1
|
Zhang T, Xu Z, Xie Y, Dong S, Guo Z, Wang W, Chen Y, Qian X, Yu H, Bian Z. Carbon Defects as Highly Active Sites for Gold Detection and Recovery. Angew Chem Int Ed Engl 2025; 64:e202412997. [PMID: 39749881 DOI: 10.1002/anie.202412997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as the final product. We report a highly hydrophilic carbon dot (CD) as a reductant (electron donor), in which the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity of ~1.7 mmol g-1. The reduction of gold follows a two-step dynamic model characterized by the formation of nano-gold nuclei (initial rapid electron transfer process) followed by an Ostwald ripening process (subsequent slow process). Finite element method (FEM) simulation shows that the reaction efficiency and confinement effect of AuCl4 - ions are positively correlated with defect density, indicating that the quantitative control of carbon defect density is the key to enhancing reduction activity. Combining density functional theory (DFT) with XPS and FTIR technology, we found that the electron is transferred from CD to Au(III) via hydrogen bonding. This nano carbon material can be exploited to recover gold from e-waste water directly, with the characteristics of reducing energy consumption and avoiding environmental pollution.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenmin Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ya Xie
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Shuyuan Dong
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenpeng Guo
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Wanting Wang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Yu
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
2
|
Cheng YZ, Bao X, Jiang D, Ji W, Yang DH, Ding X, Liu X, He Y, Han BH. Light-Promoted Extraction of Precious Metals Using a Porphyrin-Integrated One-Dimensional Covalent Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202414943. [PMID: 39375148 DOI: 10.1002/anie.202414943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/09/2024]
Abstract
Precious metals are valuable materials for the chemical industry, but they are scarce and pose a risk of supply disruption. Recycling precious metals from waste is a promising strategy, here we tactfully utilize light irradiation as an environmental-friendly and energy-saving adjunctive strategy to promote the reduction of precious metal ions, thereby improving the adsorption capacity and kinetics. A newly light-sensitive covalent organic framework (PP-COF) was synthesized to illustrate the effectiveness and feasibility of this light auxiliary strategy. The equilibrium adsorption capacities of PP-COF with light irradiation towards gold, platinum, and silver ions are 4729, 573, and 519 mg g-1, which are 3.3, 1.9, and 1.2 times the adsorption capacities under dark condition. Significantly, a filtration column with PP-COF can recover more than 99.8 % of the gold ions in the simulated e-waste leachates with light irradiation, and 1 gram of PP-COF can recover gold from up to 0.15 tonne of e-waste leachates. Interestingly, the captured precious metals by PP-COF with light irradiation mainly exist in the micron-sized particles, which can be easily separated by extraction. We believe this work can contribute to precious metal recovery and circular economy for recycling resources.
Collapse
Affiliation(s)
- Yuan-Zhe Cheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Di Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Yang K, Nikolaev KG, Li X, Erofeev I, Mirsaidov UM, Kravets VG, Grigorenko AN, Qiu X, Zhang S, Novoselov KS, Andreeva DV. 2D Electrodes From Functionalized Graphene for Rapid Electrochemical Gold Extraction and Reduction From Electronic Waste. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408533. [PMID: 39504250 PMCID: PMC11714188 DOI: 10.1002/advs.202408533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Electronic waste (e-waste) contains substantial quantities of valuable precious metals, particularly gold (Au). However, inefficient metal recovery leads to these precious metals being discarded in landfills, causing significant water and environmental contamination. This study introduces a two-dimensional (2D) electrode with a layered graphene oxide membrane functionalized by chitosan (GO/CS). The GO/CS membrane acts as an ion-selective layer and demonstrates capabilities in the electrochemical extraction and reduction of Au ions. The multiple functional groups of GO and CS offer high cooperativity in ion extraction and reduction, achieving 95 wt.% extraction efficiency within 10 min. The simultaneous extraction and electrocatalytic reduction of Au ions within the membrane leads to the formation of ready-to-use metallic Au forms such as chips and sensors. Such an approach eliminates the processing steps required to convert extracted gold into functional products, reducing time, cost, and energy. This direct formation of usable Au components enhances the efficiency of the recovery process, making it economically viable and environmentally sustainable. The gold mining market is projected to be valued at $270 billion by 2032, with the recycling segment reaching $10.8 billion, highlighting the substantial benefits and economic potential of efficient e-waste recycling technologies.
Collapse
Affiliation(s)
- Kou Yang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Konstantin G. Nikolaev
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Xiaolai Li
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Ivan Erofeev
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | - Utkur M. Mirsaidov
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
| | - Vasyl G. Kravets
- Department of Physics and AstronomyManchester UniversityManchesterM13 9PLUK
| | | | - Xueqing Qiu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Shanqing Zhang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Daria V. Andreeva
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
5
|
Liu M, Li X, Liu S, Chen X, Liu Y, Wen L, Huang Z, Yang S, Feng J, Chen Y, Chen R. Directed coordination of C/N-termini of cyano group in metal hexacyanoferrates to efficient palladium recovery: Enhanced adsorption affinity and selectivity. ENVIRONMENTAL RESEARCH 2024; 267:120581. [PMID: 39675455 DOI: 10.1016/j.envres.2024.120581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
N-termini Cyano group (CN) in metal hexacyanoferrates (MHCF) have been identified as specific-affinity sites for palladium (Pd), but C-termini CN do not effectively serve as Pd adsorption sites due to their stronger bonds with the metal ligands (M), which reduces the activity and density of CN. Herein, the optimization of directional coordination of cyano group C/N-termini by modulating the electronic structure of the M (FeII, CoII, and NiII) in MHCF was investigated to reinforce the Pd recovery. Spectroscopic analyses and DFT calculations revealed that NiHCF exhibited N-site mono-coordination, whereas CoHCF displayed C-site mono-coordination due to spin-exchange interactions, leading to the strengthened N-CoIII bonds and weakened FeII-C bonds. Interestingly, FeHCF maintained N-coordination properties and showed C-coordination as the shift of the d-band center weakened the FeIII-C bonds. Double-coordination of CN resulted in a higher adsorption-capacity and -rate than mono-coordination, which were attributed to its greater CN content and adsorption affinity, respectively. Additionally, all three MHCFs, particularly double-coordination FeHCF, demonstrated excellent selectivity in noble/base metal systems, good resistance to anionic interference, and reusability. The study underscores the pivotal role of M's electronic structure in the CN coordination environment, offering a novel strategy for the directional design of adsorbent sites.
Collapse
Affiliation(s)
- Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijian Liu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000, China
| | - Xiaobao Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zonghan Huang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Cucu E, Ari Engin B, Tunc M, Altundas R, Sadak AE. Carbazole-Phosphazene Based Polymer for Efficient Extraction of Gold and Precious Elements from Electronic Waste. ACS OMEGA 2024; 9:47884-47892. [PMID: 39651079 PMCID: PMC11618425 DOI: 10.1021/acsomega.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
The continuous advancement of industry and technology has significantly increased electronic waste, which contributes to the depletion of valuable metal reserves. Therefore, it is crucial to recycle precious metals in electronic waste effectively and sustainably. This study introduces a novel approach by applying a carbazole-phosphazene-based polymer, EBE-06, in a two-stage leaching method for efficient metal extraction. In the first leaching stage, tin is selectively separated using an acid solution at a controlled pH. In the second stage, valuable metals such as gold are recovered through adsorption onto EBE-06. The polymer exhibited a 99% gold adsorption rate within 1 h, independent of pH, and a maximum adsorption capacity of 1.787 g of gold per gram of polymer. The desorption process yielded 95% efficiency, with the polymer maintaining 94% efficiency over three cycles of use.
Collapse
Affiliation(s)
- Evren Cucu
- TUBITAK
UME, Chemistry Group
Laboratories, 41470, Gebze, Kocaeli, Türkiye
- Department
of Chemistry, Gebze Technical University,, 41400, Gebze, Kocaeli, Türkiye
| | - Betul Ari Engin
- TUBITAK
UME, Chemistry Group
Laboratories, 41470, Gebze, Kocaeli, Türkiye
| | - Murat Tunc
- TUBITAK
UME, Chemistry Group
Laboratories, 41470, Gebze, Kocaeli, Türkiye
| | - Ramazan Altundas
- Department
of Chemistry, Gebze Technical University,, 41400, Gebze, Kocaeli, Türkiye
| | - Ali Enis Sadak
- TUBITAK
UME, Chemistry Group
Laboratories, 41470, Gebze, Kocaeli, Türkiye
| |
Collapse
|
7
|
Majumder D, Fajal S, Shirolkar MM, Torris A, Banyla Y, Biswas K, Rasaily S, Ghosh SK. Nano-Springe Enriched Hierarchical Porous MOP/COF Hybrid Aerogel: Efficient Recovery of Gold from Electronic Waste. Angew Chem Int Ed Engl 2024:e202419830. [PMID: 39578998 DOI: 10.1002/anie.202419830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Extraction of gold from secondary resources such as electronic waste (e-waste) has become crucial in recent times to compensate for the gradual scarcity of the noble metal in natural mines. However, designing and synthesizing a suitable material for highly efficient gold recovery is still a great challenge. Herein, we have strategically designed rapid fabrication of an ionic crystalline hybrid aerogel by covalent threading of an amino-functionalized metal-organic polyhedra with an imine-linked chemically stable covalent organic framework at ambient condition. The hierarchically porous ultra-light aerogel featuring imine-rich backbone, high surface area, and cationic sites have shown fast removal, high uptake capacity (2349 mg/g), and excellent selectivity towards gold sequestration. Besides, the aerogel can extract ultra-trace gold-ions from different terrestrial water bodies, aiming towards safe drinking water. This study demonstrates the great potential of the composite materials based on a novel approach to designing a hybrid porous material for efficient gold recovery from complex water matrices.
Collapse
Affiliation(s)
- Dipanjan Majumder
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sahel Fajal
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd, Norel Nutrient Bio-Agro Tech Pvt. Ltd, Baner, 411045, Pune, India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India
| | - Yashasvi Banyla
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Kishalay Biswas
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sagarmani Rasaily
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sujit K Ghosh
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| |
Collapse
|
8
|
Yang X, Jiang D, Fu Y, Li X, Liu G, Ding X, Han BH, Xu Q, Zeng G. Synergistic Linker and Linkage of Covalent Organic Frameworks for Enhancing Gold Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404192. [PMID: 39004849 DOI: 10.1002/smll.202404192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The tunable pore walls and skeletons render covalent organic frameworks (COFs) as promising absorbents for gold (Au) ion. However, most of these COFs suffered from low surface areas hindering binding sites exposed and weak binding interaction resulting in sluggish kinetic performance. In this study, COFs have been constructed with synergistic linker and linkage for high-efficiency Au capture. The designed COFs (PYTA-PZDH-COF and PYTA-BPDH-COF) with pyrazine or bipyridine as linkers showed high surface areas of 1692 and 2076 m2 g‒1, providing high exposed surface areas for Au capture. In addition, the Lewis basic nitrogen atoms from the linkers and linkages are easily hydronium, which enabled to fast trap Au via coulomb force. The PYTA-PZDH-COF and PYTA-BPDH-COF showed maximum Au capture capacities of 2314 and 1810 mg g-1, higher than other reported COFs. More importantly, PYTA-PZDH-COF are capable of rapid adsorption kinetics with achieving 95% of maximum binding capacity in 10 min. The theoretical calculation revealed that the nitrogen atoms in linkers and linkages from both COFs are simultaneously hydronium, and then the protonated PYTA-PZDH-COF are more easily binding the AuCl4 ‒, further accelerating the binding process. This study gives the a new insight to design COFs for ion capture.
Collapse
Affiliation(s)
- Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Jiang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guojuan Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuesong Ding
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Bao-Hang Han
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Ding R, Zhu Y, Jing L, Chen S, Lu J, Zhang X. Sulfhydryl functionalized chitosan-covalent organic framework composites for highly efficient and selective recovery of gold from complex liquids. Int J Biol Macromol 2024; 282:137037. [PMID: 39486726 DOI: 10.1016/j.ijbiomac.2024.137037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Developing candidate adsorbents with high capacity and selectivity for adsorption is a critical approach to recover gold from secondary sources such as electronic waste (e-waste). This measure not only contributes to the recycling of valuable resources but also benefits environment protection and mitigates the detriment to the ecosystem. Traditional covalent organic frameworks (COFs) have garnered great potential in various fields owing to their unique structures and innate functional sites. However, the construction of specific functionalized COFs and their application in efficient gold extraction are still in their nascent stages. Herein, inspired by the photo-induced thiol-ene click reaction, a novel chitosan-modified COFs material (DhaTab-V@chitosan-SH) was first demonstrated by choosing a precursor COF (DhaTab-V) abundant with vinyl groups to crosslink with a thiol-functionalized chitosan (chitosan-SH). Significantly, the coexistence of imine, amide, hydroxyl and thioether groups in the skeleton could serve as functional adsorption sites to combine with the Au (III) via electrostatic interaction and coordination, imparting DhaTab-V@chitosan-SH with prominent adsorption potential for swift, selective and efficient gold capture (970.15 mg·g-1). Additionally, DhaTab-V@chitosan-SH exhibited superior reusability, and realized real gold capture from the leaching solution of e-waste.
Collapse
Affiliation(s)
- Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yancheng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lu Jing
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province 250100, China
| | - Shenghuang Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jitao Lu
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
10
|
Yang K, Nikolaev KG, Li X, Ivanov A, Bong JH, Erofeev I, Mirsaidov UM, Kravets VG, Grigorenko AN, Zhang S, Qiu X, Novoselov KS, Andreeva DV. Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste. Proc Natl Acad Sci U S A 2024; 121:e2414449121. [PMID: 39374385 PMCID: PMC11494358 DOI: 10.1073/pnas.2414449121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
The extraction of gold (Au) from electronic waste (e-waste) has both environmental impact and inherent value. Improper e-waste disposal poses environmental and health risks, entailing substantial remediation and healthcare costs. Large efforts are applied for the recovery of Au from e-waste using complex processes which include the dissolution of Au, its adsorption in an ionic state and succeeding reduction to metallic Au. These processes themselves being complex and utilizing harsh chemicals contribute to the environmental impact of e-waste. Here, we present an approach for the simultaneous recovery and reduction of Au3+ and Au+ ions from e-waste to produce solid Au0 forms, thus skipping several technological steps. We develop a nanoscale cross-dimensional composite material via self-assembly of two-dimensional graphene oxide and one-dimensional chitosan macromolecules, capable of acting simultaneously as a scavenger of gold ions and as a reducing agent. Such multidimensional architecture doesn't require to apply any voltage for Au adsorption and reduction and solely relies on the chemisorption kinetics of Au ions in the heterogeneous GO/CS nanoconfinements and their chemical reduction on multiple binding sites. The cooperative phenomena in ionic absorption are responsible for the extremely high efficiency of gold extraction. The extraction capacity reaches 16.8 g/g for Au3+ and 6.2 g/g for Au+, which is ten times larger than any existing gold adsorbents can propose. The efficiency is above 99.5 wt.% (current limit is 75 wt.%) and extraction ability is down to very low concentrations of 3 ppm.
Collapse
Affiliation(s)
- Kou Yang
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Konstantin G. Nikolaev
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
| | - Xiaolai Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Artemii Ivanov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Jia Hui Bong
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Ivan Erofeev
- Department of Biological Sciences, National University of Singapore, Singapore117558, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117543, Singapore
| | - Utkur M. Mirsaidov
- Centre for BioImaging Sciences, National University of Singapore, Singapore117543, Singapore
- Department of Physics, National University of Singapore, Singapore117551, Singapore
| | - Vasyl G. Kravets
- Department of Physics and Astronomy, Manchester University, ManchesterM13 9PL, United Kingdom
| | - Alexander N. Grigorenko
- Department of Physics and Astronomy, Manchester University, ManchesterM13 9PL, United Kingdom
| | - Shanqing Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Daria V. Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| |
Collapse
|
11
|
Wang J, Wang R, Nie S, Guo S, Zhang X. Reversible Adhesive Film with Ultralow Dielectric Loss in High Frequency via Surface Anchoring of Catechol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54645-54651. [PMID: 39333046 DOI: 10.1021/acsami.4c12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Debonding of the dielectric adhesive material will make the high-frequency communication equipment unusable, leading to resource wasting and electronic waste. Reversible adhesive is an ideal strategy to realize the reuse of debonding devices, but the low dielectric loss requirement of the dielectric adhesive materials in high-frequency devices limits its development. Here, the surface anchoring design of catechol was proposed to prepare a reversible adhesive film with ultralow dielectric loss in high frequency. The catechol structure was linked to the end of polybutadiene (PB) macromolecule to synthesize catechol-terminated PB (PB-D). The PB-based adhesive film (PB-F) with ultralow dielectric loss was used as the base film, and then PB-D was sprayed on PB-F to form a thin layer. In the subsequent curing process, the catechol group on the surface of PB-F could be anchored by the cross-linking reaction between the heterogeneous PB segments. The surface modification transforms the interface debonding between PB-F and copper foil into cohesive failure within the PB-D layer, showing a strong adhesion of more than 1.1 N/mm. More importantly, relying on the reversible hydrogen bonding of catechol structures, the debonding material can regain stable bonding in a mild way. Because the catechol group is only distributed on the film surface, the reversible adhesive film kept an ultralow dielectric loss (Df = 2.5-2.9 × 10-3) at 10 GHz. In this work, an ultralow dielectric loss and reversible adhesive film with commercial prospects was prepared for the first time, which is expected to be used for simple recovery of communication substrate bonding failure.
Collapse
Affiliation(s)
- Jiading Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ruikun Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shengqiang Nie
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Li J, Yuan H, Gao X, Fu Z. Point-of-care testing of Pseudomonas aeruginosa using PCN-222(Pt) prepared by nanoconfinement-guided protocol to catalyze gas generation reaction. Anal Chim Acta 2024; 1317:342892. [PMID: 39030000 DOI: 10.1016/j.aca.2024.342892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Pathogenic bacteria are keeping threatening global public health since they can cause many infectious diseases. The traditional microorganism identification and molecular diagnostic techniques are insufficiently sensitive, time-consuming, or expensive. Thus it is of great interest to establish pressure signal-based sensing platforms for point-of-care testing of pathogenic bacteria to achieve timely diagnosis of infectious diseases. Rational design and synthesis of nano-sized probes with high peroxidase-mimicking activity have been a long-term cherished goal for improving the sensitivity of pressure signal-based sensing methods. RESULTS Guided by nanoconfinement effect, PCN-222(Pt) was prepared by confining Pt clusters within the channels of a zirconium porphyrin MOFs material termed as PCN-222. In comparison to regular platinum nanoparticles, palladium@platinum core-shell nanodendrites, and platinum-coated gold nanoparticles, the prepared PCN-222(Pt) displayed superior peroxidase-mimicking activity with outstanding efficiency for catalyzing the decay of H2O2 to produce O2. Thus it was used as a pressure signal probe to establish a sensitive method on a hydrogel pellets platform for analyzing Pseudomonas aeruginosa (P. aeruginosa), for which polymyxin B and a phage termed as JZ1 were used as recognition agents for the target pathogen. P. aeruginosa was quantified with a handheld pressure meter within a broad range of 2.2 × 102-2.2 × 107 cfu mL-1. This method was used to quantify P. aeruginosa in various biological and food samples with acceptable accuracy and reliability. SIGNIFICANCE The proposed nanoconfinement-guided protocol provides a novel approach for rational design and preparation of nano-sized probes with high peroxidase-mimicking activity for catalyzing gas-generation reaction. Thus this study opens an avenue for establishment of sensitive pressure signal-based sensing methods for pathogenic bacteria, which shows broad application prospects in medical diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Jizhou Li
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongwei Yuan
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinyue Gao
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Xie YJ, Li TM, Shang ZT, Lu WT, Yu F. Efficient recovery of gold from solution with a thiocyanate-modified Zr-MOF: adsorption properties and DFT calculations. Dalton Trans 2024; 53:12985-12994. [PMID: 39027930 DOI: 10.1039/d4dt01250j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The design and development of new large-capacity and selective materials for extracting rare precious metals via electronic waste is practically essential. In this paper, a new efficient UiO-66-NCS has been obtained as a consequence of the modification of the classical Zr-MOF (UiO-66-NH2), and its ability to recover gold has been investigated. These batch results adequately illustrated that UiO-66-NCS exhibited good adsorption capacity (675.5 mg g-1) and exceptional selectivity. In addition, UiO-66-NCS achieved faster adsorption equilibrium times of about 120 min. Adsorption kinetics and isotherms demonstrated that the pseudo-second-order adsorption scheme and a Langmuir-type procedure were shown by the adsorption of Au(III) on UiO-66-NCS. Characterized by pH effect experiments, TEM, XRD, and XPS, the adsorption of UiO-66-NCS with Au(III) relies on coordination, which further results in reduction, and the generated Au(0) is uniformly dispersed in the MOF. The adsorbent has considerable advantages for cyclic regeneration. Finally, DFT fitting results showed that the adsorption binding energy of UiO-66-NCS with [AuCl4]- was -8.63 kcal mol-1 for the adsorption process. UiO-66-NCS is likely to be an ideal substance for gold recovery.
Collapse
Affiliation(s)
- Yu-Juan Xie
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Tang-Ming Li
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Zhao-Ting Shang
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Wang-Ting Lu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| | - Fan Yu
- College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
| |
Collapse
|
14
|
Shi J, Peng SQ, Kuang B, Wang S, Liu Y, Zhou JX, Li X, Huang MH. Porous Polypyrrolidines for Highly Efficient Recovery of Precious Metals through Reductive Adsorption Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405731. [PMID: 38857110 DOI: 10.1002/adma.202405731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recycling and utilization of precious metals have emerged as a critical research focus in advancing the development of the circular economy. Among numerous methods for recovering precious metals such as gold, adsorbents with both high adsorption selectivity and capacity have become key technologies. This article incorporated the N-phenylpyrrolidine into a flexible porous polynorbornene backbone to create a class of distinctive porous organic polymers, named BIT-POP-14-BIT-POP-17. Through a reductive capture mechanism, the reductive adsorption sites of N-phenylpyrrolidine coordinate selectively with precious metals, the reduced metal is captured by the hierarchically porous polymers with flexible backbone. This approach leads to remarkable gold recovery efficiency, achieving a record of 2321 mg g-1 at ambient conditions, and 3020 mg g-1 under UV light, surpassing the theoretical limit. The porous polymers are filled in a column for a continuous uptake of gold from waste printed circuit boards (PCBs), showing recovery efficiency toward gold as high as 95% after 84 h. Overall, this work offers a new perspective on designing novel adsorbents for precious metal recovery, providing inspiration for researchers to explore novel adsorption modes and contribute to the advancement of the circular economy.
Collapse
Affiliation(s)
- Jing Shi
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Shan-Qing Peng
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Boya Kuang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Shuifeng Wang
- Analytical and Testing Center, Beijing Normal University, No. 19 Xinjiegouwai Street, Haidian District, Beijing, 100875, China
| | - Yan Liu
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Jin-Xiu Zhou
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Xiaodong Li
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Mu-Hua Huang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
15
|
Guo W, Liu J, Tao H, Meng J, Yang J, Shuai Q, Asakura Y, Huang L, Yamauchi Y. Covalent Organic Framework Nanoarchitectonics: Recent Advances for Precious Metal Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405399. [PMID: 38896104 DOI: 10.1002/adma.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The recovery of precious metals (PMs) from secondary resources has garnered significant attention due to environmental and economic considerations. Covalent organic frameworks (COFs) have emerged as promising adsorbents for this purpose, owing to their tunable pore size, facile functionalization, exceptional chemical stability, and large specific surface area. This review provides an overview of the latest research progress in utilizing COFs to recover PMs. Firstly, the design and synthesis strategies of chemically stable COF-based materials, including pristine COFs, functionalized COFs, and COF-based composites, are delineated. Furthermore, the application of COFs in the recovery of gold, silver, and platinum group elements is delved into, emphasizing their high adsorption capacity and selectivity as well as recycling ability. Additionally, various interaction mechanisms between COFs and PM ions are analyzed. Finally, the current challenges faced by COFs in the field of PM recovery are discussed, and potential directions for future development are proposed, including enhancing the recyclability and reusability of COF materials and realizing the high recovery of PMs from actual acidic wastewater. With the targeted development of COF-based materials, the recovery of PMs can be realized more economically and efficiently in the future.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jiale Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Yang
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone, Wuhan, Hubei Province, 430205, P. R. China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
16
|
Nag A, Morrison CA, Love JB. Rapid Dissolution of Gold in Alcohols by In-Situ Generation of Halogens. CHEMSUSCHEM 2024; 17:e202301695. [PMID: 38412014 DOI: 10.1002/cssc.202301695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
The dissolution of elemental gold is a fundamental step in its recycling by hydrometallurgy but has a significant environmental impact due to the use of strong acids or highly toxic reagents. Herein, it is shown that mixtures of acetyl halides and hydrogen peroxide in alcohols promote the rapid room-temperature dissolution of gold by halogenation to form Au(III) metalates. After leaching, distillation of the alcohol and re-dissolution in dilute HCl, the gold was refined through its precipitation by a simple diamide ligand; this method was also applied to separate gold from a mixture of metals. The leaching process is rapid, avoids the use of highly toxic materials and corrosive acids, and can be integrated into selective separation processes, so has the potential to be used in the purification of gold from ores, spent catalysts, and electronic and nano-waste.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
17
|
Fu K, Liu X, Zhang X, Zhou S, Zhu N, Pei Y, Luo J. Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate. Nat Commun 2024; 15:6137. [PMID: 39033214 PMCID: PMC11271467 DOI: 10.1038/s41467-024-50595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Addressing burdens of electronic waste (E-waste) leachate while achieving sustainable and selective recovery of noble metals, such as gold, is highly demanded due to its limited supply and escalating prices. Here we demonstrate an environmentally-benign and practical approach for gold recovery from E-waste leachate using alginate-derived pyrocarbon sorbent. The sorbent demonstrates potent gold recovery performance compared to most previously reported advanced sorbents, showcasing high recovery capacity of 2829.7 mg g-1, high efficiency (>99.5%), remarkable selectivity (Kd ~ 3.1 × 108 mL g-1), and robust anti-interference capabilities within environmentally relevant contexts. The aromatic structures of pyrocarbon serve as crucial electrons sources, enabling a hydroxylation process that simultaneously generates electrons and phenolic hydroxyls for the reduction of gold ions. Our investigations further uncover a "stepwise" nucleation mechanism, in which gold ions are reduced as intermediate gold-chlorine clusters, facilitating rapid reduction process by lowering energy barriers from 1.08 to -21.84 eV. Technoeconomic analysis demonstrates its economic viability with an input-output ratio as high as 1370%. Our protocol obviates the necessity for organic reagents whilst obtaining 23.96 karats gold product from real-world central processing units (CPUs) leachates. This work introduces a green sorption technique for gold recovery, emphasizing its role in promoting a circular economy and environmental sustainability.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nanwen Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Pei
- Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
18
|
Liu M, Du Y, Liu Y, Li X, Yang S, Feng J, Huang Z, Chen Y, Wang B, Chen R. Rapid separation of the low concentration Pd from Pd-Pt coexisting systems: Cyano-group's monomer-specific affinity. J Colloid Interface Sci 2024; 665:422-429. [PMID: 38365516 DOI: 10.1016/j.jcis.2024.02.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Rapid separation of low concentration palladium (Pd) from Pd-Platinum (Pt) coexisting systems remains a formidable challenge, primarily due to the undifferentiated substitution of ligands in Pd/Pt complexes by adsorption sites. The development of an adsorbent featuring monomer-specific affinity adsorption sites for Pd/Pt could mitigate this drawback. Herein, Manganese hexacyanoferrate (MnHCF) possessing the sensitivity and specificity to Pd ions (Pd(II)) was synthesized via the facile co-precipitation method. MnHCF could rapidly and selectively capture 90.30 % of Pd(II) from a 10 ppm Pd-Pt coexisting system within just 5 min. Spectroscopic analyses and density functional theory (DFT) calculations indicated that cyano-group (CN) in MnHCF exhibited the monomer-specific affinity for targeted capturing Pd via the direct and strong coordination interaction (Fe-CN-PdCl2), which was co-determined by the electron-losing of C (0.06 e) and N (0.07 e) atom. At the same time, CN could neither react directly with the fully coordinated [PtCl6]2- species nor substitute the Cl- ligand, both of which contributed to the non-adsorption of Pt, thus triggering the Pd-Pt separation. This study provides a promising candidate adsorbent for practical applications in platinum group metals recovery by the design of adsorption sites with monomer-specific affinity.
Collapse
Affiliation(s)
- Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Du
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi 710055, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Zonghan Huang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Chinese Academy of Environmental Planning, Beijing 100041, China.
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Song Y, Verma G, Tan K, Oyekan KA, Liu J, Strzelecki A, Guo X, Al-Enizi AM, Nafady A, Ma S. Tailoring the Coordination Micro-Environment in Nanotraps for Efficient Platinum/Palladium Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313747. [PMID: 38685565 DOI: 10.1002/adma.202313747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kui Tan
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Kolade A Oyekan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Andrew Strzelecki
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
20
|
Huang Y, Yu Y, Hu R, Tang BZ. Multicomponent Polymerizations of Elemental Sulfur, CH 2Cl 2, and Aromatic Amines toward Chemically Recyclable Functional Aromatic Polythioureas. J Am Chem Soc 2024; 146:14685-14696. [PMID: 38717074 DOI: 10.1021/jacs.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The exploration of new polymer materials required the development of efficient, economic, robust, and scalable synthetic routes, taking energy consumption, environmental benefit, and sustainability into overall consideration. Herein, through retro-polymerization analysis of functional aromatic polythioureas, a multicomponent reaction of elemental sulfur, CH2Cl2, and aromatic amines was designed with the assistance of fluoride, and efficient, economic, and robust multicomponent polymerizations (MCPs) of these three abundantly available cheap monomers, elemental sulfur, CH2Cl2, and aromatic diamines, were developed to realize scalable conversion directly from sulfur to a series of functional aromatic polythioureas with high molecular weights (Mn up to 50,800 g/mol) in excellent yields (up to 98%). The synergistic cooperation of the strong and selective coordination of thiourea with gold ions and the redox property of aromatic polythiourea enable in situ reduction of Au3+ to elemental gold under a normal bench condition. Furthermore, the functional aromatic polythiourea could be chemically recycled through aminolysis with NH3·H2O to afford a diamine monomer in 83% isolated yield. The development of elemental sulfur-based MCP has brought the opportunity to access cost-effective and sustainable sulfur-containing functional polymer materials, which is anticipated to provide a solution for the utilization of sulfur waste and making profitable polymer materials.
Collapse
Affiliation(s)
- Yuzhang Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yongjiang Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
21
|
Vance SM, Mojsak M, Kinsman LMM, Rae R, Kirk C, Love JB, Morrison CA. Selective Gold Precipitation by a Tertiary Diamide Driven by Thermodynamic Control. Inorg Chem 2024; 63:9332-9345. [PMID: 38722710 PMCID: PMC11110006 DOI: 10.1021/acs.inorgchem.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
The simple diamide ligand L was previously shown to selectively precipitate gold from acidic solutions typical of e-waste leach streams, with precipitation of gallium, iron, tin, and platinum possible under more forcing conditions. Herein, we report direct competition experiments to afford the order of selectivity. Thermal analysis indicates that the gold-, gallium-, and iron-containing precipitates present as the most thermodynamically stable structures at room temperature, while the tin-containing structure does not. Computational modeling established that the precipitation process is thermodynamically driven, with ion exchange calculations matching the observed experimental selectivity ordering. Calculations also show that the stretched ligand conformation seen in the X-ray crystal structure of the gold-containing precipitate is more strained than in the structures of the other metal precipitates, indicating that intermolecular interactions likely dictate the selectivity ordering. This was confirmed through a combination of Hirshfeld, noncovalent interaction (NCI), and quantum theory of atoms in molecules (QTAIM) analyses, which highlight favorable halogen···halogen contacts between metalates and pseudo-anagostic C-H···metal interactions in the crystal structure of the gold-containing precipitate.
Collapse
Affiliation(s)
- Susanna
S. M. Vance
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Mateusz Mojsak
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Luke M. M. Kinsman
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Rebecca Rae
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Caroline Kirk
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Carole A. Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
22
|
Su Y, Berbille A, Li XF, Zhang J, PourhosseiniAsl M, Li H, Liu Z, Li S, Liu J, Zhu L, Wang ZL. Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis. Nat Commun 2024; 15:4196. [PMID: 38760357 PMCID: PMC11101412 DOI: 10.1038/s41467-024-48407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.
Collapse
Affiliation(s)
- Yusen Su
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinyang Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - MohammadJavad PourhosseiniAsl
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Huifan Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhanqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Jianbo Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
23
|
Huang Z, Guo L, Yu K, Gao F, Yang Y, Luo F. Efficient gold recovery by a thiazolyl covalent organic framework. Chem Commun (Camb) 2024; 60:4950-4953. [PMID: 38629262 DOI: 10.1039/d4cc01391c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Here, we report a thiazoyl covalent organic framework, namely ECUT-COF-29, for gold recovery. Under visible light irradiation, this material can reduce Au3+ to Au0 in a short time, and the adsorption capacity is as high as 3714 mg g-1, showing great potential in gold recovery.
Collapse
Affiliation(s)
- Zhecheng Huang
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China.
| | - Liecheng Guo
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China.
| | - Kai Yu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China.
| | - Feng Gao
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China.
| | - Yuting Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Feng Luo
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China.
| |
Collapse
|
24
|
Lv Z, Deng J, Cao T, Lee JY, Luo Y, Mao Y, Kim SH, Wang C, Hwang JH, Kang H, Yan X, Na J. Metal-Organic Frameworks Marry Sponge: New Opportunities for Advanced Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5590-5605. [PMID: 38457783 DOI: 10.1021/acs.langmuir.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered attention across various fields due to their noteworthy features like high specific surface area, substantial porosity, and adjustable performance. In the realm of water treatment, MOFs exhibit great potential for eliminating pollutants such as organics, heavy metals, and oils. Nonetheless, the inherent powder characteristics of MOFs pose challenges in terms of recycling, pipeline blockage, and even secondary pollution in practical applications. Addressing these issues, the incorporation of MOFs into sponges proves to be an effective solution. Strategies like one-pot synthesis, in situ growth, and impregnation are commonly employed for loading MOFs onto sponges. This review comprehensively explores the synthesis strategies of MOFs and sponges, along with their applications in water treatment, aiming to contribute to the ongoing advancement of MOF materials.
Collapse
Affiliation(s)
- Zheng Lv
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jianmian Deng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
| | - Taiyang Cao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao 999078, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Seong Hwan Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jin Hyun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
26
|
Javed A, Singh J. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9886-9919. [PMID: 36995505 DOI: 10.1007/s11356-023-26433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The electrical and electronic waste is expected to increase up to 74.7 million metric tons by 2030 due to the unparalleled replacement rate of electronic devices, depleting the conventional sources of valuable metals such as rare earth elements, platinum group metals, Co, Sb, Mo, Li, Ni, Cu, Ag, Sn, Au, and Cr. Most of the current techniques for recycling, recovering, and disposing of e-waste are inappropriate and therefore contaminate the land, air, and water due to the release of hazardous compounds into the environment. Hydrometallurgy and pyrometallurgy are two such conventional methods used extensively for metal recovery from waste electrical and electronic equipment (WEEE). However, environmental repercussions and higher energy requirements are the key drawbacks that prevent their widespread application. Thus, to ensure the environment and elemental sustainability, novel processes and technologies must be developed for e-waste management with enhanced recovery and reuse of the valued elements. Therefore, the goal of the current work is to examine the batch and continuous processes of metal extraction from e-waste. In addition to the conventional devices, microfluidic devices have been also analyzed for microflow metal extraction. In microfluidic devices, it has been observed that the large specific surface area and short diffusion distance of microfluidic devices are advantageous for the efficient extraction of metals. Additionally, cutting-edge technologies have been proposed to enhance the recovery, reusability, and recycling of e-waste. The current study may support decision-making by researchers in deciding the direction of future research and moving toward sustainable development.
Collapse
Affiliation(s)
- Aaliya Javed
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Jogender Singh
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
27
|
Ang JNS, Chahine AY, Raeber TJ, Batten SR, Turner DR. Amine-Based MOF for Precious Metal Remediation. Inorg Chem 2024; 63:1258-1265. [PMID: 38166375 DOI: 10.1021/acs.inorgchem.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Due to the continuous growth rate of the electronic industry, hi-tech companies depend on mining and extracting precious metals to meet the public demand. The high turnover of modern devices generates an alarming amount of electronic waste (e-waste), which contains more precious metals than mined ores and therefore needs efficient recovery procedures. A highly stable homopiperazine-derived Cd-MOF, poly-[Cd(H2L)]·9H2O, with a protonated amine ligand core, exists as a twofold interpenetrated 3D framework with 1D channels into which the N+-H bond is directed. The geometry of these channels appears to be suitable to host square planar metalate complexes. Under acidic conditions, [MCl4]x- anions containing Au, Cu, Ni, and Pt, representing common components of e-waste under extraction conditions, were tested for capture and recovery. Cd-MOF exhibits remarkable selectivity and uptake performance toward Au with an adsorbent capacity of 25 mg g-1ads and shows a marked selectivity for Au over Cu in competitive experiments. The adsorption mechanism of Au appears to be predominantly physical adsorption at the surface of the material.
Collapse
Affiliation(s)
- Jade Nadine S Ang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Ali Y Chahine
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Stuart R Batten
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
28
|
Abd-Elhamid AI, Abu Elgoud EM, Aly HF. Adsorption of palladium from chloride aqueous solution using silica alginate nanomaterial. Int J Biol Macromol 2023; 253:126754. [PMID: 37678693 DOI: 10.1016/j.ijbiomac.2023.126754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The adsorption characteristics of palladium from chloride aqueous solution onto the silica alginate (SA-Si) nanomaterial have been investigated. The prepared nanomaterial (SA-Si) was characterized by various advanced techniques that ensured a successful preparation process. Different adsorption parameters including the solution pH, shaking time, palladium ion concentration, adsorbent dosage, and temperature were investigated. The experimental results showed that the pseudo-first-order model provided the best fitting for the palladium ions adsorption, and the time required to reach equilibrium was 90.0 min. The adsorption isotherm result from palladium was well described by the Langmuir isotherm model and the maximum adsorption capacity of (SA-Si) nanomaterial was estimated as 12.50 mg/g for Pd(II). Moreover, the thermodynamic results demonstrated that Pd(II) sorption onto (SA-Si) nanomaterial was endothermic and spontaneous. Additionally, the SA-Si nanomaterial can be used as an effective adsorbent for the sorption of Pd(II) from various metal ions present in fission products.
Collapse
Affiliation(s)
- A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Alexandria, Egypt
| | - E M Abu Elgoud
- Nuclear Fuel Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Egypt.
| | - H F Aly
- Nuclear Fuel Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Egypt
| |
Collapse
|
29
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
30
|
Nag A, Singh MK, Morrison CA, Love JB. Efficient Recycling of Gold and Copper from Electronic Waste by Selective Precipitation. Angew Chem Int Ed Engl 2023; 62:e202308356. [PMID: 37594475 PMCID: PMC10952234 DOI: 10.1002/anie.202308356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
The recycling of metals from electronic waste (e-waste) using efficient, selective, and sustainable processes is integral to circular economy and net-zero aspirations. Herein, we report a new method for the selective precipitation of metals such as gold and copper that offsets the use of organic solvents that are traditionally employed in solvent extraction processes. We show that gold can be selectively precipitated from a mixture of metals in hydrochloric acid solution using triphenylphosphine oxide (TPPO), as the complex [(TPPO)4 (H5 O2 )][AuCl4 ]. By tuning the acid concentration, controlled precipitation of gold, zinc and iron can be achieved. We also show that copper can be selectively precipitated using 2,3-pyrazinedicarboxylic acid (2,3-PDCA), as the complex [Cu(2,3-PDCA-H)2 ]n ⋅ 2n(H2 O). The combination of these two precipitation methods resulted in the recovery of 99.5 % of the Au and 98.5 % of the Cu present in the connector pins of an end-of-life computer processing unit. The selectivity of these precipitation processes, combined with their straightforward operation and the ability to recycle and reuse the precipitants, suggests potential industrial uses in the purification of gold and copper from e-waste.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| | - Mukesh K. Singh
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| | | | - Jason B. Love
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| |
Collapse
|
31
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
32
|
Li D, Luo X, Shao P, Meng Z, Yao Z, Yang L, Shao J, Dong H, Zhang L, Zeng L, Luo X. Tuning electronic structure of the carbon skeleton to accelerate electron transfer for promoting the capture of gold. ENVIRONMENT INTERNATIONAL 2023; 180:108192. [PMID: 37741004 DOI: 10.1016/j.envint.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
The efficient and selective recovery of gold from secondary sources is key to sustainable development. However, the complexity of the recovery environment can significantly complicate the compositions of utilized sorbents. Here, we report a straw-derived mesoporous carbon as an inexpensive support material. This mesoporous carbon is modified by anions (sulfur modulation, C-S-180) to improve its electron-transfer efficiency and tune the electronic structure of its skeleton toward enhanced gold reduction. The high surface area of C-S-180 (989.4 m2/g), as well as the presence of abundant C-S in the porous structure of the adsorbent, resulted in an outstanding Au3+-uptake capacity (3422.75 mg/g), excellent resistance to interference, and favorable Au3+ selectivity. Dissimilar to most existing carbon-based adsorbents, electrochemistry-based studies on the electron-transfer efficiencies of adsorbents reveal that sulfur modulation is crucial to optimizing their adsorption performances. Furthermore, the density functional theory reveals that the optimization mechanism is attributable to the adjustment of the electronic structure of the carbon skeleton by C-S, which optimizes the band-gap energy for enhanced Au3+ reduction. These findings offer a strategy for constructing green and efficient adsorbents, as well as a basis for extending the applications of inexpensive carbon materials in gold recovery from complex environments.
Collapse
Affiliation(s)
- Dewei Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xianxin Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Zhu Meng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ziwei Yao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jiachuang Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hao Dong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Li Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lingrong Zeng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; College of Life Sciences, Jinggangshan University, Jian 343009, PR China.
| |
Collapse
|
33
|
Bhattacharjee S, Guo C, Lam E, Holstein JM, Rangel Pereira M, Pichler CM, Pornrungroj C, Rahaman M, Uekert T, Hollfelder F, Reisner E. Chemoenzymatic Photoreforming: A Sustainable Approach for Solar Fuel Generation from Plastic Feedstocks. J Am Chem Soc 2023; 145:20355-20364. [PMID: 37671930 PMCID: PMC10515630 DOI: 10.1021/jacs.3c05486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 09/07/2023]
Abstract
Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 μmol gsub-1 and activities at >500 μmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.
Collapse
Affiliation(s)
- Subhajit Bhattacharjee
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chengzhi Guo
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Erwin Lam
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | | | - Christian M. Pichler
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chanon Pornrungroj
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Motiar Rahaman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Taylor Uekert
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
34
|
Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 2023; 195:5669-5692. [PMID: 35796946 DOI: 10.1007/s12010-022-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.
Collapse
Affiliation(s)
- Sundaram Deepika Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Aswin Dilshani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Srinivasan Rishivanthi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Pratham Khaitan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Adhinarayan Vamsidhar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India.
| |
Collapse
|
35
|
Holey SA, Basak P, Bojja S, Nayak RR. The fabrication of bifunctional supramolecular glycolipid-based nanocomposite gel: insights into electrocatalytic performance with effective selectivity towards gold. SOFT MATTER 2023; 19:6305-6313. [PMID: 37555430 DOI: 10.1039/d3sm00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5-7 nm with zeta potential value in the range of -30.5 to -41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10-5 S cm-1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to -0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.
Collapse
Affiliation(s)
- Snehal Ashokrao Holey
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pratyay Basak
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sreedhar Bojja
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rati Ranjan Nayak
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
36
|
Qiang Y, Gao S, Zhang Y, Wang S, Chen L, Mu L, Fang H, Jiang J, Lei X. Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions. Int J Mol Sci 2023; 24:12239. [PMID: 37569614 PMCID: PMC10418702 DOI: 10.3390/ijms241512239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The recovery of gold from water is an important research area. Recent reports have highlighted the ultrahigh capacity and selective extraction of gold from electronic waste using reduced graphene oxide (rGO). Here, we made a further attempt with the thermal rGO membranes and found that the thermal rGO membranes also had a similarly high adsorption efficiency (1.79 g gold per gram of rGO membranes at 1000 ppm). Furthermore, we paid special attention to the detailed selectivity between Au3+ and other ions by rGO membranes. The maximum adsorption capacity for Au3+ ions was about 16 times that of Cu2+ ions and 10 times that of Fe3+ ions in a mixture solution with equal proportions of Au3+/Cu2+ and Au3+/Fe3+. In a mixed-ion solution containing Au3+:Cu2+:Na+:Fe3+:Mg2+ of printed circuit board (PCB), the mass of Au3+:Cu2+:Na+:Fe3+:Mg2+ in rGO membranes is four orders of magnitude higher than the initial mass ratio. A theoretical analysis indicates that this selectivity may be attributed to the difference in the adsorption energy between the metal ions and the rGO membrane. The results are conducive to the usage of rGO membranes as adsorbents for Au capture from secondary metal resources in the industrial sector.
Collapse
Affiliation(s)
- Yu Qiang
- School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.Q.); (S.G.); (S.W.); (H.F.)
| | - Siyan Gao
- School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.Q.); (S.G.); (S.W.); (H.F.)
| | - Yueyu Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (Y.Z.); (L.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.Q.); (S.G.); (S.W.); (H.F.)
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
| | - Liuhua Mu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (Y.Z.); (L.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Fang
- School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.Q.); (S.G.); (S.W.); (H.F.)
| | - Jie Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
| | - Xiaoling Lei
- School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.Q.); (S.G.); (S.W.); (H.F.)
| |
Collapse
|
37
|
Chaudhuri H, Lin X, Yun YS. Graphene oxide-based dendritic adsorbent for the excellent capturing of platinum group elements. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131206. [PMID: 36931220 DOI: 10.1016/j.jhazmat.2023.131206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report amino functionalized thermally stable graphene oxide-based dendritic adsorbent (GODA) with the highest sorption capacity ever recorded for platinum group elements (PGEs), including platinum (Pt(IV), PtCl62-) and palladium (Pd(II), PdCl42-), from highly acidic aqueous solutions. The GODA was designed and synthesized to have fully ionized amine binding sites and was characterized in detail. The detail batch adsorption experiment along with kinetic, isotherm, and thermodynamic studies were carried out to investigate the adsorption efficacy of GODA. For both Pt(IV) and Pd(II), the experimental data are more accurately fitted with the pseudo-second-order and the intraparticle diffusion kinetic models and Langmuir isotherm model as compared to the pseudo-first-order kinetic model and Freundlich and Temkin isotherm models, respectively. The material showed the highest ever adsorption capacities of 827.8 ± 27.7 mg/g (4.24 ± 0.00 mmol/g) and 890.7 ± 29.1 mg/g (8.37 ± 0.00 mmol/g) for Pt(IV) and Pd(II), respectively, at pH 1. The adsorption equilibriums were achieved within 70 min and 65 min for Pt(IV) and Pd(II), respectively. The thermodynamic parameters indicate that the adsorptions of both metals are spontaneous. The binding mechanisms are considered to be electrostatic interactions, hydrogen bonding, cationic-π bonding, and surface complexation between the sorbent and the sorbates. Furthermore, the as-prepared GODA exhibited high thermal stability and significant acid-resistance at pH 1. The GODA demonstrated excellent regeneration and reusability for Pt(IV) and Pd(II) over five adsorption/desorption cycles, indicating its excellence in practical applications.
Collapse
Affiliation(s)
- Haribandhu Chaudhuri
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Xiaoyu Lin
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 54896, Republic of Korea; Division of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
38
|
Li M, Yao Z, Chen Y, Li D, Shao J, Dong H, Meng Z, Yang L, Ren W, Luo X, Shao P. Potential-dependent selectivity for the efficient capture of gold from E-waste acid leachate using sulfhydryl-functionalized carbon. Sci Bull (Beijing) 2023:S2095-9273(23)00309-2. [PMID: 37217428 DOI: 10.1016/j.scib.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziwei Yao
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dewei Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiachuang Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Hao Dong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhu Meng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Wei Ren
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China.
| |
Collapse
|
39
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
40
|
Xue T, He T, Peng L, Syzgantseva OA, Li R, Liu C, Sun DT, Xu G, Qiu R, Wang Y, Yang S, Li J, Li JR, Queen WL. A customized MOF-polymer composite for rapid gold extraction from water matrices. SCIENCE ADVANCES 2023; 9:eadg4923. [PMID: 36989363 PMCID: PMC10058236 DOI: 10.1126/sciadv.adg4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
With the fast-growing accumulation of electronic waste and rising demand for rare metals, it is compelling to develop technologies that can promotionally recover targeted metals, like gold, from waste, a process referred to as urban mining. Thus, there is increasing interest in the design of materials to achieve rapid, selective gold capture while maintaining high adsorption capacity, especially in complex aqueous-based matrices. Here, a highly porous metal-organic framework (MOF)-polymer composite, BUT-33-poly(para-phenylenediamine) (PpPD), is assessed for gold extraction from several matrices including river water, seawater, and leaching solutions from CPUs. BUT-33-PpPD exhibits a record-breaking extraction rate, with high Au3+ removal efficiency (>99%) within seconds (less than 45 s), a competitive capacity (1600 mg/g), high selectivity, long-term stability, and recycling ability. Furthermore, the high porosity and redox adsorption mechanism were shown to be underlying reasons for the material's excellent performance. Given the accumulation of recovered metallic gold nanoparticles inside, the material was also efficiently applied as a catalyst.
Collapse
Affiliation(s)
- Tianwei Xue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tao He
- Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Olga A. Syzgantseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ruiqing Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengbin Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Daniel T. Sun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guangkuo Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Rongxing Qiu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanliang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jian-Rong Li
- Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wendy L. Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| |
Collapse
|
41
|
Wang C, Yang K, Xie Q, Pan J, Jiang Z, Yang H, Zhang Y, Wu Y, Han J. Tandem Efficient Bromine Removal and Silver Recovery by Resorcinol-Formaldehyde Resin Nanoparticles. NANO LETTERS 2023; 23:2239-2246. [PMID: 36857481 DOI: 10.1021/acs.nanolett.2c04877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halogen wastewater greatly threatens the health of human beings and aquatic organisms due to its severe toxicity, corrosiveness, and volatility. Efficient bromine removal is therefore urgently required, while existing Br2-capture materials often face challenges from limited water stability and possible halogen leaking. We report a facile and efficient aqueous Br2 removal method using submicron resorcinol-formaldehyde (RF) resin nanoparticles (NPs). The abundant aromatic groups dominate the Br2 removal by substitution reactions. An excellent Br2 conversion capacity of 7441 mg gRF-1 was achieved by RF NPs that outperform state-of-the-art materials by ∼2-fold, along with advantages including good water stability, low cost, and easy fabrication. Two recycling-coupled (electrochemical or H2O2-involved) Br2 removal routes further reveal the feasibility of in-depth halogen removal by RF NPs. The brominated resin can be downstream upcycled for silver recovery, realizing the harvesting of precious metal, reducing of heavy-metal pollution, and resource utilization of brominated resin.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Keke Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zehui Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Han Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yutong Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
42
|
Shao P, Chang Z, Li M, Lu X, Jiang W, Zhang K, Luo X, Yang L. Mixed-valence molybdenum oxide as a recyclable sorbent for silver removal and recovery from wastewater. Nat Commun 2023; 14:1365. [PMID: 36914674 PMCID: PMC10011435 DOI: 10.1038/s41467-023-37143-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Silver ions in wastewater streams are a major pollutant and a threat to human health. Given the increasing demand and relative scarcity of silver, these streams could be a lucrative source to extract metallic silver. Wastewater is a complex mixture of many different metal salts, and developing recyclable sorbents with high specificity towards silver ions remains a major challenge. Here we report that molybdenum oxide (MoOx) adsorbent with mixed-valence (Mo(V) and Mo(VI)) demonstrates high selectivity (distribution coefficient of 6437.40 mL g-1) for Ag+ and an uptake capacity of 2605.91 mg g-1. Our experimental results and density functional theory calculations illustrate the mechanism behind Ag+ adsorption and reduction. Our results show that Mo(V) species reduce Ag+ to metallic Ag, which decreases the energy barrier for subsequent Ag+ reductions, accounting for the high uptake of Ag+ from wastewater. Due to its high selectivity, MoOx favorably adsorbs Ag+ even in the presence of interfering ions. High selective recovery of Ag+ from wastewater (recovery efficiency = 97.9%) further supports the practical applications of the sorbent. Finally, MoOx can be recycled following silver recovery while maintaining a recovery efficiency of 97.1% after five cycles. The method is expected to provide a viable strategy to recover silver from wastewater.
Collapse
Affiliation(s)
- Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Ziwen Chang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, 401331, Chongqing, P. R. China.
| | - Xiang Lu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Wenli Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, P. R. China
| | - Kai Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, 330063, Nanchang, P. R. China.
| |
Collapse
|
43
|
Wu H, Wang Y, Tang C, Jones LO, Song B, Chen XY, Zhang L, Wu Y, Stern CL, Schatz GC, Liu W, Stoddart JF. High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin. Nat Commun 2023; 14:1284. [PMID: 36894545 PMCID: PMC9998620 DOI: 10.1038/s41467-023-36591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311215, Hangzhou, China.
| |
Collapse
|
44
|
Wang R, Luo S, Zheng R, Shangguan Y, Feng X, Zeng Q, Liang J, Chen Z, Li J, Yang D, Chen H. Interfacial Coordination Bonding-Assisted Redox Mechanism-Driven Highly Selective Precious Metal Recovery on Covalent-Functionalized Ultrathin 1T-MoS 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9331-9340. [PMID: 36780328 DOI: 10.1021/acsami.2c20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design of functional material interfaces with well-defined physico-chemical-driven forces is crucial for achieving highly efficient interfacial chemical reaction dynamics for resource recovery. Herein, via an interfacial structure engineering strategy, precious metal (PM) coordination-active pyridine groups have been successfully covalently integrated into ultrathin 1T-MoS2 (Py-MoS2). The constructed Py-MoS2 shows highly selective interfacial coordination bonding-assisted redox (ICBAR) functionality toward PM recycling. Py-MoS2 shows state-of-the-art high recovery selectivity toward Au3+ and Pd4+ within 13 metal cation mixture solutions. The related recycling capacity reaches up to 3343.00 and 2330.74 mg/g for Au3+ and Pd4+, respectively. More importantly, above 90% recovery efficiencies have been achieved in representative PMs containing electronic solid waste leachate, such as computer processing units (CPU) and spent catalysts. The ICBAR mechanism developed here paves the way for interface engineering of the well-documented functional materials toward highly efficient PM recovery.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Zeng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijie Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
45
|
He L, Li B, Ma Z, Chen L, Gong S, Zhang M, Bai Y, Guo Q, Wu F, Zhao F, Li J, Zhang D, Sheng D, Dai X, Chen L, Shu J, Chai Z, Wang S. Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
46
|
Zupanc A, Install J, Jereb M, Repo T. Sustainable and Selective Modern Methods of Noble Metal Recycling. Angew Chem Int Ed Engl 2023; 62:e202214453. [PMID: 36409274 PMCID: PMC10107291 DOI: 10.1002/anie.202214453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing-by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media-of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Joseph Install
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| |
Collapse
|
47
|
Li X, Wang YL, Wen J, Zheng L, Qian C, Cheng Z, Zuo H, Yu M, Yuan J, Li R, Zhang W, Liao Y. Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste. Nat Commun 2023; 14:263. [PMID: 36650177 PMCID: PMC9845340 DOI: 10.1038/s41467-023-35971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the "nanotrap", it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.
Collapse
Affiliation(s)
- Xinghao Li
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yong-Lei Wang
- grid.10548.380000 0004 1936 9377Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691 Sweden
| | - Jin Wen
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Linlin Zheng
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Cheng Qian
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zhonghua Cheng
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Hongyu Zuo
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Mingqing Yu
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Jiayin Yuan
- grid.10548.380000 0004 1936 9377Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691 Sweden
| | - Rong Li
- grid.255169.c0000 0000 9141 4786College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620 China
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
48
|
Selective Pt recovery from spent catalyst enabled by hierarchical porous poly(imine dioxime)/polyethylenimine composite membrane for recycled Pt/C catalyst. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Xia Q, Li W, Zou X, Zheng S, Liu Z, Li L, Yan F. Metal-organic framework (MOF) facilitated highly stretchable and fatigue-resistant ionogels for recyclable sensors. MATERIALS HORIZONS 2022; 9:2881-2892. [PMID: 36097959 DOI: 10.1039/d2mh00880g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionogel-based flexible sensors are widely applied in wearable biomedical devices and soft robots. However, the abandoned ionic sensors are rapidly turning into e-waste. Here, we harness the porosity and the coordination of metal sites of metal-organic frameworks (MOFs) to develop physically crosslinked ionogels, which are composed of polymer chains that coordinate with the MOF metal sites. The covalent crosslinking of the host material transformed into reversible bond interactions that significantly enhance the mechanical properties of the MOF-ionogels. The obtained ionogels can endure an 11 000% stretch and exhibit Young's modulus and toughness of 58 MPa and 25 MJ m-3, respectively. In addition, the fracture energy is as high as 125 kJ m-2, outperforming most reported ionogels. Furthermore, the UiO-66-ionogels are fully recyclable and both the mechanical and electrical properties can be restored. The results of this work provide a new vision for the development of future "green" sensors.
Collapse
Affiliation(s)
- Qunmeng Xia
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
50
|
Nag A, Morrison CA, Love JB. Rapid Dissolution of Noble Metals in Organic Solvents. CHEMSUSCHEM 2022; 15:e202201285. [PMID: 35929761 PMCID: PMC9804267 DOI: 10.1002/cssc.202201285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The dissolution of elemental noble metals (NMs) such as gold, platinum, palladium, and copper is necessary for their recycling but carries a high environmental burden due to the use of strong acids and toxic reagents. Herein, a new approach was developed for the rapid dissolution of elemental NMs in organic solvents using mixtures of triphenylphosphine dichloride or oxalyl chloride and hydrogen peroxide, forming metal chloride salts directly. Almost quantitative dissolution of metallic Au, Pd, and Cu was observed within minutes at room temperature. For Pt, dissolution was achieved, albeit more slowly, using the chlorinating oxidant alone but was inhibited on addition of hydrogen peroxide. After leaching, transfer of PtIV and PdII chloride salts from the organic phase into a 6 m HCl aqueous phase facilitated their separation by precipitation of PtIV using a simple diamide ligand. In contrast, the retention of AuIII chloridometalate in the organic phase allowed its selective separation from Ni and Cu from a leachate solution obtained from electronic CPUs. This new approach has potential application in the hydrometallurgical leaching and purification of NMs from ores, spent catalysts, and electronic and nano-wastes.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| | - Carole A. Morrison
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| | - Jason B. Love
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| |
Collapse
|