1
|
Lobanova Y, Mazur A, Kaplun D, Prokchortchouk E, Zhenilo S. SUMOylation of TRIM28 is positively modulated by the BTB/POZ domain of Kaiso. Mol Biol Rep 2025; 52:153. [PMID: 39847191 DOI: 10.1007/s11033-025-10257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation. Here we investigate which structural elements of Kaiso are necessary for the hyper-SUMOylation of TRIM28. METHODS AND RESULTS We found that the SUMO-interacting motifs (SIMs) of Kaiso are not responsible for TRIM28 SUMOylation. The SUMOylation of individual TRIM28 domains in the presence of Kaiso was not observed, suggesting the importance of TRIM28's structural integrity for this process. The Kaiso BTB/POZ domain, but not its closest homolog ZBTB4, is sufficient for the effective hyper-SUMOylation of TRIM28. Also, using single-cell sequencing data of mouse embryos, we identified cells in which co-expression of Kaiso and TRIM28 occurs, including the immune system, nervous system and various epithelial cells. CONCLUSIONS BTB/POZ domain of Kaiso may function similarly to KRAB domains in its interaction with TRIM28 regulating its SUMOylation.
Collapse
Affiliation(s)
- Yaroslava Lobanova
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Alexander Mazur
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Daria Kaplun
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Egor Prokchortchouk
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Svetlana Zhenilo
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071.
| |
Collapse
|
2
|
Meng F, Li T, Singh AK, Wang Y, Attiyeh M, Kohram F, Feng Q, Li YR, Shen B, Williams T, Liu Y, Raoof M. Base-excision repair pathway regulates transcription-replication conflicts in pancreatic ductal adenocarcinoma. Cell Rep 2024; 43:114820. [PMID: 39368091 DOI: 10.1016/j.celrep.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.
Collapse
Affiliation(s)
- Fan Meng
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Tiane Li
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yingying Wang
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc Attiyeh
- Department of Surgery, Cedars Sinai, Los Angeles, CA, USA
| | - Fatemeh Kohram
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qianhua Feng
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun R Li
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yilun Liu
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
3
|
Zhao S, Zhao R, Wang C, Ma C, Gao Z, Li B, Qi Y, Qiu W, Pan Z, Wang S, Guo Q, Qiu J, Fan Y, Guo X, Xue H, Deng L, Li G. HDAC7 drives glioblastoma to a mesenchymal-like state via LGALS3-mediated crosstalk between cancer cells and macrophages. Theranostics 2024; 14:7072-7087. [PMID: 39629136 PMCID: PMC11610139 DOI: 10.7150/thno.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/04/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Glioblastoma multiforme (GBM) is an aggressive brain tumour for which current traditional treatment approaches have been unsuccessful, owing to the high genetic heterogeneity and immunosuppressive tumour microenvironment. Methods: Single-cell and spatial transcriptomic data revealed the niche-specific enrichment of mesenchymal-like (MES-like) GBM cells and monocyte-derived macrophages (MDMs); Gain- and loss-of-function assays of HDAC7 was confirmed both in vitro and in vivo assays. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted. Results: We found that HDAC7, which upregulated by TRIM28-mediated sumoylation at the protein levels, inhibited SOX8 expression by mediating H3K27 deacetylation. And the down-regulated SOX8 facilitated the transcriptional activity of JUN, to induce LGALS3 secretion, which then bind to the membrane protein ITGB1 on GSC and MDMs in the autocrine and paracrine manners to facilitate the transformation of the mesenchymal phenotype of GBM and the M2 polarization of MDMs, respectively. In turn, LGALS3 could also secreted by M2 MDMs to promote MES transition of GBM in a paracrine manner, creating a positive feedback loop. In translational medicine, we found that blocking LGALS3 improved the therapeutic sensitivity of HDAC inhibitors. Conclusions: Our findings revealed the role of the novel HDAC7-H3K27ac-SOX8/JUN-LGALS3-ITGB1 axis in maintaining the crosstalk between MES GBM and M2 MDM, highlighting that HDAC7 and LGALS3 may serve as potential prognostic biomarkers and therapeutic targets in GBM.
Collapse
Affiliation(s)
- Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Chuanzheng Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
- Department of Neurology, Loma Linda University Health, Loma Linda 92350, California, USA
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| |
Collapse
|
4
|
MacGilvary N, Cantor SB. Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer. DNA Repair (Amst) 2024; 144:103775. [PMID: 39461277 DOI: 10.1016/j.dnarep.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The mechanisms by which poly(ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi)s inflict replication stress and/or DNA damage are potentially numerous. PARPi toxicity could derive from loss of its catalytic activity and/or its physical trapping of PARP1 onto DNA that perturbs not only PARP1 function in DNA repair and DNA replication, but also obstructs compensating pathways. The combined disruption of PARP1 with either of the hereditary breast and ovarian cancer genes, BRCA1 or BRCA2 (BRCA), results in synthetic lethality. This has driven the development of PARP inhibitors as therapies for BRCA-mutant cancers. In this review, we focus on recent findings that highlight loss of PARP1 catalytic activity, rather than PARPi-induced allosteric trapping, as central to PARPi efficacy in BRCA deficient cells. However, we also review findings that PARP-trapping is an effective strategy in other genetic deficiencies. Together, we conclude that the mechanism-of-action of PARP inhibitors is not unilateral; with loss of activity or enhanced trapping differentially killing depending on the genetic context. Therefore, effectively targeting cancer cells requires an intricate understanding of their key underlying vulnerabilities.
Collapse
Affiliation(s)
- Nathan MacGilvary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Liu Z, Hu Q, Luo Q, Zhang G, Yang W, Cao K, Fang R, Wang R, Shi H, Zhang B. NUP37 accumulation mediated by TRIM28 enhances lipid synthesis to accelerate HCC progression. Oncogene 2024; 43:3255-3267. [PMID: 39294431 DOI: 10.1038/s41388-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Elevated intracellular lipid synthesis is important for hepatocellular carcinoma (HCC) progression. Our study aimed to identify the role of nucleoporin 37 (NUP37) in lipid synthesis and HCC progression. The expression of NUP37 was significantly upregulated in HCC and associated with a poor prognosis. NUP37 silencing suppressed lipid synthesis, proliferation, migration, and invasion of HCC cells in vitro, and restrained tumor growth in xenograft mouse models in vivo. Next, we found the high expression of NUP37 in HCC was related to post-translational modifications. Tripartite motif-containing 28 (TRIM28) was identified as an interacting protein of NUP37 and upregulated its protein level. The subsequent analysis revealed that TRIM28-mediated SUMOylation of NUP37 at Lys114/118/246 inhibited K27-linked polyubiquitination of NUP37, which is one reason for its high expression level in HCC. In conclusion, TRIM28 SUMOylates NUP37 to prevent its ubiquitination and proteasomal degradation, increasing the stability of the NUP37 protein, thereby promoting lipid synthesis and the progression of HCC.
Collapse
Affiliation(s)
- Zhiyi Liu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Luo
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weichao Yang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruqiao Fang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hengliang Shi
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bin Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Yang Y, Zhang Y, Chen G, Sun B, Luo F, Gao Y, Feng H, Li Y. KAP1 stabilizes MYCN mRNA and promotes neuroblastoma tumorigenicity by protecting the RNA m 6A reader YTHDC1 protein degradation. J Exp Clin Cancer Res 2024; 43:141. [PMID: 38745192 PMCID: PMC11092262 DOI: 10.1186/s13046-024-03040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.
Collapse
Affiliation(s)
- Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fei Luo
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yijin Gao
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| |
Collapse
|
8
|
Chen M, Shi P, Wang P, Zhang T, Zhao J, Zhao L. Up-regulation of Trim28 in pregnancy-induced hypertension is involved in the injury of human umbilical vein endothelial cells through the p38 signaling pathway. Histol Histopathol 2024; 39:603-610. [PMID: 37522419 DOI: 10.14670/hh-18-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
AIMS The present study is to analyze the regulation and potential molecular mechanism of Trim28 on vascular endothelial injury induced by pregnancy-induced hypertension (PIH). METHODS Trim28 mRNA in placental tissues and peripheral blood from PIH patients were determined by quantitative real-time polymerase chain reaction. The serum from PIH was used to stimulate human umbilical vein endothelial cells (HUVECs). After silencing Trim28 in HUVECs, we used CCK-8 assay, Transwell assay and flow cytometry to investigate proliferation, migration and apoptosis. Western blotting was used to measure Trim28 protein level and p38 phosphorylation level. After addition of p38 inhibitor, the proliferation, migration and apoptosis of HUVECs with silenced Trim28 were studied again. RESULTS Trim28 expression in placental tissues and peripheral blood from PIH patients is elevated, and serum from these patients can up-regulate the expression of Trim28 in HUVECs in vitro. Trim28 silencing significantly inhibits the proliferation and migration of HUVECs by affecting the cell cycle. Down-regulation of Trim28 expression promotes the apoptosis of HUVECs. Trim28 regulates the biological function of HUVECs by affecting the activity of the p38 signaling pathway. CONCLUSIONS The present study demonstrates that Trim28 is up-regulated in peripheral blood of patients with PIH and participates in HUVECs injury through the p38 signaling pathway.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Peng Shi
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Ping Wang
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Li Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China.
| |
Collapse
|
9
|
Bhachoo JS, Garvin AJ. SUMO and the DNA damage response. Biochem Soc Trans 2024; 52:773-792. [PMID: 38629643 PMCID: PMC11088926 DOI: 10.1042/bst20230862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The preservation of genome integrity requires specialised DNA damage repair (DDR) signalling pathways to respond to each type of DNA damage. A key feature of DDR is the integration of numerous post-translational modification signals with DNA repair factors. These modifications influence DDR factor recruitment to damaged DNA, activity, protein-protein interactions, and ultimately eviction to enable access for subsequent repair factors or termination of DDR signalling. SUMO1-3 (small ubiquitin-like modifier 1-3) conjugation has gained much recent attention. The SUMO-modified proteome is enriched with DNA repair factors. Here we provide a snapshot of our current understanding of how SUMO signalling impacts the major DNA repair pathways in mammalian cells. We highlight repeating themes of SUMO signalling used throughout DNA repair pathways including the assembly of protein complexes, competition with ubiquitin to promote DDR factor stability and ubiquitin-dependent degradation or extraction of SUMOylated DDR factors. As SUMO 'addiction' in cancer cells is protective to genomic integrity, targeting components of the SUMO machinery to potentiate DNA damaging therapy or exacerbate existing DNA repair defects is a promising area of study.
Collapse
Affiliation(s)
- Jai S. Bhachoo
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, U.K
| | - Alexander J. Garvin
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, U.K
| |
Collapse
|
10
|
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circ Res 2024; 134:203-222. [PMID: 38166414 PMCID: PMC10872267 DOI: 10.1161/circresaha.123.323398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.
Collapse
Affiliation(s)
- Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Sha Ding
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Kefan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Junbo Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Xiao Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Lingfeng Qin
- Department of Surgery, Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| |
Collapse
|
11
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
12
|
Ren J, Wang S, Zong Z, Pan T, Liu S, Mao W, Huang H, Yan X, Yang B, He X, Zhou F, Zhang L. TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence. Nat Commun 2024; 15:244. [PMID: 38172120 PMCID: PMC10764958 DOI: 10.1038/s41467-023-44502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Viruses, as opportunistic intracellular parasites, hijack the cellular machinery of host cells to support their survival and propagation. Numerous viral proteins are subjected to host-mediated post-translational modifications. Here, we demonstrate that the SARS-CoV-2 nucleocapsid protein (SARS2-NP) is SUMOylated on the lysine 65 residue, which efficiently mediates SARS2-NP's ability in homo-oligomerization, RNA association, liquid-liquid phase separation (LLPS). Thereby the innate antiviral immune response is suppressed robustly. These roles can be achieved through intermolecular association between SUMO conjugation and a newly identified SUMO-interacting motif in SARS2-NP. Importantly, the widespread SARS2-NP R203K mutation gains a novel site of SUMOylation which further increases SARS2-NP's LLPS and immunosuppression. Notably, the SUMO E3 ligase TRIM28 is responsible for catalyzing SARS2-NP SUMOylation. An interfering peptide targeting the TRIM28 and SARS2-NP interaction was screened out to block SARS2-NP SUMOylation and LLPS, and consequently inhibit SARS-CoV-2 replication and rescue innate antiviral immunity. Collectively, these data support SARS2-NP SUMOylation is critical for SARS-CoV-2 virulence, and therefore provide a strategy to antagonize SARS-CoV-2.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhi Zong
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Sijia Liu
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Mao
- Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huizhe Huang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Wang W, Matunis MJ. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2023; 13:8. [PMID: 38201212 PMCID: PMC10778024 DOI: 10.3390/cells13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.
Collapse
Affiliation(s)
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
14
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
15
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
16
|
Xu H, Akinyemi IA, Haley J, McIntosh MT, Bhaduri-McIntosh S. ATM, KAP1 and the Epstein-Barr virus polymerase processivity factor direct traffic at the intersection of transcription and replication. Nucleic Acids Res 2023; 51:11104-11122. [PMID: 37852757 PMCID: PMC10639065 DOI: 10.1093/nar/gkad823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The timing of transcription and replication must be carefully regulated for heavily-transcribed genomes of double-stranded DNA viruses: transcription of immediate early/early genes must decline as replication ramps up from the same genome-ensuring efficient and timely replication of viral genomes followed by their packaging by structural proteins. To understand how the prototypic DNA virus Epstein-Barr virus tackles the logistical challenge of switching from transcription to DNA replication, we examined the proteome at viral replication forks. Specifically, to transition from transcription, the viral DNA polymerase-processivity factor EA-D is SUMOylated by the epigenetic regulator and E3 SUMO-ligase KAP1/TRIM28. KAP1's SUMO2-ligase function is triggered by phosphorylation via the PI3K-related kinase ATM and the RNA polymerase II-associated helicase RECQ5 at the transcription machinery. SUMO2-EA-D then recruits the histone loader CAF1 and the methyltransferase SETDB1 to silence the parental genome via H3K9 methylation, prioritizing replication. Thus, a key viral protein and host DNA repair, epigenetic and transcription-replication interference pathways orchestrate the handover from transcription-to-replication, a fundamental feature of DNA viruses.
Collapse
Affiliation(s)
- Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - John Haley
- Department of Pathology and Stony Brook Proteomics Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Mo C, Shiozaki Y, Omabe K, Liu Y. Understanding the Human RECQ5 Helicase-Connecting the Dots from DNA to Clinics. Cells 2023; 12:2037. [PMID: 37626846 PMCID: PMC10453775 DOI: 10.3390/cells12162037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
RECQ5, a member of the conserved RECQ helicase family, is the sole human RECQ homolog that has not been linked to a hereditary developmental syndrome. Nonetheless, dysregulation of RECQ5 has emerged as a significant clinical concern, being linked to cancer predisposition, cardiovascular disease, and inflammation. In cells, RECQ5 assumes a crucial role in the regulation of DNA repair pathways, particularly in the repair of DNA double-strand breaks and inter-strand DNA crosslinks. Moreover, RECQ5 exhibits a capacity to modulate gene expression by interacting with transcription machineries and their co-regulatory proteins, thus safeguarding against transcription-induced DNA damage. This review aims to provide an overview of the multifaceted functions of RECQ5 and its implications in maintaining genomic stability. We will discuss the potential effects of clinical variants of RECQ5 on its cellular functions and their underlying mechanisms in the pathogenesis of cancer and cardiovascular disease. We will review the impact of RECQ5 variants in the field of pharmacogenomics, specifically their influence on drug responses, which may pave the way for novel therapeutic interventions targeting RECQ5 in human diseases.
Collapse
Affiliation(s)
| | | | | | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| |
Collapse
|
19
|
Cui Z, Zhou L, Zhao S, Li W, Li J, Chen J, Zhang Y, Xia P. The Host E3-Ubiquitin Ligase TRIM28 Impedes Viral Protein GP4 Ubiquitination and Promotes PRRSV Replication. Int J Mol Sci 2023; 24:10965. [PMID: 37446143 DOI: 10.3390/ijms241310965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a highly pathogenic porcine virus that brings tremendous economic losses to the global swine industry. PRRSVs have evolved multiple elegant strategies to manipulate the host proteins and circumvent against the antiviral responses to establish infection. Therefore, the identification of virus-host interactions is critical for understanding the pathogenesis of PRRSVs. Tripartite motif protein 28 (TRIM28) is a transcriptional co-repressor involved in the regulation of viral and cellular transcriptional programs; however, its precise role in regulating PRRSV infection remains unknown. In this study, we found that the mRNA and protein levels of TRIM28 were up-regulated in PRRSV-infected porcine alveolar macrophages (PAMs) and MARC-145 cells. Ectopic TRIM28 expression dramatically increased viral yields, whereas the siRNA-mediated knockdown of TRIM28 significantly inhibited PRRSV replication. Furthermore, we used a co-immunoprecipitation (co-IP) assay to demonstrate that TRIM28 interacted with envelope glycoprotein 4 (GP4) among PRRSV viral proteins. Intriguingly, TRIM28 inhibited the degradation of PRRSV GP4 by impeding its ubiquitination. Taken together, our work provides evidence that the host E3-ubiquitin ligase TRIM28 suppresses GP4 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM28, as a potential target in the development of anti-viral drugs against PRRSV.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jiahui Li
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
20
|
Li C, Boutet A, Pascariu CM, Nelson T, Courcelles M, Wu Z, Comtois-Marotte S, Emery G, Thibault P. SUMO Proteomics Analyses Identify Protein Inhibitor of Activated STAT-Mediated Regulatory Networks Involved in Cell Cycle and Cell Proliferation. J Proteome Res 2023; 22:812-825. [PMID: 36723483 PMCID: PMC9990128 DOI: 10.1021/acs.jproteome.2c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein inhibitor of activated STAT (PIAS) proteins are E3 SUMO ligases playing important roles in protein stability and signaling transduction pathways. PIAS proteins are overexpressed in the triple-negative breast cancer cell line MDA-MB-231, and PIAS knockout (KO) results in a reduction in cell proliferation and cell arrest in the S phase. However, the molecular mechanisms underlying PIAS functions in cell proliferation and cell cycle remain largely unknown. Here, we used quantitative SUMO proteomics to explore the regulatory role of PIAS SUMO E3 ligases upon CRISPR/Cas9 KO of individual PIAS. A total of 1422 sites were identified, and around 10% of SUMO sites were regulated following KO of one or more PIAS genes. We identified protein substrates that were either specific to individual PIAS ligase or regulated by several PIAS ligases. Ki-67 and TOP2A, which are involved in cell proliferation and epithelial-to-mesenchymal transition, are SUMOylated at several lysine residues by all PIAS ligases, suggesting a level of redundancy between these proteins. Confocal microscopy and biochemical experiments revealed that SUMOylation regulated TOP2A protein stability, while this modification is involved in the recruitment of Ki-67 nucleolar proteins containing the SUMO interacting motif. These results provide novel insights into both the redundant and specific regulatory mechanisms of cell proliferation and cell cycle mediated by PIAS SUMO E3 ligases.
Collapse
Affiliation(s)
- Chongyang Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Alison Boutet
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Molecular Biology program, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Cristina Mirela Pascariu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Trent Nelson
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Molecular Biology program, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Zhaoguan Wu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Simon Comtois-Marotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Molecular Biology program, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
21
|
Sun H, Ma L, Tsai YF, Abeywardana T, Shen B, Zheng L. Okazaki fragment maturation: DNA flap dynamics for cell proliferation and survival. Trends Cell Biol 2023; 33:221-234. [PMID: 35879148 PMCID: PMC9867784 DOI: 10.1016/j.tcb.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ya-Fang Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Tharindu Abeywardana
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Lobanova Y, Filonova G, Kaplun D, Zhigalova N, Prokhortchouk E, Zhenilo S. TRIM28 regulates transcriptional activity of methyl-DNA binding protein Kaiso by SUMOylation. Biochimie 2023; 206:73-80. [PMID: 36252888 DOI: 10.1016/j.biochi.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
Kaiso is a methyl DNA binding transcriptional factor involved in cell cycle control, WNT signaling, colon inflammation, and cancer progression. Recently, it was shown that SUMOylation dynamically modulates the transcriptional activity of Kaiso. However, factors involved in SUMOylation of Kaiso are unknown. Here we show that TRIM28 enhances SUMOylation of Kaiso leading to a decreased methyl-dependent repression ability. TRIM28 is a scaffold protein that regulates transcription and posttranslational modifications of factors involved in cell cycle progression, DNA damage, and viral gene expression. It has SUMO and ubiquitin E3 ligase activity. Here, we defined the domains involved in Kaiso-TRIM28 interaction. The RBCC domain of TRIM28 interacts with the BTB/POZ domain and the zinc fingers of Kaiso. The PHD-bromodomain of TRIM28 is sufficient for the interaction with zinc fingers of Kaiso. Additionally, we found that Kaiso enhances SUMOylation of TRIM28. Altogether our data suggest self-enhancement of SUMOylation of both Kaiso and TRIM28 that affects transcriptional activity of Kaiso.
Collapse
Affiliation(s)
- Y Lobanova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - G Filonova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - D Kaplun
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - N Zhigalova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - E Prokhortchouk
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - S Zhenilo
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
| |
Collapse
|
23
|
Hashemabadi M, Sasan H, Amandadi M, Esmaeilzadeh-Salestani K, Esmaeili-Mahani S, Ravan H. CRISPR/Cas9-Mediated Disruption of ZNF543 Gene: An Approach Toward Discovering Its Relation to TRIM28 Gene in Parkinson's Disease. Mol Biotechnol 2023; 65:243-251. [PMID: 35467255 DOI: 10.1007/s12033-022-00494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/08/2022] [Indexed: 01/18/2023]
Abstract
Genetic studies of familial forms of Parkinson's disease (PD) have shown that the ZNF543 gene is a candidate gene that operates relevant to this disease. However, until now, there is no evidence for ZNF543 gene function in PD, and mechanisms resulting from its mutation have not been elucidated. Given the same genetic location of the ZNF543 gene with TRIM28 and their effects on PD pathogenesis, we surmised that ZNF543 might act as a transcription factor for TRIM28 gene expression. By knocking out the ZNF543 gene via the CRISPR/Cas9 editing platform, we assessed the functional effect of loss of expression of this gene on TRIM28 gene expression. Four sgRNAs with different PAM sequences were designed against two parts of the regulatory region of ZNF543 gene, and highly efficient disruption of ZNF543 expression in human neuroblastoma cell line was evaluated by polymerase chain reaction and T7 endonuclease assay. Moreover, evaluation of TRIM28 gene expression in ZNF543-knocked-out cells indicated a significant increase in TRIM28 gene expression, suggesting that ZNF543 probably regulates the expression of TRIM28. This approach offers a window into pinpointing the mechanism by which ZNF543 gene mutations mediate PD pathogenicity.
Collapse
Affiliation(s)
- Mohammad Hashemabadi
- Department of Genetic, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hosseinali Sasan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
24
|
Pérez Berrocal DA, van der Heden van Noort GJ, Mulder MPC. Chemical Synthesis of Non-hydrolyzable Ubiquitin(-Like) Hybrid Chains. Methods Mol Biol 2023; 2602:41-49. [PMID: 36446965 DOI: 10.1007/978-1-0716-2859-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid chains are a combination of ubiquitin (Ub) and Ub-like (UbL) proteins, expanding on the finely tuned Ub code. To decipher this intricate code, understanding of its assembly, architecture, as well as specific interactors of these Ub/UbL hybrid chains are important, warranting the development of suitable reagents. Here, we describe the chemical methodology to access linkage specific non-hydrolyzable Ub-NEDD8-based chains endowed with an affinity handle in all possible combinations of K48 hybrid chain dimers between Ub and NEDD8.
Collapse
Affiliation(s)
- David A Pérez Berrocal
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Monique P C Mulder
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
25
|
Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, Shao ZM, Li DQ. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics 2023; 13:973-990. [PMID: 36793866 PMCID: PMC9925317 DOI: 10.7150/thno.79688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: SUMOylation regulates a plethora of biological processes, and its inhibitors are currently under investigation in clinical trials as anticancer agents. Thus, identifying new targets with site-specific SUMOylation and defining their biological functions will not only provide new mechanistic insights into the SUMOylation signaling but also open an avenue for developing new strategy for cancer therapy. MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme with an emerging role in the DNA damage response (DDR), but its regulatory mechanism remains enigmatic. Methods: In vivo and in vitro SUMOylation assays were used to determine the SUMOylation levels of MORC2. Overexpression and knockdown of SUMO-associated enzymes were used to detect their effects on MORC2 SUMOylation. The effect of dynamic MORC2 SUMOylation on the sensitivity of breast cancer cells to chemotherapeutic drugs was examined through in vitro and in vivo functional assays. Immunoprecipitation, GST pull-down, MNase, and chromatin segregation assays were used to explore the underlying mechanisms. Results: Here, we report that MORC2 is modified by small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 at lysine 767 (K767) in a SUMO-interacting motif dependent manner. MORC2 SUMOylation is induced by SUMO E3 ligase tripartite motif containing 28 (TRIM28) and reversed by deSUMOylase sentrin-specific protease 1 (SENP1). Intriguingly, SUMOylation of MORC2 is decreased at the early stage of DNA damage induced by chemotherapeutic drugs that attenuate the interaction of MORC2 with TRIM28. MORC2 deSUMOylation induces transient chromatin relaxation to enable efficient DNA repair. At the relatively late stage of DNA damage, MORC2 SUMOylation is restored, and SUMOylated MORC2 interacts with protein kinase CSK21 (casein kinase II subunit alpha), which in turn phosphorylates DNA-PKcs (DNA-dependent protein kinase catalytic subunit), thus promoting DNA repair. Notably, expression of a SUMOylation-deficient mutant MORC2 or administration of SUMO inhibitor enhances the sensitivity of breast cancer cells to DNA-damaging chemotherapeutic drugs. Conclusions: Collectively, these findings uncover a novel regulatory mechanism of MORC2 by SUMOylation and reveal the intricate dynamics of MORC2 SUMOylation important for proper DDR. We also propose a promising strategy to sensitize MORC2-driven breast tumors to chemotherapeutic drugs by inhibition of the SUMO pathway.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Dufour D, Dumontet T, Sahut-Barnola I, Carusi A, Onzon M, Pussard E, Wilmouth JJ, Olabe J, Lucas C, Levasseur A, Damon-Soubeyrand C, Pointud JC, Roucher-Boulez F, Tauveron I, Bossis G, Yeh ET, Breault DT, Val P, Lefrançois-Martinez AM, Martinez A. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat Commun 2022; 13:7858. [PMID: 36543805 PMCID: PMC9772323 DOI: 10.1038/s41467-022-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.
Collapse
Affiliation(s)
- Damien Dufour
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Typhanie Dumontet
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Sahut-Barnola
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aude Carusi
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Méline Onzon
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Eric Pussard
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Physiologie et Physiopathologie Endocriniennes, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - James Jr Wilmouth
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Julie Olabe
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécily Lucas
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Adrien Levasseur
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Christelle Damon-Soubeyrand
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Jean-Christophe Pointud
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Florence Roucher-Boulez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Igor Tauveron
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Service d'Endocrinologie, Centre Hospitalier Universitaire Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Edward T Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pierre Val
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne-Marie Lefrançois-Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Antoine Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
27
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
28
|
Asimaki E, Petriukov K, Renz C, Meister C, Ulrich HD. Fast friends - Ubiquitin-like modifiers as engineered fusion partners. Semin Cell Dev Biol 2022; 132:132-145. [PMID: 34840080 PMCID: PMC9703124 DOI: 10.1016/j.semcdb.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Ubiquitin and its relatives are major players in many biological pathways, and a variety of experimental tools based on biological chemistry or protein engineering is available for their manipulation. One popular approach is the use of linear fusions between the modifier and a protein of interest. Such artificial constructs can facilitate the understanding of the role of ubiquitin in biological processes and can be exploited to control protein stability, interactions and degradation. Here we summarize the basic design considerations and discuss the advantages as well as limitations associated with their use. Finally, we will refer to several published case studies highlighting the principles of how they provide insight into pathways ranging from membrane protein trafficking to the control of epigenetic modifications.
Collapse
|
29
|
Rossitto M, Déjardin S, Rands CM, Le Gras S, Migale R, Rafiee MR, Neirijnck Y, Pruvost A, Nguyen AL, Bossis G, Cammas F, Le Gallic L, Wilhelm D, Lovell-Badge R, Boizet-Bonhoure B, Nef S, Poulat F. TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nat Commun 2022; 13:4412. [PMID: 35906245 PMCID: PMC9338040 DOI: 10.1038/s41467-022-32061-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
Collapse
Affiliation(s)
- Moïra Rossitto
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Stephanie Déjardin
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Chris M Rands
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Stephanie Le Gras
- GenomEast platform, IGBMC, 1, rue Laurent Fries, 67404 ILLKIRCH Cedex, Illkirch-Graffenstaden, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London, NW1 2 1AT, UK
| | | | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Alain Pruvost
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lionel Le Gallic
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France.
| |
Collapse
|
30
|
Imbert F, Leavitt G, Langford D. SUMOylation and Viral Infections of the Brain. Pathogens 2022; 11:818. [PMID: 35890062 PMCID: PMC9324588 DOI: 10.3390/pathogens11070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) system regulates numerous biological processes, including protein localization, stability and/or activity, transcription, and DNA repair. SUMO also plays critical roles in innate immunity and antiviral defense by mediating interferon (IFN) synthesis and signaling, as well as the expression and function of IFN-stimulated gene products. Viruses including human immunodeficiency virus-1, Zika virus, herpesviruses, and coronaviruses have evolved to exploit the host SUMOylation system to counteract the antiviral activities of SUMO proteins and to modify their own proteins for viral persistence and pathogenesis. Understanding the exploitation of SUMO is necessary for the development of effective antiviral therapies. This review summarizes the interplay between viruses and the host SUMOylation system, with a special emphasis on viruses with neuro-invasive properties that have pathogenic consequences on the central nervous system.
Collapse
Affiliation(s)
| | | | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (F.I.); (G.L.)
| |
Collapse
|
31
|
Wang W, Yan T, Guo X, Cai H, Liang C, Huang L, Wang Y, Ma P, Qi S. KAP1 phosphorylation promotes the survival of neural stem cells after ischemia/reperfusion by maintaining the stability of PCNA. Stem Cell Res Ther 2022; 13:290. [PMID: 35799276 PMCID: PMC9264526 DOI: 10.1186/s13287-022-02962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Aims To explore the function of phosphorylation of KAP1 (p-KAP1) at the serine-824 site (S824) in the proliferation and apoptosis of endogenous neural stem cells (NSCs) after cerebral ischemic/reperfusion (I/R). Methods The apoptosis and proliferation of C17.2 cells transfected with the p-KAP1-expression plasmids and the expression of proliferation cell nuclear antigen (PCNA) and p-KAP1 were detected by immunofluorescence and Western blotting after the Oxygen Glucose deprivation/reperfusion model (OGD/R). The interaction of p-KAP1 and CUL4A with PCNA was analyzed by immunoprecipitation. In the rats MCAO model, we performed the adeno-associated virus (AAV) 2/9 gene delivery of p-KAP1 mutants to verify the proliferation of endogenous NSCs and the colocalization of PCNA and CUL4A by immunofluorescence. Results The level of p-KAP1 was significantly down-regulated in the stroke model in vivo and in vitro. Simulated p-KAP1(S824) significantly increased the proliferation of C17.2 cells and the expression of PCNA after OGD/R. Simulated p-KAP1(S824) enhanced the binding of p-KAP1 and PCNA and decreased the interaction between PCNA and CUL4A in C17.2 cells subjected to OGD/R. The AAV2/9-mediated p-KAP1(S824) increased endogenous NSCs proliferation, PCNA expression, p-KAP1 binding to PCNA, and improved neurological function in the rat MCAO model. Conclusions Our findings confirmed that simulated p-KAP1(S824) improved the survival and proliferation of endogenous NSCs. The underlying mechanism is that highly expressed p-KAP1(S824) promotes binding to PCNA, and inhibits the binding of CUL4A to PCNA. This reduced CUL4A-mediated ubiquitination degradation to increase the stability of PCNA and promote the survival and proliferation of NSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02962-5.
Collapse
Affiliation(s)
- Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Tianqing Yan
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinjian Guo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Heng Cai
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang Liang
- School of Basic Medical Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanling Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ping Ma
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China. .,Pharmacology College, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
32
|
Lorenzini E, Torricelli F, Zamponi R, Donati B, Manicardi V, Sauta E, Faria do Valle I, Reggiani F, Gugnoni M, Manzotti G, Fragliasso V, Vitale E, Piana S, Sancisi V, Ciarrocchi A. KAP1 is a new non-genetic vulnerability of malignant pleural mesothelioma (MPM). NAR Cancer 2022; 4:zcac024. [PMID: 35910692 PMCID: PMC9336180 DOI: 10.1093/narcan/zcac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients’ survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.
Collapse
Affiliation(s)
- Eugenia Lorenzini
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Cellular and Molecular Biology PhD Program, University of Bologna, 40126 Bologna , Italy
| | - Federica Torricelli
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Raffaella Zamponi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia , 41121 Modena , Italy
| | - Elisabetta Sauta
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavi, , 27100 Pavia , Italy
| | - Italo Faria do Valle
- Department of Physics, Center for Complex Network Research, Northeastern University , Boston , MA 02115 , USA
| | - Francesca Reggiani
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia , 41121 Modena , Italy
| | - Simonetta Piana
- Pathology Unit , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research , Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
33
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
34
|
Retinitis pigmentosa 2 pathogenic mutants degrade through BAG6/HUWE1 complex. Exp Eye Res 2022; 220:109110. [DOI: 10.1016/j.exer.2022.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
|
35
|
Shah PA, Boutros-Suleiman S, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The Emerging Role of E3 Ubiquitin Ligase SMURF2 in the Regulation of Transcriptional Co-Repressor KAP1 in Untransformed and Cancer Cells and Tissues. Cancers (Basel) 2022; 14:cancers14071607. [PMID: 35406379 PMCID: PMC8997158 DOI: 10.3390/cancers14071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary KAP1 plays an essential role in different molecular and cellular processes central to carcinogenesis, disease progression, and treatment response, revealing both tumor promoting and anticancer functions. The mechanisms that control the steady-state levels of KAP1 and its protein abundance are not well known. Our findings show that SMURF2, a ubiquitously-expressed HECT-type E3 ubiquitin ligase with suggested anticancer activities, is capable to directly bind, ubiquitinate, and regulate KAP1 expression levels in non-cancerous and tumor cells and tissues. The data further show that SMURF2 has a significant influence on KAP1 interactome, regulating its protein–protein interactions and functions in a catalytically-dependent manner. These findings reveal SMURF2 as a pivotal regulator of KAP1, laying a foundation for the investigation of the role of the SMURF2–KAP1 axis in carcinogenic processes and therapeutic responses to anticancer treatment. Abstract KAP1 is an essential nuclear factor acting as a scaffold for protein complexes repressing transcription. KAP1 plays fundamental role in normal and cancer cell biology, affecting cell proliferation, DNA damage response, genome integrity maintenance, migration and invasion, as well as anti-viral and immune response. Despite the foregoing, the mechanisms regulating KAP1 cellular abundance are poorly understood. In this study, we identified the E3 ubiquitin ligase SMURF2 as an important regulator of KAP1. We show that SMURF2 directly interacts with KAP1 and ubiquitinates it in vitro and in the cellular environment in a catalytically-dependent manner. Interestingly, while in the examined untransformed cells, SMURF2 mostly exerted a negative impact on KAP1 expression, a phenomenon that was also monitored in certain Smurf2-ablated mouse tissues, in tumor cells SMURF2 stabilized KAP1. This stabilization relied on the unaltered E3 ubiquitin ligase function of SMURF2. Further investigations showed that SMURF2 regulates KAP1 post-translationally, interfering with its proteasomal degradation. The conducted immunohistochemical studies showed that the reciprocal relationship between the expression of SMURF2 and KAP1 also exists in human normal and breast cancer tissues and suggested that this relationship may be disrupted by the carcinogenic process. Finally, through stratifying KAP1 interactome in cells expressing either SMURF2 wild-type or its E3 ligase-dead form, we demonstrate that SMURF2 has a profound impact on KAP1 protein–protein interactions and the associated functions, adding an additional layer in the SMURF2-mediated regulation of KAP1. Cumulatively, these findings uncover SMURF2 as a novel regulator of KAP1, governing its protein expression, interactions, and functions.
Collapse
Affiliation(s)
- Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
- Correspondence:
| |
Collapse
|
36
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
37
|
Sengupta A, Nanda M, Tariq SB, Kiesel T, Perlmutter K, Vigodner M. Sumoylation and its regulation in testicular Sertoli cells. Biochem Biophys Res Commun 2021; 580:56-62. [PMID: 34624570 PMCID: PMC8556874 DOI: 10.1016/j.bbrc.2021.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
The molecular regulation of Sertoli cells and their crosstalk with germ cells has not been fully characterized. SUMO proteins are essential for normal development and are expressed in mouse and human Sertoli cells; However, the cell-specific role of sumoylation in those cells has only started to be elucidated. In other cell types, including granulosa cells, sumoylation is regulated by a SUMO ligase KAP1/Trim28. Deletion of KAP1 in Sertoli cells causes testicular degeneration; However, the role of KAP1 in those cells has not been identified. Here we show that both mouse and human Sertoli undergo apoptosis upon inhibition of sumoylation with a chemical inhibitor or via a siRNA technology. We have additionally detected changes in the Sertoli cell proteome upon the inhibition of sumoylation, and our data suggest that among others, the expression of ER/stress-related proteins is highly affected by this inhibition. Sumoylation may also regulate the NOTCH signaling which is important for the maintenance of the developing germ cells. Furthermore, we show that a siRNA-down-regulation of KAP1 in a Sertoli-derived cell line causes an almost complete inactivation of sumoylation. In conclusion, sumoylation regulates important survival and signaling pathways in Sertoli cells, and KAP1 can be a major regulator of sumoylation in these cells.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Manveet Nanda
- Biotechnology Management and Entrepreneurship Program, Katz School of Science and Health, Yeshiva University, New York, NY, 10016, USA
| | - Shanza Baseer Tariq
- Biotechnology Management and Entrepreneurship Program, Katz School of Science and Health, Yeshiva University, New York, NY, 10016, USA
| | - Tania Kiesel
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Kayla Perlmutter
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
38
|
Zhang S, Zhou T, Wang Z, Yi F, Li C, Guo W, Xu H, Cui H, Dong X, Liu J, Song X, Cao L. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int J Biol Sci 2021; 17:4047-4059. [PMID: 34671219 PMCID: PMC8495385 DOI: 10.7150/ijbs.64628] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.
Collapse
Affiliation(s)
- Siyi Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Tingting Zhou
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Fei Yi
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Chunlu Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Wendong Guo
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongyan Cui
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiang Dong
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Jingwei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
39
|
Cesaro E, Lupo A, Rapuano R, Pastore A, Grosso M, Costanzo P. ZNF224 Protein: Multifaceted Functions Based on Its Molecular Partners. Molecules 2021; 26:molecules26206296. [PMID: 34684876 PMCID: PMC8537547 DOI: 10.3390/molecules26206296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Roberta Rapuano
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| |
Collapse
|
40
|
Lee SY, Kim JJ, Miller KM. Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp Mol Med 2021; 53:1268-1277. [PMID: 34548613 PMCID: PMC8492697 DOI: 10.1038/s12276-021-00673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA–RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage. Bromodomain (BRD) proteins, known to regulate gene expression, switching particular genes on and off, also play key roles in repairing DNA damage, and studying them may help identify treatments for various diseases, including cancer. DNA damage can occur during normal cellular metabolism, for example, during copying DNA and gene expression. DNA damage is implicated in tumor formation as well as in neurodegeneration, immunodeficiency, and aging. Seo Yun Lee and colleagues at The University of Texas at Austin, USA, have reviewed new results showing how BRD proteins function in repairing DNA damage. They report that when DNA is damaged during copying in BRD-deficient cells, tumors can result. They also report that defects in BRD proteins are often present in cancers. Studying how BRD proteins function in both healthy and diseased cells could help to identify new therapies.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Korea.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
42
|
Wang C, Songyang Z, Huang Y. TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. Cell Biosci 2021; 11:149. [PMID: 34330324 PMCID: PMC8325274 DOI: 10.1186/s13578-021-00660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background About 10–15% of tumor cells extend telomeres through the alternative lengthening of telomeres (ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored. Results Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, thus maintaining the H3K9me3 heterochromatin state of telomere DNA. Conclusions Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00660-y.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|