantly enriched in the phenylpropanoid biosynthetic pathway, and the genes encoding related enzymes involved in lignin synthesis were upregulated. qRT-PCR, peroxidase activity, lignin and flavonoid content determination showed that EGT promoted the lignin and flavonoid synthesis of Chinese cabbage and improved its resistance to clubroot. This study provides a new insight for the comprehensive prevention and control of cruciferous clubroot and for further study of the effects of EGT on clubroot disease.
Collapse
|
40
|
Pan R, Li X, Han J, Li Q, Lei Z, Huang H, Chen Y. Preoperative frailty assessment could be a predictive factor for the prognosis of elderly patients undergoing coronary artery bypass grafting: a retrospective case-control study. BMC Anesthesiol 2023; 23:63. [PMID: 36855100 PMCID: PMC9972799 DOI: 10.1186/s12871-023-02024-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Frailty has been considered to be associated with major mortality and increased length of stay after cardiac surgery. This study aimed to explore the predictive potential of frailty assessment in the prognosis of elderly patients undergoing bypass surgery. METHODS This study assessed the preoperative frailty according to the Fried's frailty phenotype, and included 150 frail and 150 non-frail elderly patients (≥ 65 y) who underwent bypass surgery. The present study evaluated the prognosis of elderly patients based on sequential organ failure assessment (SOFA) score, and collected clinical indicators to construct logistic regression models with the prognosis as the dependent variable, to explore the potential predictive ability of preoperative frailty. Moreover, this study focused on the complications and analyzed the relationship between preoperative frailty and postoperative complications. RESULTS In the present study, 244 patients were divided into the favorable prognosis group and 56 patients were divided into the unfavorable prognosis group. Logistic regression analysis showed that increased myoglobin and high cardiac function classification were independent risk factors for unfavorable prognosis in elderly patients undergoing bypass surgery. The discrimination of the clinical prediction model was determined by the receiver operating characteristic (ROC) curve, and the area under curve (AUC) was 0.928. After adding preoperative frailty assessment, the AUC was improved to 0.939. This study found a significant correlation between preoperative frailty and postoperative complications, mainly in the circulatory system. CONCLUSION Preoperative frailty assessment could be a predictive factor for the prognosis of elderly patients undergoing coronary artery bypass grafting. According to our study, frailty assessment and appropriate intervention before bypass surgery may be beneficial to the enhanced recovery after cardiac surgery. TRIAL REGISTRATION The clinical study was approved by the Medical Ethics Committee of The First Affiliated Hospital of Nanjing Medical University (2021-SR-393). All patients signed an informed consent form.
Collapse
Affiliation(s)
- Rui Pan
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China
| | - Xiaohui Li
- Department of Anesthesiology, the Fourth People's Hospital of Taizhou, 99 Gulou North Road, Hailing District, Taizhou City,, 225399, Jiangsu Province, China
| | - Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China
| | - Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China
| | - Zheng Lei
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China
| | - He Huang
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China.
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing City, 210029, Jiangsu Province, China.
| |
Collapse
|
41
|
Is the anti-aging effect of ACE2 due to its role in the renin-angiotensin system?-Findings from a comparison of the aging phenotypes of ACE2-deficient, Tsukuba hypertensive, and Mas-deficient mice. Hypertens Res 2023; 46:1210-1220. [PMID: 36788301 PMCID: PMC9925940 DOI: 10.1038/s41440-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023]
Abstract
Angiotensin converting enzyme 2 (ACE2) functions as an enzyme that produces angiotensin 1-7 (A1-7) from angiotensin II (AII) in the renin-angiotensin system (RAS). We evaluated aging phenotypes, especially skeletal muscle aging, in ACE2 systemically deficient (ACE2 KO) mice and found that ACE2 has an antiaging function. The characteristic aging phenotype observed in ACE2 KO mice was not reproduced in mice deficient in the A1-7 receptor Mas or in Tsukuba hypertensive mice, a model of chronic AII overproduction, suggesting that ACE2 has a RAS-independent antiaging function. In this review, the results we have obtained and related studies on the aging regulatory mechanism mediated by RAS components will be presented and summarized. We evaluated the aging phenotype of ACE2 systemically deficient (ACE2 KO) mice, particularly skeletal muscle aging, and found that ACE2 has an antiaging function. The characteristic aging phenotype observed in ACE2 KO mice was not reproduced in Mas KO mice, angiotensin 1-7 receptor-deficient mice or in Tsukuba hypertensive mice, a model of chronic angiotensin II overproduction, suggesting that the antiaging functions of ACE2 are independent of the renin-angiotensin system (RAS).
Collapse
|
42
|
Teruya T, Sunagawa S, Mori A, Masuzaki H, Yanagida M. Markers for obese and non-obese Type 2 diabetes identified using whole blood metabolomics. Sci Rep 2023; 13:2460. [PMID: 36774491 PMCID: PMC9922320 DOI: 10.1038/s41598-023-29619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Definitive differences in blood metabolite profiles between obese and non-obese Type 2 diabetes (T2D) have not been established. We performed an LC-MS-based non-targeted metabolomic analysis of whole blood samples collected from subjects classified into 4 types, based on the presence or absence of obesity and T2D. Of the 125 compounds identified, 20, comprising mainly nucleobases and glucose metabolites, showed significant increases or decreases in the T2D group. These included cytidine, UDP-glucuronate, UMP, 6-phosphogluconate, and pentose-phosphate. Among those 20 compounds, 11 enriched in red blood cells (RBCs) have rarely been studied in the context of diabetes, indicating that RBC metabolism is more extensively disrupted than previously known. Correlation analysis revealed that these T2D markers include 15 HbA1c-associated and 5 irrelevant compounds that may reflect diabetic conditions by a different mechanism than that of HbA1c. In the obese group, enhanced protein and fatty acid catabolism causes increases in 13 compounds, including methylated or acetylated amino acids and short-chain carnitines. Our study, which may be considered a pilot investigation, suggests that changes in blood metabolism due to obesity and diabetes are large, but essentially independent.
Collapse
Affiliation(s)
- Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
- R&D Cluster Programs Section, Technology Development and Innovation Center, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Sumito Sunagawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ayaka Mori
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| |
Collapse
|
43
|
Metabolomics Profiling of Age-Associated Metabolites in Malay Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4416410. [PMID: 36785791 PMCID: PMC9922189 DOI: 10.1155/2023/4416410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex process characterized by progressive loss of functional abilities due to the accumulation of molecular damages. Metabolomics could offer novel insights into the predictors and mechanisms of aging. This cross-sectional study is aimed at identifying age-associated plasma metabolome in a Malay population. A total of 146 (90 females) healthy participants aged 28-69 were selected for the study. Untargeted metabolomics profiling was performed using liquid chromatography-tandem mass spectrometry. Association analysis was based on the general linear model. Gender-associated metabolites were adjusted for age, while age-associated metabolites were adjusted for gender or analyzed in a gender-stratified manner. Gender-associated metabolites such as 4-hydroxyphenyllactic acid, carnitine, cortisol, and testosterone sulfate showed higher levels in males than females. Deoxycholic acid and hippuric acid were among the metabolites with a positive association with age after being adjusted for gender, while 9(E),11(E)-conjugated linoleic acid, cortisol, and nicotinamide were negatively associated with age. In gender-stratified analysis, glutamine was one of the common metabolites that showed a direct association with age in both genders, while metabolites such as 11-deoxy prostaglandin F2β, guanosine monophosphate, and testosterone sulfate were inversely associated with age in males and females. This study reveals several age-associated metabolites in Malays that could reflect the changes in metabolisms during aging and may be used to discern the risk of geriatric syndromes and disorders later. Further studies are required to determine the interplay between these metabolites and environmental factors on the functional outcomes during aging.
Collapse
|
44
|
Okoye C, Arosio B, Carino S, Putrino L, Franchi R, Rogani S, Cesari M, Mari D, Vitale G, Malara A, Calsolaro V, Monzani F. The Free Triiodothyronine/Free Thyroxine Ratio Is Associated with Frailty in Older Adults: A Longitudinal Multisetting Study. Thyroid 2023; 33:169-176. [PMID: 36641642 DOI: 10.1089/thy.2022.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: Various models have been proposed to predict frailty, including those based on clinical criteria and phenotypes. However, a simple biomarker associated with frailty has been not yet identified. The aim of this study is to evaluate the relationship between free triiodothyronine (fT3)/free thyroxine (fT4) ratio value and the degree of frailty among three different cohorts of older individuals: (1) acutely ill hospitalized patients, (2) nursing-home (NH) residents, and (3) home-dwelling centenarians. Methods: We performed a secondary analysis of de-identified patient-level data from two prospective observational studies on acutely hospitalized older patients (Geriatric Acute Unit [GAU]), and home-dwelling centenarians (CENT), and a retrospective-prospective observational study on older NH residents. Demographic characteristics, along with a 30-items Frailty Index (FI) and serum thyrotropin, fT3 and fT4 measurements were obtained. Results: Six hundred fifteen individuals (aged 86.4 ± 8.9 years; 55.1% females) were included in the study, including 298 (48.5%) GAU, 250 (40.6%) NH, and 67 (10.9%) CENT. A significant inverse relationship between fT3/fT4 ratio and FI values was observed (ρs = -0.17 [confidence interval; CI: -0.092 to 0.252], p < 0.001), and this was confirmed by logistic multivariate analysis (β = -0.44, odds ratio [OR]: 0.64 [CI: 0.47-0.87], p < 0.001) (after adjustment for age, sex, and cohorts). Moreover, a progressively decreased mortality risk was associated with rising fT3/fT4 ratio (OR 0.60 [CI: 0.44-0.80] β = -0.51, p < 0.001]. Conclusions: The fT3/fT4 ratio value was inversely correlated with frailty degree and mortality risk in a large cohort of older individuals, including centenarians, regardless of their sex and clinical condition. fT3/fT4 ratio value could represent an easily measured independent biochemical marker of frailty degree in older people.
Collapse
Affiliation(s)
- Chukwuma Okoye
- Geriatrics Unit, Department of Clinical and Experimental Medicine, Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Pisa, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Solna, Sweden
| | - Beatrice Arosio
- Geriatrics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Riccardo Franchi
- Geriatrics Unit, Department of Clinical and Experimental Medicine, Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | - Sara Rogani
- Geriatrics Unit, Department of Clinical and Experimental Medicine, Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Daniela Mari
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | | | - Valeria Calsolaro
- Geriatrics Unit, Department of Clinical and Experimental Medicine, Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical and Experimental Medicine, Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
5-Hydroxymethylfurfural induces mice frailty through cell senescence-associated sarcopenia caused by chronic inflammation. Heliyon 2023; 9:e13217. [PMID: 36793951 PMCID: PMC9922977 DOI: 10.1016/j.heliyon.2023.e13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Objective 5-Hydroxymethylfurfural (5-HMF) is an important component of air pollution, confirmed to be a risk factor for pulmonary inflammation. However, its association with general health is unknown. This article aimed to clarify the effect and mechanism of 5-HMF in the occurrence and aggravation of frailty in mice by investigating whether exposure to 5-HMF was linked to the occurrence and aggravation of mice frailty. Methods Twelve male C57BL/6 mice (12-month-old, 38 ± 1 g) were randomly divided into the control group and the 5-HMF group. The 5-HMF group was treated with 5-HMF (1 mg/kg/day, respiratory exposure) for 12 months, whereas the control group was treated with equal amounts of sterile water. After the intervention, the ELISA method was used to detect the serum inflammation level of the mice, and the physical performance and frail status were evaluated using a Fried physical phenotype-based assessment tool. The differences in the body compositions were calculated from their MRI images, and the pathological changes in their gastrocnemius muscle were revealed using the H&E staining. Furthermore, the senescence of skeletal muscle cells was evaluated by measuring the expression levels of senescence-related proteins by the western blotting. Results In the 5-HMF group, serum inflammatory factors IL-6, TNF-α, and CRP levels were significantly raised (p < 0.01). Mice in this group had higher frailty scores and significantly reduced grip strength (p < 0.001), slower weight gains, less WVgastrocnemius muscle masses, and lower sarcopenia indices (SI). In addition, the cross-sectional areas of their skeletal muscles were reduced, and the levels of their cell senescence-related proteins (p53, p21, p16, SOD1, SOD2, SIRT1, SIRT3) were considerably altered (p < 0.01). Conclusion 5-HMF may induce chronic and systemic inflammation, which in turn accelerates the progression of the frailty of mice through cell senescence.
Collapse
|
46
|
Westbrook R, Zhang C, Yang H, Tian J, Guo S, Xue QL, Walston J, Le A, Abadir PM. Metabolomics-Based Identification of Metabolic Dysfunction in Frailty. J Gerontol A Biol Sci Med Sci 2022; 77:2367-2372. [PMID: 36580380 PMCID: PMC9799179 DOI: 10.1093/gerona/glab315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of energy producing metabolic pathways has been observed in older adults with frailty. In this study, we used liquid chromatography-mass spectrometry technology to identify aging- and frailty-related differences in metabolites involved in glycolysis, the tricarboxylic (TCA) cycle, and other energy metabolism-related pathways in the serum of a cohort of community-dwelling adults aged 20-97 (n = 146). We also examined the relationship between serum levels of metabolites and functional measures, physical frailty, and risk status for adverse health outcomes. We observed elevated levels of TCA cycle and glycolytic intermediates in frail subjects; however, the differences in the levels of ATP and other energy metabolites between young, nonfrail, and frail adults were not significant. Instead, we found that serum levels of neurotransmitters N-acetyl-aspartyl-glutamate, glutamate, and γ-aminobutyric acid were significantly elevated in older adults with frailty. These elevations of glycolytic and TCA cycle intermediates, and neurotransmitters may be part of the biological signature of frailty.
Collapse
Affiliation(s)
- Reyhan Westbrook
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Tian
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shenghao Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Family Medicine, Kyung Hee University, Seoul, South Korea
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022; 185:4526-4540.e18. [PMID: 36347253 PMCID: PMC9691600 DOI: 10.1016/j.cell.2022.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Anna B Seminara
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Emily R Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
49
|
Saud Gany SL, Tan JK, Chin KY, Hakimi NH, Ab Rani N, Ihsan N, Makpol S. Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction. Front Mol Biosci 2022; 9:1008908. [PMID: 36310588 PMCID: PMC9616602 DOI: 10.3389/fmolb.2022.1008908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023] Open
Abstract
The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases and metabolic disorders. This study aimed to elucidate the effects of tocotrienol-rich fraction (TRF) on muscle metabolomes and metabolic pathways in ageing Sprague Dawley (SD) rats. Three months, 9 months, and 21 months old male SD rats were divided into control and treated groups with 10 rats per group. Rats in control and treated groups were given 60 mg/kg body weight/day of palm olein and 60 mg/kg body weight/day of TRF, respectively, via oral gavage for 3 months. Muscle performance was assessed at 0 and 3 months of treatment by measuring muscle strength and function. Our results showed that TRF treatment caused a significant increase in the swimming time of the young rats. Comparison in the control groups showed that metabolites involved in lipid metabolisms such as L-palmitoyl carnitine and decanoyl carnitine were increased in ageing. In contrast, several metabolites, such as 3-phosphoglyceric acid, aspartic acid and aspartyl phenylalanine were decreased. These findings indicated that muscle metabolomes involved in lipid metabolism were upregulated in aged rats. In contrast, the metabolites involved in energy and amino acid metabolism were significantly downregulated. Comparison in the TRF-supplemented groups showed an upregulation of metabolites involved in energy and amino acid metabolism. Metabolites such as N6-methyl adenosine, spermine, phenylalanine, tryptophan, aspartic acid, histidine, and N-acetyl neuraminic acid were up-regulated, indicating promotion of amino acid synthesis and muscle regeneration. Energy metabolism was also improved in adult and old rats with TRF supplementation as indicated by the upregulation of nicotinamide adenine dinucleotide and glycerol 3-phosphate compared to the control group. In conclusion, the mechanism underlying the changes in skeletal muscle mass and functions in ageing was related to carbohydrate, lipid and amino acid metabolism. Tocotrienol supplementation showed beneficial effects in alleviating energy and amino acid synthesis that may promote the regeneration and renewal of skeletal muscle in ageing rats.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia,*Correspondence: Suzana Makpol,
| |
Collapse
|
50
|
Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics. Antioxidants (Basel) 2022; 11:antiox11091717. [PMID: 36139790 PMCID: PMC9495818 DOI: 10.3390/antiox11091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/20/2022] Open
Abstract
Low blood concentrations of the diet-derived compound ergothioneine (ET) have been associated with cognitive impairment and cerebrovascular disease (CeVD) in cross-sectional studies, but it is unclear whether ET levels can predict subsequent cognitive and functional decline. Here, we examined the temporal relationships between plasma ET status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for CeVD and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years. Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, the longitudinal associations were found only in non-demented individuals. Mediation analyses showed that the effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.
Collapse
|