1
|
Boussac A, Sellés J, Sugiura M. Kinetics of reformation of the S 0 state capable of progressing to the S 1 state after the O 2 release by photosystem II. PHOTOSYNTHESIS RESEARCH 2025; 163:5. [PMID: 39810006 DOI: 10.1007/s11120-024-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
The active site for water oxidation in photosystem II (PSII) comprises a Mn4CaO5 cluster adjacent to a redox-active tyrosine residue (TyrZ). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S0 to S4), with O2 evolution occurring during the S3TyrZ· to S0TyrZ transition. Chloride also plays a role in this mechanism. Using PSII from Thermosynechococcus vestitus, where Ca and Cl were replaced with Sr and Br to slow the S3TyrZ· to S0TyrZ + O2 transition (t1/2 ~ 5 ms at room temperature), it was observed that the recovery of a S0 state, defined as the state able to progress to S1, exhibits similar kinetics (t1/2 ~ 5 ms). This suggests that in CaCl-PSII, the reformation of the functional S0 state directly follows the S3TyrZ· to S0TyrZ + O2 transition, with no additional delay required for the insertion of a new substrate water molecule (O5) and associated protons.
Collapse
Affiliation(s)
- Alain Boussac
- UMR 9198, Institut de Biologie Intégrative de la Cellule, CEA Saclay, 91191, Gif-Sur-Yvette, France.
| | - Julien Sellés
- UMR CNRS 7141, Institut de Biologie Physico-Chimique, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Miwa Sugiura
- Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
2
|
Allgöwer F, Pöverlein MC, Rutherford AW, Kaila VRI. Mechanism of proton release during water oxidation in Photosystem II. Proc Natl Acad Sci U S A 2024; 121:e2413396121. [PMID: 39700151 DOI: 10.1073/pnas.2413396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (Mn4O5Ca) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O2 formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated. Here, we show that the light-driven Tyr161D1 (Yz) oxidation adjacent to the Mn4O5Ca cluster, decreases the barrier for proton transfer from the putative substrate water molecule (W3/Wx) to Glu310D2, accessible to the luminal bulk. By combining hybrid quantum/classical (QM/MM) free energy calculations with atomistic molecular dynamics simulations, we probe the energetics of the proton transfer along the Cl1 pathway. We demonstrate that the proton transfer occurs via water molecules and a cluster of conserved carboxylates, driven by redox-triggered electric fields directed along the pathway. Glu65D1 establishes a local molecular gate that controls the proton transfer to the luminal bulk, while Glu312D2 acts as a local proton storage site. The identified gating region could be important in preventing backflow of protons to the Mn4O5Ca cluster. The structural changes, derived here based on the dark-state PSII structure, strongly support recent time-resolved X-ray free electron laser data of the S3 → S4 transition (Bhowmick et al. Nature 617, 2023) and reveal the mechanistic basis underlying deprotonation of the substrate water molecules. Our findings provide insight into the water oxidation mechanism of PSII and show how the interplay between redox-triggered electric fields, ion-pairs, and hydration effects control proton transport reactions.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
3
|
Isobe H, Suzuki T, Suga M, Shen JR, Yamaguchi K. Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II. ACS OMEGA 2024; 9:50041-50048. [PMID: 39713658 PMCID: PMC11656237 DOI: 10.1021/acsomega.4c09981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Takayoshi Suzuki
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Michihiro Suga
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Center
for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Yehia S, Wang J, Brudvig GW, Gunner MR, Brooks BR, Amin M. An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S 1 and S 3 states revealed by serial femtosecond crystallography. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149531. [PMID: 39694218 DOI: 10.1016/j.bbabio.2024.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn4O5Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O2 and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S1 state and those following two-flashes which are poised in the penultimate S3 oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S1 and S3 states.
Collapse
Affiliation(s)
- Salma Yehia
- Department of Biotechnology and Biomolecular Chemistry, Faculty of Science, Cairo University, Giza 11221, Egypt
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - M R Gunner
- Department of Physics, City College of New York, NY 10031, USA
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Haddy A, Beravolu S, Johnston J, Kern H, McDaniel M, Ore B, Reed R, Tai H. Exploring the interdependence of calcium and chloride activation of O 2 evolution in photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 162:385-400. [PMID: 38700727 PMCID: PMC11615033 DOI: 10.1007/s11120-024-01094-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 12/05/2024]
Abstract
Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn4CaO5 cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, KM, for each ion is less than the dissociation constant, KS, and that the affinity of PSII for Ca2+ is about ten-fold greater than for Cl-, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl- and lower affinity for Ca2+. Observation of the slow-decaying Tyr Z radical, YZ•, at 77 K and the coupled S2YZ• radical at 10 K, which are both associated with Ca2+ depletion, shows that Cl- is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S3 state preceding Ca2+ loss and possibly for stabilization of YZ• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl- at the Cl-1 site and the Ca2+/Tyr Z region.
Collapse
Affiliation(s)
- Alice Haddy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| | - Shilpa Beravolu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jeremiah Johnston
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Hannah Kern
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Monica McDaniel
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Brandon Ore
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Rachel Reed
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Henry Tai
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|
6
|
Wang J. Photosystem II: light-dependent oscillation of ligand composition at its active site. Acta Crystallogr D Struct Biol 2024; 80:850-861. [PMID: 39607822 DOI: 10.1107/s2059798324011392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn4 cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O2 molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O2.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
7
|
Müh F, Bothe A, Zouni A. Towards understanding the crystallization of photosystem II: influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides. PHOTOSYNTHESIS RESEARCH 2024; 162:273-289. [PMID: 38488943 PMCID: PMC11615006 DOI: 10.1007/s11120-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The influence of poly(ethylene glycol) (PEG) polymers H-(O-CH2-CH2)p-OH with different average molecular sizes p on the micelle formation of n-alkyl-β-D-maltoside detergents with the number of carbon atoms in the alkyl chain ranging from 10 to 12 is investigated with the aim to learn more about the detergent behavior under conditions suitable for the crystallization of the photosynthetic pigment-protein complex photosystem II. PEG is shown to increase the critical micelle concentration (CMC) of all three detergents in the crystallization buffer in a way that the free energy of micelle formation increases linearly with the concentration of oxyethylene units (O-CH2-CH2) irrespective of the actual molecular weight of the polymer. The CMC shift is modeled by assuming for simplicity that it is dominated by the interaction between PEG and detergent monomers and is interpreted in terms of an increase of the transfer free energy of a methylene group of the alkyl chain by 0.2 kJ mol-1 per 1 mol L-1 increase of the concentration of oxyethylene units at 298 K. Implications of this effect for the solubilization and crystallization of protein-detergent complexes as well as detergent extraction from crystals are discussed.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Adrian Bothe
- Institut für Molekularbiologie und Biophysik, ETH Zürich, HPK, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin, Leonor-Michaelis-Haus, Philippstrasse 13, 10095, Berlin, Germany
| |
Collapse
|
8
|
Bergmann U. Stimulated X-ray emission spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 162:371-384. [PMID: 38619702 DOI: 10.1007/s11120-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
We describe an emerging hard X-ray spectroscopy technique, stimulated X-ray emission spectroscopy (S-XES). S-XES has the potential to characterize the electronic structure of 3d transition metal complexes with spectral information currently not reachable and might lead to the development of new ultrafast X-ray sources with properties beyond the state of the art. S-XES has become possible with the emergence of X-ray free-electron lasers (XFELs) that provide intense femtosecond X-ray pulses that can be employed to generate a population inversion of core-hole excited states resulting in stimulated X-ray emission. We describe the instrumentation, the various types of S-XES, the potential applications, the experimental challenges, and the feasibility of applying S-XES to characterize dilute systems, including the Mn4Ca cluster in the oxygen evolving complex of photosystem II.
Collapse
Affiliation(s)
- Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Yamaguchi K, Miyagawa K, Shoji M, Isobe H, Kawakami T. Similarity between oxygen evolution in photosystem II and oxygen reduction in cytochrome c oxidase via proton coupled electron transfers. A unified view of the oxygenic life from four electron oxidation-reduction reactions. Photochem Photobiol Sci 2024; 23:2133-2155. [PMID: 39576557 DOI: 10.1007/s43630-024-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024]
Abstract
Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T0) computations are performed to elucidate electronic and spin states of CaMn4Ox cluster in the key step for oxygen evolution, namely S4 [S3 with Mn(IV) = O + Tyr161-O radical] state of PSII and PM [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMn4Ox cluster in PSII and the cycle of oxygen reduction catalyzed by the CuA-Fea-Fea3-CuB cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO. Interplay between theory and experiments have revealed that three electrons in the metal sites and one electron in tyrosine radical site are characteristic for PT-ET in these biological redox reaction systems, indicating no necessity of harmful Mn(V) = O and Fe(V) = O bonds with strong oxyl-radical character. Implications of the computational results are discussed in relation to design of artificial systems consisted of earth abundant transition metals for water oxidation.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
| | | | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
10
|
Pavlou A, Styring S, Mamedov F. The S 1 to S 2 and S 2 to S 3 state transitions in plant photosystem II: relevance to the functional and structural heterogeneity of the water oxidizing complex. PHOTOSYNTHESIS RESEARCH 2024; 162:401-411. [PMID: 38662327 PMCID: PMC11614919 DOI: 10.1007/s11120-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
11
|
Chernev P, Aydin AO, Messinger J. On the simulation and interpretation of substrate-water exchange experiments in photosynthetic water oxidation. PHOTOSYNTHESIS RESEARCH 2024; 162:413-426. [PMID: 38512410 PMCID: PMC11639282 DOI: 10.1007/s11120-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (Si states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (Mn4CaO5) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with H218O provide insight into the substrate binding modes and sites via determination of exchange rates. Such experiments have revealed that the two substrate waters exchange with different rates that vary independently with the Si state and are hence referred to as the fast (Wf) and the slow (WS) substrate waters. New insight for the molecular interpretation of these rates arises from our recent finding that in the S2 state, under special experimental conditions, two different rates of WS exchange are observed that appear to correlate with the high spin and low spin conformations of the Mn4CaO5 cluster. Here, we reexamine and unite various proposed methods for extracting and assigning rate constants from this recent data set. The analysis results in a molecular model for substrate-water binding and exchange that reconciles the expected non-exchangeability of the central oxo bridge O5 when located between two Mn(IV) ions with the experimental and theoretical assignment of O5 as WS in all S states. The analysis also excludes other published proposals for explaining the water exchange kinetics.
Collapse
Affiliation(s)
- Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden.
| |
Collapse
|
12
|
Kamps JJAG, Bosman R, Orville AM, Aller P. Sample efficient approaches in time-resolved X-ray serial crystallography and complementary X-ray emission spectroscopy using drop-on-demand tape-drive systems. Methods Enzymol 2024; 709:57-103. [PMID: 39608948 DOI: 10.1016/bs.mie.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain. Given this, it has been paramount to develop instrumentation that reduces the amount of microcrystal slurry required for experiments. Tape-drive systems use a conveyor belt made of X-ray transparent material as a motorized solid-support to steer deposited microcrystals into the beam. For efficient sample consumption on-demand ejectors can be synchronized with the X-ray pulses to expose crystals contained in droplets deposited on the tape. Reactions in the crystals can be triggered via various strategies, including pump-probe, substrate/ligand mixing, or gas incubation in the space between droplet ejection and X-ray illumination. Another challenge in time-resolved serial crystallography is interpreting the resulting electron density maps. This is especially difficult for metalloproteins where the active site metal is intimately involved in catalysis and often proceeds through multiple oxidation states during enzymatic catalysis. The unrestricted space around tape-drive systems can be used to accommodate complementary spectroscopic equipment. Here, we highlight tape-drive sample delivery systems for complementary and simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) measurements. We describe how the combination of both XRD and XES is a powerful tool for time-resolved experiments at XFELs and synchrotrons.
Collapse
Affiliation(s)
- Jos J A G Kamps
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Robert Bosman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Allen M Orville
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.
| |
Collapse
|
13
|
Jaho S, Axford D, Gu DH, Hough MA, Owen RL. Use of fixed targets for serial crystallography. Methods Enzymol 2024; 709:29-55. [PMID: 39608947 DOI: 10.1016/bs.mie.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
In serial crystallography, large numbers of microcrystals are sequentially delivered to an X-ray beam and a diffraction pattern is obtained from each crystal. This serial approach was developed primarily for X-ray Free Electron Lasers (XFELs) where crystals are destroyed by the beam but is increasingly used in synchrotron experiments. The combination of XFEL and synchrotron-based serial crystallography enables time-resolved experiments over an extremely wide range of time domains - from femtoseconds to seconds - and allows intact or pristine structures free of the effects of radiation damage to be obtained. Several approaches have been developed for sample delivery with varying levels of sample efficiency and ease of use. In the fixed target approach, microcrystals are loaded onto a solid support which is then rastered through the X-ray beam. The key advantages of fixed targets are that every crystal loaded can be used for data collection, and that precise control of when crystals are moved into the beam allows for time-resolved experiments over a very wide range of time domains as well as multi-shot experiments characterising the effects of the X-ray beam on the sample. We describe the application of fixed targets for serial crystallography as implemented at beamline I24 at Diamond Light Source and at the SACLA XFEL. We discuss methodologies for time-resolved serial crystallography in fixed targets and describe best practices for obtaining high-quality structures covering sample preparation, data collection strategies and data analysis pipelines.
Collapse
Affiliation(s)
- Sofia Jaho
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| | - Danny Axford
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Do-Heon Gu
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Michael A Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Robin L Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
14
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Chen Y, Su Y, Han J, Chen C, Fan H, Zhang C. Synthetic Mn 3Ce 2O 5-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2024; 17:e202401031. [PMID: 38829180 DOI: 10.1002/cssc.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4CaO5-cluster that catalyses water splitting into electrons, protons, and dioxygen. Precisely structural and functional mimicking of the OEC is a long-standing challenge and pressingly needed for understanding the structure-function relationship and catalytic mechanism of O-O bond formation. Herein we report two simple and robust artificial Mn3Ce2O5-complexes that display a remarkable structural similarity to the OEC in regarding of the ten-atom core (five metal ions and five oxygen bridges) and the alkyl carboxylate peripheral ligands. This Mn3Ce2O5-cluster can catalyse the water-splitting reaction on the surface of ITO electrode. These results clearly show that cerium can structurally and functionally replace both calcium and manganese in the cluster. Mass spectroscopic measurements demonstrate that the oxide bridges in the cluster are exchangeable and can be rapidly replaced by the isotopic oxygen of H2 18O in acetonitrile solution, which supports that the oxide bridge(s) may serve as the active site for the formation of O-O bond during the water-splitting reaction. These results would contribute to our understanding of the structure-reactivity relationship of both natural and artificial clusters and shed new light on the development of efficient water-splitting catalysts in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Su
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxi Zhang
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
Hutchison CM, Perrett S, van Thor JJ. XFEL Beamline Optical Instrumentation for Ultrafast Science. J Phys Chem B 2024; 128:8855-8868. [PMID: 39087627 PMCID: PMC11421085 DOI: 10.1021/acs.jpcb.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Free electron lasers operating in the soft and hard X-ray regime provide capabilities for ultrafast science in many areas, including X-ray spectroscopy, diffractive imaging, solution and material scattering, and X-ray crystallography. Ultrafast time-resolved applications in the picosecond, femtosecond, and attosecond regimes are often possible using single-shot experimental configurations. Aside from X-ray pump and X-ray probe measurements, all other types of ultrafast experiments require the synchronized operation of pulsed laser excitation for resonant or nonresonant pumping. This Perspective focuses on the opportunities for the optical control of structural dynamics by applying techniques from nonlinear spectroscopy to ultrafast X-ray experiments. This typically requires the synthesis of two or more optical pulses with full control of pulse and interpulse parameters. To this end, full characterization of the femtosecond optical pulses is also highly desirable. It has recently been shown that two-color and two-pulse femtosecond excitation of fluorescent protein crystals allowed a Tannor-Rice coherent control experiment, performed under characterized conditions. Pulse shaping and the ability to synthesize multicolor and multipulse conditions are highly desirable and would enable XFEL facilities to offer capabilities for structural dynamics. This Perspective will give a summary of examples of the types of experiments that could be achieved, and it will additionally summarize the laser, pulse shaping, and characterization that would be recommended as standard equipment for time-resolved XFEL beamlines, with an emphasis on ultrafast time-resolved serial femtosecond crystallography.
Collapse
Affiliation(s)
- Christopher
D. M. Hutchison
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Samuel Perrett
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
18
|
Hao Y, Hung SF, Wang L, Deng L, Zeng WJ, Zhang C, Lin ZY, Kuo CH, Wang Y, Zhang Y, Chen HY, Hu F, Li L, Peng S. Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution. Nat Commun 2024; 15:8015. [PMID: 39271695 PMCID: PMC11399115 DOI: 10.1038/s41467-024-52410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Realizing an efficient turnover frequency in the acidic oxygen evolution reaction by modifying the reaction configuration is crucial in designing high-performance single-atom catalysts. Here, we report a "single atom-double site" concept, which involves an activatable inert manganese atom redox chemistry in a single-atom Ru-Mn dual-site platform with tunnel Ni ions as the trigger. In contrast to conventional single-atom catalysts, the proposed configuration allows direct intramolecular oxygen coupling driven by the Ni ions intercalation effect, bypassing the secondary deprotonation step instead of the kinetically sluggish adsorbate evolution mechanism. The strong bonding of Ni ions activates the inert manganese terminal groups and inhibits the cross-site disproportionation process inherent in the Mn scaffolding, which is crucial to ensure the dual-site platform. As a result, the single-atom Ru-Ni-Mn octahedral molecular sieves catalyst delivers a low overpotential, adequate mass activity and good stability.
Collapse
Affiliation(s)
- Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ye Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.
| |
Collapse
|
19
|
Bury G, Pushkar Y. Insights from Ca 2+→Sr 2+ substitution on the mechanism of O-O bond formation in photosystem II. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01117-2. [PMID: 39186214 DOI: 10.1007/s11120-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
In recent years, there has been a steady interest in unraveling the intricate mechanistic details of water oxidation mechanism in photosynthesis. Despite the substantial progress made over several decades, a comprehensive understanding of the precise kinetics underlying O-O bond formation and subsequent evolution remains elusive. However, it is well-established that the oxygen evolving complex (OEC), specifically the CaMn4O5 cluster, plays a crucial role in O-O bond formation, undergoing a series of four oxidative events as it progresses through the S-states of the Kok cycle. To gain further insights into the OEC, researchers have explored the substitution of the Ca2+ cofactor with strontium (Sr), the sole atomic replacement capable of retaining oxygen-evolving activity. Empirical investigations utilizing spectroscopic techniques such as XAS, XRD, EPR, FTIR, and XANES have been conducted to probe the structural consequences of Ca2+→Sr2+ substitution. In parallel, the development of DFT and QM/MM computational models has explored different oxidation and protonation states, as well as variations in ligand coordination at the catalytic center involving amino acid residues. In this review, we critically evaluate and integrate these computational and spectroscopic approaches, focusing on the structural and mechanistic implications of Ca2+→Sr2+ substitution in PS II. We contribute DFT modelling and simulate EXAFS Fourier transforms of Sr-substituted OEC, analyzing promising structures of the S3 state. Through the combination of computational modeling and spectroscopic investigations, valuable insights have been gained, developing a deeper understanding of the photosynthetic process.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Malcomson T, Rummel F, Barchenko M, O'Malley P. Hey ho, where'd the proton go? Final deprotonation of O6 within the S 3 state of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112946. [PMID: 38843709 DOI: 10.1016/j.jphotobiol.2024.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
The deprotonation of O6 within the S3 state marks the final deprotonation event before the formation of oxygen‑oxygen bond interactions and eventual production and release of dioxygen. Gaining a thorough understanding of this event, from the proton acceptors involved, to the exfiltration pathways available, is key in determining the nature of the resulting oxygen species, influencing the mechanism through which the first oxygen‑oxygen bond forms. Computational analysis, using BS-DFT methodologies, showed that proton abstraction by the local Glu189 residue provides consistent evidence against this being a viable mechanistic pathway due to the lack of a stable product structure. In contrast, abstraction via W3 shows an increasingly stable oxo-oxo product state between r[O5O6] = 2.1 Å & 1.9 Å. The resulting oxo-oxo state is stabilised through donation of β electron character from O6 to Mn1 and α electron character from O6 to O5. This donation from the O6 lone pair is shown to be a key factor in stabilising the oxo-oxo state, in addition to showing the initiation of first O5-O6 bond.
Collapse
Affiliation(s)
- Thomas Malcomson
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Felix Rummel
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Maxim Barchenko
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Patrick O'Malley
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
21
|
Subramanyam R, Tomo T, Eaton-Rye JJ, Yilmaz G, Allakhverdiev SI. International conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2023": in honor of Robert Blankenship, Győző Garab, Michael Grätzel, Norman Hüner and Gunnar Öquist. PHOTOSYNTHESIS RESEARCH 2024; 161:141-150. [PMID: 38502256 DOI: 10.1007/s11120-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
The 11th International Photosynthesis Conference on Hydrogen Energy Research and Sustainability 2023 was organized in honor of Robert Blankenship, Győző Garab, Michael Grätzel, Norman Hüner, and Gunnar Öquist, in Istanbul, Türkiye at Bahçeşehir University Future Campus from 03 to 09 July 2023. It was jointly supported by the International Society of Photosynthesis Research (ISPR) and the International Association for Hydrogen Energy (IAHE). In this article we provide brief details of the conference, its events, keynote speakers, and the scientific contribution of scientists honored at this conference. Further, we also describe the participation of young researchers, their talks, and their awards.
Collapse
Affiliation(s)
- Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Girayhan Yilmaz
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Suleyman I Allakhverdiev
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
- К.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, Russia, 127276.
| |
Collapse
|
22
|
Guo Y, He L, Ding Y, Kloo L, Pantazis DA, Messinger J, Sun L. Closing Kok's cycle of nature's water oxidation catalysis. Nat Commun 2024; 15:5982. [PMID: 39013902 PMCID: PMC11252165 DOI: 10.1038/s41467-024-50210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mn4CaO5(6) cluster in photosystem II catalyzes water splitting through the Si state cycle (i = 0-4). Molecular O2 is formed and the natural catalyst is reset during the final S3 → (S4) → S0 transition. Only recently experimental breakthroughs have emerged for this transition but without explicit information on the S0-state reconstitution, thus the progression after O2 release remains elusive. In this report, our molecular dynamics simulations combined with density functional calculations suggest a likely missing link for closing the cycle, i.e., restoring the first catalytic state. Specifically, the formation of closed-cubane intermediates with all hexa-coordinate Mn is observed, which would undergo proton release, water dissociation, and ligand transfer to produce the open-cubane structure of the S0 state. Thereby, we theoretically identify the previously unknown structural isomerism in the S0 state that acts as the origin of the proposed structural flexibility prevailing in the cycle, which may be functionally important for nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Johannes Messinger
- Department of Plant Physiology, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
23
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
24
|
Vallejos A, Katona G, Neutze R. Appraising protein conformational changes by resampling time-resolved serial x-ray crystallography data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:044302. [PMID: 39056073 PMCID: PMC11272219 DOI: 10.1063/4.0000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
With the development of serial crystallography at both x-ray free electron laser and synchrotron radiation sources, time-resolved x-ray crystallography is increasingly being applied to study conformational changes in macromolecules. A successful time-resolved serial crystallography study requires the growth of microcrystals, a mechanism for synchronized and homogeneous excitation of the reaction of interest within microcrystals, and tools for structural interpretation. Here, we utilize time-resolved serial femtosecond crystallography data collected from microcrystals of bacteriorhodopsin to compare results from partial occupancy structural refinement and refinement against extrapolated data. We illustrate the domain wherein the amplitude of refined conformational changes is inversely proportional to the activated state occupancy. We illustrate how resampling strategies allow coordinate uncertainty to be estimated and demonstrate that these two approaches to structural refinement agree within coordinate errors. We illustrate how singular value decomposition of a set of difference Fourier electron density maps calculated from resampled data can minimize phase bias in these maps, and we quantify residual densities for transient water molecules by analyzing difference Fourier and Polder omit maps from resampled data. We suggest that these tools may assist others in judging the confidence with which observed electron density differences may be interpreted as functionally important conformational changes.
Collapse
Affiliation(s)
- Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
25
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
26
|
Hussein R, Graça A, Forsman J, Aydin AO, Hall M, Gaetcke J, Chernev P, Wendler P, Dobbek H, Messinger J, Zouni A, Schröder WP. Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II. Science 2024; 384:1349-1355. [PMID: 38900892 DOI: 10.1126/science.adn6541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Photosystem II starts the photosynthetic electron transport chain that converts solar energy into chemical energy and thus sustains life on Earth. It catalyzes two chemical reactions: water oxidation to molecular oxygen and plastoquinone reduction. Coupling of electron and proton transfer is crucial for efficiency; however, the molecular basis of these processes remains speculative owing to uncertain water binding sites and the lack of experimentally determined hydrogen positions. We thus collected high-resolution cryo-electron microscopy data of fully hydrated photosystem II from the thermophilic cyanobacterium Thermosynechococcus vestitus to a final resolution of 1.71 angstroms. The structure reveals several previously undetected partially occupied water binding sites and more than half of the hydrogen and proton positions. This clarifies the pathways of substrate water binding and plastoquinone B protonation.
Collapse
Affiliation(s)
- Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - André Graça
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Jack Forsman
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Julia Gaetcke
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, D 14476, Potsdam-Golm, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| |
Collapse
|
27
|
Liu J, Yang KR, Long Z, Armstrong WH, Brudvig GW, Batista VS. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. J Am Chem Soc 2024; 146:15986-15999. [PMID: 38833517 DOI: 10.1021/jacs.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.
Collapse
Affiliation(s)
- Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ke R Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuoran Long
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William H Armstrong
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Barchenko M, O’Malley PJ. A Reappraisal of the S2 State of Nature's Water Oxidizing Complex in Its Low and High Spin Forms. J Phys Chem Lett 2024; 15:5883-5886. [PMID: 38804862 PMCID: PMC11163464 DOI: 10.1021/acs.jpclett.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Density functional theory calculated 14N hyperfine couplings are obtained for the Mn1 ligated π-N of residue His332 of the photosystem 2 water oxidizing complex. An open cubane, O4H, model closely matches the experimental coupling obtained for the high spin S = 5/2 form of the S2 state, supporting an open cubane structure for this state. We also investigate the unusual geometric features for the S2 state obtained by X-ray free electron laser structure determinations and rationalize it as an equilibrium occurring at room temperature between W1/O4 deprotonated and protonated forms of the open cubane structure.
Collapse
Affiliation(s)
- Maxim Barchenko
- Department of Chemistry,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, United
Kingdom
| | - Patrick J. O’Malley
- Department of Chemistry,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
29
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
30
|
Capone M, Romanelli M, Castaldo D, Parolin G, Bello A, Gil G, Vanzan M. A Vision for the Future of Multiscale Modeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:202-225. [PMID: 38800726 PMCID: PMC11117712 DOI: 10.1021/acsphyschemau.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 05/29/2024]
Abstract
The rise of modern computer science enabled physical chemistry to make enormous progresses in understanding and harnessing natural and artificial phenomena. Nevertheless, despite the advances achieved over past decades, computational resources are still insufficient to thoroughly simulate extended systems from first principles. Indeed, countless biological, catalytic and photophysical processes require ab initio treatments to be properly described, but the breadth of length and time scales involved makes it practically unfeasible. A way to address these issues is to couple theories and algorithms working at different scales by dividing the system into domains treated at different levels of approximation, ranging from quantum mechanics to classical molecular dynamics, even including continuum electrodynamics. This approach is known as multiscale modeling and its use over the past 60 years has led to remarkable results. Considering the rapid advances in theory, algorithm design, and computing power, we believe multiscale modeling will massively grow into a dominant research methodology in the forthcoming years. Hereby we describe the main approaches developed within its realm, highlighting their achievements and current drawbacks, eventually proposing a plausible direction for future developments considering also the emergence of new computational techniques such as machine learning and quantum computing. We then discuss how advanced multiscale modeling methods could be exploited to address critical scientific challenges, focusing on the simulation of complex light-harvesting processes, such as natural photosynthesis. While doing so, we suggest a cutting-edge computational paradigm consisting in performing simultaneous multiscale calculations on a system allowing the various domains, treated with appropriate accuracy, to move and extend while they properly interact with each other. Although this vision is very ambitious, we believe the quick development of computer science will lead to both massive improvements and widespread use of these techniques, resulting in enormous progresses in physical chemistry and, eventually, in our society.
Collapse
Affiliation(s)
- Matteo Capone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, L’Aquila 67010, Italy
| | - Marco Romanelli
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Parolin
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Alessandro Bello
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gabriel Gil
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Instituto
de Cibernética, Matemática y Física (ICIMAF), La Habana 10400, Cuba
| | - Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, University of Milano, Milano 20133, Italy
| |
Collapse
|
31
|
Saito K, Chen Y, Ishikita H. Exploring the Deprotonation Process during Incorporation of a Ligand Water Molecule at the Dangling Mn Site in Photosystem II. J Phys Chem B 2024; 128:4728-4734. [PMID: 38693711 PMCID: PMC11104351 DOI: 10.1021/acs.jpcb.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
The Mn4CaO5 cluster, featuring four ligand water molecules (W1 to W4), serves as the water-splitting site in photosystem II (PSII). X-ray free electron laser (XFEL) structures exhibit an additional oxygen site (O6) adjacent to the O5 site in the fourth lowest oxidation state, S3, forming Mn4CaO6. Here, we investigate the mechanism of the second water ligand molecule at the dangling Mn (W2) as a potential incorporating species, using a quantum mechanical/molecular mechanical (QM/MM) approach. Previous QM/MM calculations demonstrated that W1 releases two protons through a low-barrier H-bond toward D1-Asp61 and subsequently releases an electron during the S2 to S3 transition, resulting in O•- at W1 and protonated D1-Asp61. During the process of Mn4CaO6 formation, O•-, rather than H2O or OH-, best reproduced the O5···O6 distance. Although the catalytic cluster with O•- at O6 is more stable than that with O•- at W1 in S3, it does not occur spontaneously due to the significantly uphill deprotonation process. Assuming O•- at W2 incorporates into the O6 site, an exergonic conversion from Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (equivalent to the open-cubane S2 valence state) to Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (equivalent to the closed-cubane S2 valence state) occurs. These findings provide energetic insights into the deprotonation and structural conversion events required for the Mn4CaO6 formation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yang Chen
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
32
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Debus RJ, Oyala PH. Independent Mutation of Two Bridging Carboxylate Ligands Stabilizes Alternate Conformers of the Photosynthetic O 2-Evolving Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2024; 128:3870-3884. [PMID: 38602496 DOI: 10.1021/acs.jpcb.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|
34
|
Kaur D, Reiss K, Wang J, Batista VS, Brudvig GW, Gunner MR. Occupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen-Evolving Center of Photosystem II in Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2236-2248. [PMID: 38377592 DOI: 10.1021/acs.jpcb.3c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
At room temperature and neutral pH, the oxygen-evolving center (OEC) of photosystem II (PSII) catalyzes water oxidation. During this process, oxygen is released from the OEC, while substrate waters are delivered to the OEC and protons are passed from the OEC to the lumen through water channels known as the narrow or the O4 channel, broad or the Cl1 channel, and large or the O1 channel. Protein residues lining the surfaces of these channels play a critical role in stabilizing the hydrogen-bonding networks that assist in the process. We carried out an occupancy analysis to better understand the structural and possible substrate water dynamics in full PSII monomer molecular dynamics (MD) trajectories in both the S1 and S2 states. We find that the equilibrated positions of water molecules derived from MD-derived electron density maps largely match the experimentally observed positions in crystallography. Furthermore, the occupancy reduction in MD simulations of some water molecules inside the single-filed narrow channel also correlates well with the crystallographic data during a structural transition when the S1 state of the OEC advances to the S2 state. The overall reduced occupancies of water molecules are the source of their "vacancy-hopping" dynamic nature inside these channels, unlike water molecules inside an ice lattice where all water molecules have a fixed unit occupancy. We propose on the basis of findings in our structural and molecular dynamics analysis that the water molecule occupying a pocket formed by D1-D61, D1-S169, and O4 of the OEC could be the last steppingstone to enter into the OEC and that the broad channel may be favored for proton transfer.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines L2S 3A1, Ontario, Canada
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M R Gunner
- Department of Physics, City College of New York New York, New York 10031, United States
| |
Collapse
|
35
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
36
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
37
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
38
|
Noguchi T. Mechanism of Proton Transfer through the D1-E65/D2-E312 Gate during Photosynthetic Water Oxidation. J Phys Chem B 2024; 128:1866-1875. [PMID: 38364371 DOI: 10.1021/acs.jpcb.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In photosystem II, the D1-E65/D2-E312 dyad in the Cl-1 channel has been proposed to play a pivotal role in proton transfer during water oxidation. However, the precise mechanism remains elusive. Here, the proton transfer mechanism within the Cl-1 channel was investigated using quantum mechanics/molecular mechanics calculations. The molecular vibration of the E65/E312 dyad and its deuteration effect revealed that the recently suggested stepwise proton transfer, i.e., initial proton release from the dyad followed by slow reprotonation, does not occur in the Cl-1 channel. Instead, proton transfer is proposed to take place via a conformational change at the E65/E312 dyad, acting as a gate. In its closed form, a proton is trapped within the dyad, preventing forward proton transfer. This closed form converts into the open form, where protonated D1-E65 provides a hydrogen bond to the water network, thereby facilitating fast Grotthuss-type proton transfer.
Collapse
Affiliation(s)
- Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
39
|
Drosou M, Pantazis DA. Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2024; 128:1333-1349. [PMID: 38299511 PMCID: PMC10875651 DOI: 10.1021/acs.jpcb.3c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The identity and insertion pathway of the substrate oxygen atoms that are coupled to dioxygen by the oxygen-evolving complex (OEC) remains a central question toward understanding Nature's water oxidation mechanism. In several studies, ammonia has been used as a small "water analogue" to elucidate the pathway of substrate access to the OEC and to aid in determining which of the oxygen ligands of the tetramanganese cluster are substrates for O-O bond formation. On the basis of structural and spectroscopic investigations, five first-sphere binding modes of ammonia have been suggested, involving either substitution of an existing H2O/OH-/O2- group or addition as an extra ligand to a metal ion of the Mn4CaO5 cluster. Some of these modes, specifically the ones involving substitution, have already been subject to spectroscopy-oriented quantum chemical investigations, whereas more recent suggestions that postulate the addition of ammonia have not been examined so far with quantum chemistry for their agreement with spectroscopic data. Herein, we use a common structural framework and theoretical methodology to evaluate structural models of the OEC that represent all proposed modes of first-sphere ammonia interaction with the OEC in its S2 state. Criteria include energetic, magnetic, kinetic, and spectroscopic properties compared against available experimental EPR, ENDOR, ESEEM, and EDNMR data. Our results show that models featuring ammonia replacing one of the two terminal water ligands on Mn4 align best with experimental data, while they definitively exclude substitution of a bridging μ-oxo ligand as well as incorporation of ammonia as a sixth ligand on Mn1 or Mn4.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
40
|
Sinhababu S, Singh RP, Radzhabov MR, Kumawat J, Ess DH, Mankad NP. Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical. Nat Commun 2024; 15:1315. [PMID: 38351122 PMCID: PMC10864259 DOI: 10.1038/s41467-024-45721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth's most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | | | - Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jugal Kumawat
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
41
|
Amin M, Kaur D, Brudvig GW, Brooks BR. Mapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors. J Chem Theory Comput 2024. [PMID: 38306696 DOI: 10.1021/acs.jctc.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The oxygen-evolving complex (OEC) of Photosystem II catalyzes the water-splitting reaction using solar energy. Thus, understanding the reaction mechanism will inspire the design of biomimetic artificial catalysts that convert solar energy to chemical energy. Conceptual Density Functional Theory (CDFT) focuses on understanding the reactivity of molecules and the atomic contribution to the overall nucleophilicity and electrophilicity of the molecule using quantum descriptors. However, this method has not been applied to the OEC before. Here, we use Fukui functions and the dual descriptor to provide quantitative measures of the nucleophilicity and electrophilicity of oxygens in the OEC for different models in different S states. Our results show that the μ-oxo bridges connected to terminal Mn4 are nucleophilic, and those in the cube formed by Mn1, Mn2, and Mn3 are mostly electrophilic. The dual descriptors of the bridging oxygens in the OEC showed a similar reactivity to that of bridging oxygens in Mn model compounds. However, the terminal water W1, which is bound to Mn4, showed very strong reactivity in some of the S3 models. Thus, our calculations support the model that proposes the formation of the O2 molecule through nucleophilic attack by a terminal water.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Sciences, University College Groningen, University of Groningen, 9718 BG Groningen, The Netherlands
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
42
|
Li H, Nakajima Y, Nango E, Owada S, Yamada D, Hashimoto K, Luo F, Tanaka R, Akita F, Kato K, Kang J, Saitoh Y, Kishi S, Yu H, Matsubara N, Fujii H, Sugahara M, Suzuki M, Masuda T, Kimura T, Thao TN, Yonekura S, Yu LJ, Tosha T, Tono K, Joti Y, Hatsui T, Yabashi M, Kubo M, Iwata S, Isobe H, Yamaguchi K, Suga M, Shen JR. Oxygen-evolving photosystem II structures during S 1-S 2-S 3 transitions. Nature 2024; 626:670-677. [PMID: 38297122 PMCID: PMC10866707 DOI: 10.1038/s41586-023-06987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Daichi Yamada
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - Kana Hashimoto
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shunpei Kishi
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Huaxin Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Matsubara
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hajime Fujii
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Tran Nguyen Thao
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Takaki Hatsui
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Minoru Kubo
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
43
|
Choi S, Park S, Kim J, Kim H, Cho S, Kim S, Park J, Kim C. X-ray free-electron laser induced acoustic microscopy (XFELAM). PHOTOACOUSTICS 2024; 35:100587. [PMID: 38312809 PMCID: PMC10835452 DOI: 10.1016/j.pacs.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
The X-ray free-electron laser (XFEL) has remarkably advanced X-ray imaging technology and enabled important scientific achievements. The XFEL's extremely high power, short pulse width, low emittance, and high coherence make possible such diverse imaging techniques as absorption/emission spectroscopy, diffraction imaging, and scattering imaging. Here, we demonstrate a novel XFEL-based imaging modality that uses the X-ray induced acoustic (XA) effect, which we call X-ray free-electron laser induced acoustic microscopy (XFELAM). Initially, we verified the XA effect by detecting XA signals from various materials, then we validated the experimental results with simulation outcomes. Next, in resolution experiments, we successfully imaged a patterned tungsten target with drilled various-sized circles at a spatial resolution of 7.8 ± 5.1 µm, which is the first micron-scale resolution achieved by XA imaging. Our results suggest that the novel XFELAM can expand the usability of XFEL in various areas of fundamental scientific research.
Collapse
Affiliation(s)
- Seongwook Choi
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sinyoung Park
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jiwoong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Hyunhee Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| |
Collapse
|
44
|
Rummel F, Malcomson T, Barchenko M, O’Malley PJ. Insights into PSII's S 3Y Z• State: An Electronic and Magnetic Analysis. J Phys Chem Lett 2024; 15:499-506. [PMID: 38190694 PMCID: PMC10801681 DOI: 10.1021/acs.jpclett.3c03026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Using BS-DFT (broken-symmetry density functional theory), the electronic and magnetic properties of the S3YZ• state of photosystem II were investigated and compared to those of the S3 state. While the O5 oxo-O6 hydroxo species presents little difference between the two states, a previously identified [O5O6]3- exhibits reduced stabilization of the O5-O6 shared spin. This species is shown to have some coupling with the YZ• center through Mn1 and O6. Similarly, a peroxo species is found to exhibit significant exchange couplings between the YZ• center and the Mn cluster through Mn1. Mechanistic changes in O-O bond formation in S3YZ• are highlighted by analysis of IBOs (intrinsic bonding orbitals) showing deviation for Mn1 and O6 centered IBOs. This change in coupling interactions throughout the complex as a result of S3YZ• formation presents implications for the determination of the mechanism spanning the end of the S3 and the start of the S4 states, affecting both electron movement and oxygen bond formation.
Collapse
Affiliation(s)
- Felix Rummel
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas Malcomson
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Maxim Barchenko
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
45
|
Saito K, Nishio S, Ishikita H. Interplay of two low-barrier hydrogen bonds in long-distance proton-coupled electron transfer for water oxidation. PNAS NEXUS 2023; 2:pgad423. [PMID: 38130665 PMCID: PMC10733176 DOI: 10.1093/pnasnexus/pgad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
D1-Tyr161 (TyrZ) forms a low-barrier H-bond with D1-His190 and functions as a redox-active group in photosystem II. When oxidized to the radical form (TyrZ-O•), it accepts an electron from the oxygen-evolving Mn4CaO5 cluster, facilitating an increase in the oxidation state (Sn; n = 0-3). In this study, we investigated the mechanism of how TyrZ-O• drives proton-coupled electron transfer during the S2 to S3 transition using a quantum mechanical/molecular mechanical approach. In response to TyrZ-O• formation and subsequent loss of the low-barrier H-bond, the ligand water molecule at the Ca2+ site (W4) reorients away from TyrZ and donates an H-bond to D1-Glu189 at Mn4 of Mn4CaO5 together with an adjacent water molecule. The H-bond donation to the Mn4CaO5 cluster triggers the release of the proton from the lowest pKa site (W1 at Mn4) along the W1…D1-Asp61 low-barrier H-bond, leading to protonation of D1-Asp61. The interplay of the two low-barrier H-bonds, involving the Ca2+ interface and forming the extended Grotthuss-like network [TyrZ…D1-His190]-[Mn4CaO5]-[W1…D1-Asp61], rather than the direct electrostatic interaction, is likely a basis of the apparent long-distance interaction (11.4 Å) between TyrZ-O• formation and D1-Asp61 protonation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Shunya Nishio
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
46
|
Chrysina M, Drosou M, Castillo RG, Reus M, Neese F, Krewald V, Pantazis DA, DeBeer S. Nature of S-States in the Oxygen-Evolving Complex Resolved by High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. J Am Chem Soc 2023; 145:25579-25594. [PMID: 37970825 PMCID: PMC10690802 DOI: 10.1021/jacs.3c06046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.
Collapse
Affiliation(s)
- Maria Chrysina
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Rebeca G. Castillo
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michael Reus
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vera Krewald
- Department
of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, Darmstadt 64287, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|
47
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
48
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
49
|
Bhowmick A, Simon PS, Bogacz I, Hussein R, Zhang M, Makita H, Ibrahim M, Chatterjee R, Doyle MD, Cheah MH, Chernev P, Fuller FD, Fransson T, Alonso-Mori R, Brewster AS, Sauter NK, Bergmann U, Dobbek H, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography. IUCRJ 2023; 10:642-655. [PMID: 37870936 PMCID: PMC10619448 DOI: 10.1107/s2052252523008928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rana Hussein
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
- Department of Chemistry, Umeå University, Umeå SE 90187, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Bogacz I, Doyle MD, Dobbek H, Zouni A, Messinger J, Yachandra VK, Kern JF, Yano J. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. PHOTOSYNTHESIS RESEARCH 2023; 158:91-107. [PMID: 37266800 PMCID: PMC10684718 DOI: 10.1007/s11120-023-01018-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).
Collapse
Affiliation(s)
- Rana Hussein
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, SE 75120, Uppsala, Sweden
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|