1
|
Hashimoto S, Hasan MDN, Arif M, Nozaki N, Husna AA, Furusawa Y, Sogawa T, Takahashi K, Kuramoto T, Noguchi A, Takahashi M, Yamato O, Rahman MM, Miura N. Aberrantly Expressed tRNA-Val Fragments Can Distinguish Canine Hepatocellular Carcinoma from Canine Hepatocellular Adenoma. Genes (Basel) 2024; 15:1024. [PMID: 39202384 PMCID: PMC11353709 DOI: 10.3390/genes15081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) can be difficult to differentiate but must be diagnosed correctly as treatment and prognosis for these tumors differ markedly. Relevant diagnostic biomarkers are thus needed, and those identified in dogs may have utility in human medicine because of the similarities between human and canine HCA and HCC. A tRNA-derived fragment (tRF), tRNA-Val, is a promising potential biomarker for canine mammary gland tumors but has not previously been investigated in hepatic tumors. Accordingly, we aimed to elucidate the potential utility of tRNA-Val as a biomarker for canine HCA and HCC using clinical samples (tumor tissue and plasma extracellular vesicles [EVs]) and tumor cell lines with qRT-PCR assays. We also investigated relevant functions and signaling pathways with bioinformatic analyses (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes). tRNA-Val was markedly downregulated in HCC tumor tissue versus HCA tumor tissue and normal liver tissue, and a similar trend was shown in plasma EVs and HCC cell lines versus healthy controls. Based on areas under the receiver operating characteristic curves (AUCs), tRNA-Val significantly distinguished HCC (AUC = 1.00, p = 0.001) from healthy controls in plasma EVs and HCC from HCA (AUC = 0.950, p = 0.01). Bioinformatics analysis revealed that tRNA-Val may be primarily involved in DNA repair, mRNA processing, and splicing and may be linked to the N-glycan and ubiquitin-mediated proteasome pathways. This is the first report on the expression of tRNA-Val in canine HCC and HCA and its possible functions and signaling pathways. We suggest that tRNA-Val could be a promising novel biomarker to distinguish canine HCC from HCA. This study provides evidence for a greater understanding of the role played by tRNA-Val in the development of canine HCC.
Collapse
MESH Headings
- Animals
- Dogs
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/veterinary
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/veterinary
- Liver Neoplasms/pathology
- Biomarkers, Tumor/genetics
- Dog Diseases/genetics
- Dog Diseases/diagnosis
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/veterinary
- Adenoma, Liver Cell/pathology
- Adenoma, Liver Cell/metabolism
- Adenoma, Liver Cell/diagnosis
- Gene Expression Regulation, Neoplastic
- Diagnosis, Differential
- Cell Line, Tumor
- Female
Collapse
Affiliation(s)
- Saki Hashimoto
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - MD Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Nobuhiro Nozaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Al Asmaul Husna
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yu Furusawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takeshi Sogawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kaori Takahashi
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tomohide Kuramoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Aki Noguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masashi Takahashi
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Osamu Yamato
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Md Mahfuzur Rahman
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
3
|
Wan X, Shi W, Ma L, Wang L, Zheng R, He J, Wang Y, Li X, Zha X, Wang J, Xu L. A 3'-pre-tRNA-derived small RNA tRF-1-Ser regulated by 25(OH)D promotes proliferation and stemness by inhibiting the function of MBNL1 in breast cancer. Clin Transl Med 2024; 14:e1681. [PMID: 38725048 PMCID: PMC11082093 DOI: 10.1002/ctm2.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.
Collapse
Affiliation(s)
- Xinyu Wan
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenjie Shi
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lingjun Ma
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lexin Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ran Zheng
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinzhi He
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xuan Li
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaoming Zha
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jue Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Xu
- Department of NutritionThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Xiao L, Sun H, Cheng R, Yang R, Jin X, Xu Z, Cai Y, Yang Y, Pang F, Xue G, Wang P, Jiang Q, Nie H. Functional requirement of alternative splicing in epithelial-mesenchymal transition of pancreatic circulating tumor. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102129. [PMID: 38370981 PMCID: PMC10869908 DOI: 10.1016/j.omtn.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Circulating tumor cells (CTCs) that undergo epithelial-to-mesenchymal transition (EMT) can provide valuable information regarding metastasis and potential therapies. However, current studies on the EMT overlook alternative splicing. Here, we used single-cell full-length transcriptome data and mRNA sequencing of CTCs to identify stage-specific alternative splicing of partial EMT and mesenchymal states during pancreatic cancer metastasis. We classified definitive tumor and normal epithelial cells via genetic aberrations and demonstrated dynamic changes in the epithelial-mesenchymal continuum in both epithelial cancer cells and CTCs. We provide the landscape of alternative splicing in CTCs at different stages of EMT, uncovering cell-type-specific splicing patterns and splicing events in cell surface proteins suitable for therapies. We show that MBNL1 governs cell fate through alternative splicing independently of changes in gene expression and affects the splicing pattern during EMT. We found a high frequency of events that contained multiple premature termination codons and were enriched with C and G nucleotides in close proximity, which influence the likelihood of stop codon readthrough and expand the range of potential therapeutic targets. Our study provides insights into the EMT transcriptome's dynamic changes and identifies potential diagnostic and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Haoxiu Sun
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rongrong Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yuexin Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
5
|
Wang HF, Zhou XF, Zhang QM, Wu JQ, Hou JH, Xu XL, Li XM, Liu YL. Involvement of circRNA Regulators MBNL1 and QKI in the Progression of Esophageal Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241257142. [PMID: 38769028 PMCID: PMC11107321 DOI: 10.1177/10732748241257142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Feng Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Feng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qun-Mei Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie-Qing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing-Han Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue-Lian Xu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu-Min Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Long Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
6
|
Eng ZH, Abdul Aziz A, Ng KL, Mat Junit S. Changes in antioxidant status and DNA repair capacity are corroborated with molecular alterations in malignant thyroid tissue of patients with papillary thyroid cancer. Front Mol Biosci 2023; 10:1237548. [PMID: 37692064 PMCID: PMC10484572 DOI: 10.3389/fmolb.2023.1237548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Papillary thyroid cancer (PTC) accounts for approximately 80% of all thyroid cancer cases. The mechanism of PTC tumourigenesis is not fully understood, but oxidative imbalance is thought to play a role. To gain further insight, this study evaluated antioxidant status, DNA repair capacity and genetic alterations in individuals diagnosed with benign thyroid lesion in one lobe (BTG) and PTC lesion in another. Methods: Individuals with coexisting BTG and PTC lesions in their thyroid lobes were included in this study. Reactive oxygen species (ROS) level, ABTS radical scavenging activity, ferric reducing antioxidant capacity, glutathione peroxidase and superoxide dismutase activities were measured in the thyroid tissue lysate. The expression of selected genes and proteins associated with oxidative stress defence and DNA repair were analysed through quantitative real-time PCR and Western blotting. Molecular alterations in genomic DNA were analysed through whole-exome sequencing and the potentially pathogenic driver genes filtered through Cancer-Related Analysis of Variants Toolkit (CRAVAT) analysis were subjected to pathway enrichment analysis using Metascape. Results: Significantly higher ROS level was detected in the PTC compared to the BTG lesions. The PTC lesions had significantly higher expression of GPX1, SOD2 and OGG1 but significantly lower expression of CAT and PRDX1 genes than the BTG lesions. Pathway enrichment analysis identified "regulation of MAPK cascade," "positive regulation of ERK1 and ERK2 cascade" and "negative regulation of reactive oxygen species metabolic process" to be significantly enriched in the PTC lesions only. Four pathogenic genetic variants were identified in the PTC lesions; BRAF V600E, MAP2K7-rs2145142862, BCR-rs372013175 and CD24 NM_001291737.1:p.Gln23fs while MAP3K9 and G6PD were among 11 genes that were mutated in both BTG and PTC lesions. Conclusion: Our findings provided further insight into the connection between oxidative stress, DNA damage, and genetic changes associated with BTG-to-PTC transformation. The increased oxidative DNA damage due to the heightened ROS levels could have heralded the BTG-to-PTC transformation, potentially through mutations in the genes involved in the MAPK signalling pathway and stress-activated MAPK/JNK cascade. Further in-vitro functional analyses and studies involving a larger sample size would need to be carried out to validate the findings from this pilot study.
Collapse
Affiliation(s)
- Zing Hong Eng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Ellis JA, Hale MA, Cleary JD, Wang E, Andrew Berglund J. Alternative splicing outcomes across an RNA-binding protein concentration gradient. J Mol Biol 2023:168156. [PMID: 37230319 DOI: 10.1016/j.jmb.2023.168156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose-response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.
Collapse
Affiliation(s)
- Joseph A Ellis
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Melissa A Hale
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - John D Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Eric Wang
- Department of Microbiology and Molecular Genetics & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; RNA Institute, State University of New York at Albany, LSRB-2033, 1400 Washington Avenue, Albany, New York, 12222.
| |
Collapse
|
8
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Nelson AR, Bugg D, Davis J, Saucerman JJ. Network model integrated with multi-omic data predicts MBNL1 signals that drive myofibroblast activation. iScience 2023; 26:106502. [PMID: 37091233 PMCID: PMC10119756 DOI: 10.1016/j.isci.2023.106502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
RNA-binding protein muscleblind-like1 (MBNL1) was recently identified as a central regulator of cardiac wound healing and myofibroblast activation. To identify putative MBNL1 targets, we integrated multiple genome-wide screens with a fibroblast network model. We expanded the model to include putative MBNL1-target interactions and recapitulated published experimental results to validate new signaling modules. We prioritized 14 MBNL1 targets and developed novel fibroblast signaling modules for p38 MAPK, Hippo, Runx1, and Sox9 pathways. We experimentally validated MBNL1 regulation of p38 expression in mouse cardiac fibroblasts. Using the expanded fibroblast model, we predicted a hierarchy of MBNL1 regulated pathways with strong influence on αSMA expression. This study lays a foundation to explore the network mechanisms of MBNL1 signaling central to fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, 5th Floor, PO Box 800735, Charlottesville, VA 22908-0735, USA
| | - Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Lab Medicine & Pathology, University of Washington, 1959 NE Pacific Street Box 357470, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, PO Box 355061, Seattle, WA 98195-5061, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, 850 Republican Street, PO Box 358056, Seattle, WA 98109, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22903 , USA
| |
Collapse
|
10
|
Wu S, Huang Y, Zhang M, Gong Z, Wang G, Zheng X, Zong W, Zhao W, Xing P, Li R, Liu Z, Bao Y. ASCancer Atlas: a comprehensive knowledgebase of alternative splicing in human cancers. Nucleic Acids Res 2022; 51:D1196-D1204. [PMID: 36318242 PMCID: PMC9825479 DOI: 10.1093/nar/gkac955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Alternative splicing (AS) is a fundamental process that governs almost all aspects of cellular functions, and dysregulation in this process has been implicated in tumor initiation, progression and treatment resistance. With accumulating studies of carcinogenic mis-splicing in cancers, there is an urgent demand to integrate cancer-associated splicing changes to better understand their internal cross-talks and functional consequences from a global view. However, a resource of key functional AS events in human cancers is still lacking. To fill the gap, we developed ASCancer Atlas (https://ngdc.cncb.ac.cn/ascancer), a comprehensive knowledgebase of aberrant splicing in human cancers. Compared to extant databases, ASCancer Atlas features a high-confidence collection of 2006 cancer-associated splicing events experimentally proved to promote tumorigenesis, a systematic splicing regulatory network, and a suit of multi-scale online analysis tools. For each event, we manually curated the functional axis including upstream splicing regulators, splicing event annotations, downstream oncogenic effects, and possible therapeutic strategies. ASCancer Atlas also houses about 2 million computationally putative splicing events. Additionally, a user-friendly web interface was built to enable users to easily browse, search, visualize, analyze, and download all splicing events. Overall, ASCancer Atlas provides a unique resource to study the functional roles of splicing dysregulation in human cancers.
Collapse
Affiliation(s)
| | | | - Mochen Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Gong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Wang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchang Zheng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Rujiao Li
- Correspondence may also be addressed to Rujiao Li. Tel: +86 10 84097638;
| | - Zhaoqi Liu
- Correspondence may also be addressed to Zhaoqi Liu. Tel: +86 10 84097398;
| | - Yiming Bao
- To whom correspondence should be addressed. Tel: +86 10 84097858; Fax: +86 10 84097720;
| |
Collapse
|
11
|
Urbanski L, Brugiolo M, Park S, Angarola BL, Leclair NK, Yurieva M, Palmer P, Sahu SK, Anczuków O. MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors. Cell Rep 2022; 41:111704. [DOI: 10.1016/j.celrep.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
12
|
Li H, Liu P, Li D, Wang Z, Ding Z, Zhou M, Chen X, Miao M, Ding J, Lin W, Liu Y, Zha X. STAT3/miR-130b-3p/MBNL1 feedback loop regulated by mTORC1 signaling promotes angiogenesis and tumor growth. J Exp Clin Cancer Res 2022; 41:297. [PMID: 36217202 PMCID: PMC9552455 DOI: 10.1186/s13046-022-02513-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrantly activated mammalian target of rapamycin complex 1 (mTORC1) plays a vital role in tumor angiogenesis, but its precise mechanisms are still unclear. METHODS Micro-RNA-130b-3p (miR-130b-3p) expression in mTORC1-activated and control cells was examined by quantitative real-time PCR (qRT-PCR). MiR-130b-3p levels and their correlation with mTORC1 activity were evaluated by analyzing publicly available databases and in-house head and neck squamous cell carcinoma (HNSCC) tissues. The role of miR-130b-3p in mTORC1-mediated angiogenesis and tumor growth was examined using tube formation assay, chicken chorioallantoic membrane assay, cell line - derived xenograft models, and an HNSCC patient-derived xenograft (PDX) model. The regulatory mechanisms among signal transducer and activator of transcription 3 (STAT3), miR-130b-3p, and muscleblind-like protein 1 (MBNL1) were investigated via bioinformatics analyses, qRT-PCR, western blot, RNA immunoprecipitation, immunofluorescence, luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS Elevated miR-130b-3p enhanced the angiogenic and tumorigenic abilities of mTORC1-activated cells both in vitro and in vivo. STAT3, a downstream effector of mTORC1, transactivated miR-130b-3p by direct binding promoter of the miR-130b gene. MBNL1 was identified as a direct target of miR-130b-3p. MBNL1 depletion rescued the compromised angiogenesis and tumor growth caused by miR-130b-3p inhibition. MiR-130b-3p levels were significantly upregulated and positively correlated with mTORC1 signaling in multiple cancers. MiR-130b-3p inhibition attenuated tumor angiogenesis and growth in an HNSCC PDX model. MBNL1 feedback inhibited STAT3 activation in mTORC1-activated cells. CONCLUSIONS The STAT3/miR-130b-3p/MBNL1 feedback loop plays a vital role in mTORC1-mediated angiogenesis and tumor progression. This pathway could be targeted for therapeutic intervention of mTORC1-related cancers.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ping Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng Zhou
- Department of Pharmacy, Genertec Universal Medical Maanshan Shiqiye Hospital, Maanshan, 243000, Anhui Province, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Junli Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Slusher AL, Kim JJJ, Ribick M, Pollens-Voigt J, Bankhead A, Palmbos PL, Ludlow AT. Intronic Cis-Element DR8 in hTERT Is Bound by Splicing Factor SF3B4 and Regulates hTERT Splicing in Non-Small Cell Lung Cancer. Mol Cancer Res 2022; 20:1574-1588. [PMID: 35852380 PMCID: PMC9532359 DOI: 10.1158/1541-7786.mcr-21-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/14/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing of the hTERT gene to produce the full-length (FL) transcript is necessary for telomerase enzyme activity and telomere-dependent cellular immortality in the majority of human tumors, including non-small cell lung cancer (NSCLC) cells. The molecular machinery to splice hTERT to the FL isoform remains mostly unknown. Previously, we reported that an intron 8 cis-element termed "direct repeat 8" (DR8) promotes FL hTERT splicing, telomerase, and telomere length maintenance when bound by NOVA1 and PTBP1 in NSCLC cells. However, some NSCLC cells and patient tumor samples lack NOVA1 expression. This leaves a gap in knowledge about the splicing factors and cis-elements that promote telomerase in the NOVA1-negative context. We report that DR8 regulates FL hTERT splicing in the NOVA1-negative and -positive lung cancer contexts. We identified splicing factor 3b subunit 4 (SF3B4) as an RNA trans-factor whose expression is increased in lung adenocarcinoma (LUAD) tumors compared with adjacent normal tissue and predicts poor LUAD patient survival. In contrast to normal lung epithelial cells, which continued to grow with partial reductions of SF3B4 protein, SF3B4 knockdown reduced hTERT splicing, telomerase activity, telomere length, and cell growth in lung cancer cells. SF3B4 was also demonstrated to bind the DR8 region of hTERT pre-mRNA in both NOVA1-negative and -positive NSCLC cells. These findings provide evidence that DR8 is a critical binding hub for trans-factors to regulate FL hTERT splicing in NSCLC cells. These studies help define mechanisms of gene regulation important to the generation of telomerase activity during carcinogenesis. IMPLICATIONS Manipulation of a core spliceosome protein reduces telomerase/hTERT splicing in lung cancer cells and results in slowed cancer cell growth and cell death, revealing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Aaron L. Slusher
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeongjin JJ Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark Ribick
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Armand Bankhead
- Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillip L. Palmbos
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Andrew T. Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Zhao Y, Song J, Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Liu L, Wang P, Zhang M, Liu Y. The MBNL1/circNTRK2/PAX5 pathway regulates aerobic glycolysis in glioblastoma cells by encoding a novel protein NTRK2-243aa. Cell Death Dis 2022; 13:767. [PMID: 36064939 PMCID: PMC9445070 DOI: 10.1038/s41419-022-05219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common tumor of the human central nervous system. Aerobic glycolysis has been strongly related to tumor development and malignant behavior. In this study, we found that MBNL1, circNTRK2, and NTRK2-243aa were markedly downregulated and inhibited glycolysis in GBM, whereas PAX5 was upregulated and promoted glycolysis. Functionally, MBNL1 promoted the expression of circNTRK2 by binding to NTRK2 pre-mRNA, as validated using RNA pull-down and nascent RNA immunoprecipitation assays. Mass spectrometry, western blotting, and immunofluorescence staining methods were used to detect the expression of NTRK2-243aa. NTRK2-243aa-encoded by circNTRK2-phosphorylated PAX5 at Y102, leading to the attenuation of the half-life of PAX5, as validated by in vitro kinase and MG132 rescue assays. Besides, PAX5 transcriptionally facilitated the expression of PKM2 and HK2 by binding to their promoter regions, as verified by luciferase reporter and chromatin immunoprecipitation assays. Finally, overexpression of MBNL1 and circNTRK2 combined with PAX5 knockdown effectively inhibited the formation of GBM xenograft tumors and significantly prolonged the survival of orthotopic nude mice. We have delineated that the MBNL1/circNTRK2/PAX5 pathway plays a crucial role in regulating GBM glycolysis and could provide potential targets and alternative strategies for the treatment of GBM.
Collapse
Affiliation(s)
- Yubo Zhao
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Jian Song
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Weiwei Dong
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Xiaobai Liu
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Chunqing Yang
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Di Wang
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Yixue Xue
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Xuelei Ruan
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Libo Liu
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Ping Wang
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Mengyang Zhang
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Yunhui Liu
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| |
Collapse
|
15
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
16
|
van den Bosch QCC, Nguyen JQN, Brands T, van den Bosch TPP, Verdijk RM, Paridaens D, Naus NC, de Klein A, Kiliç E, Brosens E. FOXD1 Is a Transcription Factor Important for Uveal Melanocyte Development and Associated with High-Risk Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14153668. [PMID: 35954332 PMCID: PMC9367502 DOI: 10.3390/cancers14153668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Despite successful treatment of primary uveal melanoma (UM), metastases still occur in approximately 50% of the patients. Unfortunately, little is known about the mechanism behind metastasized UM. By reanalyzing publicly available single-cell RNA sequencing data of embryonic zebrafish larvae and validating the results with UM data, we have identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. The most significant finding is FOXD1, which is nearly exclusively expressed in high-risk UM and is associated with poor survival. FOXD1 is a novel gene which could be involved in the metastatic capability of UM. Elucidating its function and role in metastatic UM could help to understand and develop treatment for UM. Abstract Uveal melanoma (UM) is a deadly ocular malignancy, originating from uveal melanocytes. Although much is known regarding prognostication in UM, the exact mechanism of metastasis is mostly unknown. Metastatic tumor cells are known to express a more stem-like RNA profile which is seen often in cell-specific embryonic development to induce tumor progression. Here, we identified novel transcription regulators by reanalyzing publicly available single cell RNA sequencing experiments. We identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. Our most significant finding is FOXD1, as this gene is nearly exclusively expressed in high-risk UM and its expression is associated with a poor prognosis. Even within the BAP1-mutated UM, the expression of FOXD1 is correlated with poor survival. FOXD1 is a novel factor which could potentially be involved in the metastatic capacity of high-risk UM. Elucidating the function of FOXD1 in UM could provide insight into the malignant transformation of uveal melanocytes, especially in high-risk UM.
Collapse
Affiliation(s)
- Quincy C. C. van den Bosch
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Josephine Q. N. Nguyen
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Thierry P. P. van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dion Paridaens
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands;
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| |
Collapse
|
17
|
Li S, Qi Y, Yu J, Hao Y, He B, Zhang M, Dai Z, Jiang T, Li S, Huang F, Chen N, Wang J, Yang M, Liang D, An F, Zhao J, Fan W, Pan Y, Deng Z, Luo Y, Guo T, Peng F, Hou Z, Wang C, Zheng F, Xu L, Xu J, Wen Q, Jin B, Wang Y, Liu Q. Nuclear Aurora kinase A switches m 6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. Signal Transduct Target Ther 2022; 7:97. [PMID: 35361747 PMCID: PMC8971511 DOI: 10.1038/s41392-022-00905-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Aberrant RNA splicing produces alternative isoforms of genes to facilitate tumor progression, yet how this process is regulated by oncogenic signal remains largely unknown. Here, we unveil that non-canonical activation of nuclear AURKA promotes an oncogenic RNA splicing of tumor suppressor RBM4 directed by m6A reader YTHDC1 in lung cancer. Nuclear translocation of AURKA is a prerequisite for RNA aberrant splicing, specifically triggering RBM4 splicing from the full isoform (RBM4-FL) to the short isoform (RBM4-S) in a kinase-independent manner. RBM4-S functions as a tumor promoter by abolishing RBM4-FL-mediated inhibition of the activity of the SRSF1-mTORC1 signaling pathway. Mechanistically, AURKA disrupts the binding of SRSF3 to YTHDC1, resulting in the inhibition of RBM4-FL production induced by the m6A-YTHDC1-SRSF3 complex. In turn, AURKA recruits hnRNP K to YTHDC1, leading to an m6A-YTHDC1-hnRNP K-dependent exon skipping to produce RBM4-S. Importantly, the small molecules that block AURKA nuclear translocation, reverse the oncogenic splicing of RBM4 and significantly suppress lung tumor progression. Together, our study unveils a previously unappreciated role of nuclear AURKA in m6A reader YTHDC1-dependent oncogenic RNA splicing switch, providing a novel therapeutic route to target nuclear oncogenic events.
Collapse
Affiliation(s)
- SiSi Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - YangFan Qi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - JiaChuan Yu
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - YuChao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - MengJuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZhenWei Dai
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - TongHui Jiang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - SuYi Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fang Huang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Ning Chen
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jing Wang
- Department of Oncology, the First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - MengYing Yang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - DaPeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - JinYao Zhao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - WenJun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - YuJia Pan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZiQian Deng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - YuanYuan Luo
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ZhiJie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - ChunLi Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - FeiMeng Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - LingZhi Xu
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - QingPing Wen
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - BiLian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Yang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Gallego-Paez LM, Mauer J. DJExpress: An Integrated Application for Differential Splicing Analysis and Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:786898. [PMID: 36304260 PMCID: PMC9580925 DOI: 10.3389/fbinf.2022.786898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented understanding of transcriptome complexity in health and disease. However, despite the availability of countless bioinformatic pipelines for transcriptome-wide splicing analysis, the use of these tools is often limited to expert bioinformaticians. The need for high computational power, combined with computational outputs that are complicated to visualize and interpret present obstacles to the broader research community. Here we introduce DJExpress, an R package for differential expression analysis of transcriptomic features and expression-trait associations. To determine gene-level differential junction usage as well as associations between junction expression and molecular/clinical features, DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on an average laptop computer and provides a set of interactive and intuitive visualization formats. In contrast to most existing pipelines, DJExpress can handle both annotated and de novo identified splice junctions, thereby allowing the quantification of novel splice events. Moreover, DJExpress offers a web-compatible graphical interface allowing the analysis of user-provided data as well as the visualization of splice events within our custom database of differential junction expression in cancer (DJEC DB). DJEC DB includes not only healthy and tumor tissue junction expression data from TCGA and GTEx repositories but also cancer cell line data from the DepMap project. The integration of DepMap functional genomics data sets allows association of junction expression with molecular features such as gene dependencies and drug response profiles. This facilitates identification of cancer cell models for specific splicing alterations that can then be used for functional characterization in the lab. Thus, DJExpress represents a powerful and user-friendly tool for exploration of alternative splicing alterations in RNA-seq data, including multi-level data integration of alternative splicing signatures in healthy tissue, tumors and cancer cell lines.
Collapse
Affiliation(s)
| | - Jan Mauer
- *Correspondence: Lina Marcela Gallego-Paez, ; Jan Mauer,
| |
Collapse
|
19
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Maik-Rachline G, Wortzel I, Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021; 10:cells10123466. [PMID: 34943973 PMCID: PMC8699841 DOI: 10.3390/cells10123466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.
Collapse
|
21
|
Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, Xie W, Zhang Y, Xu N. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer 2021; 12:6715-6726. [PMID: 34659561 PMCID: PMC8518006 DOI: 10.7150/jca.62816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. MBNL2 is a member of the RNA binding protein MBNL family that is widely expressed in mammalian cells. We report here that MBNL2 is downregulated in breast, lung and liver cancer tissues, the promoter methylation levels of MBNL2 are higher in cancer tissues than normal tissues. The enrichment analysis of MBNL2 correlated genes indicates the potential function of MBNL2 on cancer progression. MBNL2 regulates cancer cell migration and invasion by modulating PI3K/AKT-mediated epithelial-mesenchymal transition. PI3K/AKT inhibitor overcomes the promotive effect of shMBNL2 on metastasis. The expression of MBNL2 is directly targeted by miR-182. miR-182 is upregulated in breast, lung and liver cancers and has good potential for cancer diagnosis. miR-182 promotes cancer cell migration and invasion by inhibiting the expression of MBNL2. Re-introduction of exogenous MBNL2 reverses the promotive effect of miR-182 on metastasis. Collectively, these findings suggest that MBNL2 plays a tumor suppressive function through miR-182-MBNL2-AKT-EMT signaling pathways.
Collapse
Affiliation(s)
- Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiao Li
- Department of Neurology, Wuhan Hankou Hospital, Wuhan 430010, China
| | - Jin Cai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
22
|
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an excessive number of immature lymphocytes, including immature precursors of both B- and T cells. ALL affects children more often than adults. Immature lymphocytes lead to arrested differentiation and proliferation of cells. Its conventional treatments involve medication with dexamethasone, vincristine, and other anticancer drugs. Although the current first-line drugs can achieve effective treatment, they still cannot prevent the recurrence of some patients with ALL. Treatments have high risk of recurrence especially after the first remission. Currently, novel therapies to treat ALL are in need. Autophagy and apoptosis play important roles in regulating cancer development. Autophagy involves degradation of proteins and organelles, and apoptosis leads to cell death. These phenomena are crucial in cancer progression. Past studies reported that many potential anticancer agents regulate intracellular signaling pathways. Methods: The authors discuss the recent research findings on the role of autophagy and apoptosis in ALL. Results: The autophagy and apoptosis are widely used in the treatment of ALL. Most studies showed that many agents regulate autophagy and apoptosis in ALL cell models, clinical trials, and ALL animal models. Conclusions: In summary, activating autophagy and apoptosis pathways are the main strategies for ALL treatments. For ALL, combining new drugs with traditional chemotherapy and glucocorticoids treatments can achieve the greatest therapeutic effect by activating autophagy and apoptosis.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.,Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
23
|
Zhang J, Goel A, Zhu L. Identification of Novel Alternative Splicing Events Associated With Tumorigenesis, Protein Modification, and Immune Microenvironment in Early-Onset Gastric Cancer. Front Oncol 2021; 11:640272. [PMID: 34168979 PMCID: PMC8217769 DOI: 10.3389/fonc.2021.640272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background Alternative splicing (AS), e.g. the tandem alternative polyadenylation (TAPA), has emerged as major post-transcriptional modification events in human disease. However, the roles of the AS and TAPA in early-onset gastric cancer (EOGC) have not been revealed. Methods The global AS profiles of 80 EOGC patients were analyzed. The EOGC-specific AS events (ESASs) were identified in both the EOGC and adjacent non-tumor tissues. The functional enrichment analysis, Splicing network, Alternative Polyadenylation (APA) core factor network, and cell abundancy analysis were performed. Furthermore, the landscapes of the AS events in the varied subtypes of the EOGC patients were evaluated. Results Overall, 66,075 AS events and 267 ESASs were identified in the EOGC. Furthermore, 4809 genes and 6152 gene isoforms were found to be aberrantly expressed in the EOGC. The Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses showed that the significant pathway alterations might exist in these AS events, genes, and gene isoforms. Moreover, the Protein-protein interaction (PPI) network analysis revealed that the UBC, NEK2, EPHB2, and DCTN1 genes were the hub genes in the AS events in the EOGC. The immune cell infiltration analysis indicated a correlation between the AS events and the cancer immune microenvironment. The distribution of the AS events in varied EOGC subtypes, protein phosphorylation and glycosylation was uneven. Conclusion The study highlighted the vital roles of the AS in the EOGC, including modulating the specific protein modification and reshaping the cancer immune microenvironment, and yielded new insights into the diagnosis of the EOGC as well as cancer treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ajay Goel
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Biomedical Research Center, Monrovia, CA, United States
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Ray D, Epstein DM. Tumorigenic de-differentiation: the alternative splicing way. Mol Cell Oncol 2020; 7:1809959. [PMID: 33235913 PMCID: PMC7671003 DOI: 10.1080/23723556.2020.1809959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanism of acquisition of tumorigenic properties by somatic cells at the onset of cancer and later during relapse is a question of paramount importance in cancer biology. We have recently discovered a Muscleblind like-1 (MBNL1)-driven alternative-splicing mediated mechanism of tumorigenic de-differentiation that is associated with poor prognosis, relapse and metastasis in common cancer types.
Collapse
Affiliation(s)
- Debleena Ray
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - David M Epstein
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|