1
|
Li J, Xing H, Liu K, Fan N, Xu K, Zhao H, Jiao D, Wei T, Cheng W, Guo J, Zhang X, Zhu F, Bu Z, Zhao D, Wang W, Wei HJ. Dysfunction of Complementarity Determining Region 1 Encoded by T Cell Receptor Beta Variable Gene Is Potentially Associated with African Swine Fever Virus Infection in Pigs. Microorganisms 2024; 12:1113. [PMID: 38930494 PMCID: PMC11205859 DOI: 10.3390/microorganisms12061113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.
Collapse
Affiliation(s)
- Jiayu Li
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Huiyan Xing
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Liu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Kaixiang Xu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Taiyun Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjie Cheng
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Xiong Zhang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Feiyan Zhu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.B.); (D.Z.)
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.B.); (D.Z.)
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Knowles C, Petrie L, Warren C, Lillico SG, Carlisle A, Whitelaw CBA, Kolb AF. Site specific insertion of a transgene into the murine α-casein (CSN1S1) gene results in the predictable expression of a recombinant protein in milk. Biotechnol J 2024; 19:e2300287. [PMID: 38047759 DOI: 10.1002/biot.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.
Collapse
Affiliation(s)
- Christopher Knowles
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. Int J Biol Macromol 2023; 253:127055. [PMID: 37758106 DOI: 10.1016/j.ijbiomac.2023.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Xuan Y, Petersen B, Liu P. Human and Pig Pluripotent Stem Cells: From Cellular Products to Organogenesis and Beyond. Cells 2023; 12:2075. [PMID: 37626885 PMCID: PMC10453631 DOI: 10.3390/cells12162075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pluripotent stem cells (PSCs) are important for studying development and hold great promise in regenerative medicine due to their ability to differentiate into various cell types. In this review, we comprehensively discuss the potential applications of both human and pig PSCs and provide an overview of the current progress and challenges in this field. In addition to exploring the therapeutic uses of PSC-derived cellular products, we also shed light on their significance in the study of interspecies chimeras, which has led to the creation of transplantable human or humanized pig organs. Moreover, we emphasize the importance of pig PSCs as an ideal cell source for genetic engineering, facilitating the development of genetically modified pigs for pig-to-human xenotransplantation. Despite the achievements that have been made, further investigations and refinement of PSC technologies are necessary to unlock their full potential in regenerative medicine and effectively address critical healthcare challenges.
Collapse
Affiliation(s)
- Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, 31535 Neustadt am Rübenberge, Germany;
| | - Pentao Liu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Center for Translational Stem Cell Biology, Hong Kong, China
| |
Collapse
|
5
|
Oviduct Epithelial Cell-Derived Extracellular Vesicles Improve Porcine Trophoblast Outgrowth. Vet Sci 2022; 9:vetsci9110609. [DOI: 10.3390/vetsci9110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine species have a great impact on studies on biomaterial production, organ transplantation and the development of biomedical models. The low efficiency of in vitro-produced embryos to derive embryonic stem cells has made achieving this goal a challenge. The fallopian tube plays an important role in the development of embryos. Extracellular vesicles (EVs) secreted by oviductal epithelial cells play an important role in the epigenetic regulation of embryo development. We used artificially isolated oviductal epithelial cells and EVs. In this study, oviductal epithelial cell (OEC) EVs were isolated and characterized through transmission electron microscopy, nanoparticles tracking analysis, western blotting and proteomics. We found that embryo development and blastocyst formation rate was significantly increased (14.3% ± 0.6% vs. 6.0% ± 0.6%) after OEC EVs treatment. According to our data, the inner cell mass (ICM)/trophectoderm (TE) ratio of the embryonic cell number increased significantly after OEC EVs treatment (43.7% ± 2.3% vs. 28.4% ± 2.1%). Meanwhile, the attachment ability of embryos treated with OEV EVs was significantly improved (43.5% ± 2.1% vs. 29.2% ± 2.5%, respectively). Using quantitative polymerase chain reaction (qPCR), we found that the expression of reprogramming genes (POU5F1, SOX2, NANOG, KLF4 and c-Myc) and implantation-related genes (VIM, KRT8, TEAD4 and CDX2) significantly increased in OEC EV-treated embryos. We report that OEC EV treatment can improve the development and implantation abilities of embryos.
Collapse
|
6
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
7
|
Swier VJ, White KA, Johnson TB, Sieren JC, Johnson HJ, Knoernschild K, Wang X, Rohret FA, Rogers CS, Pearce DA, Brudvig JJ, Weimer JM. A Novel Porcine Model of CLN2 Batten Disease that Recapitulates Patient Phenotypes. Neurotherapeutics 2022; 19:1905-1919. [PMID: 36100791 PMCID: PMC9723024 DOI: 10.1007/s13311-022-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Collapse
Affiliation(s)
- Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kevin Knoernschild
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | | | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
8
|
A New Long Noncoding RNA, MAHAT, Inhibits Replication of Porcine Reproductive and Respiratory Syndrome Virus by Recruiting DDX6 To Bind to ZNF34 and Promote an Innate Immune Response. J Virol 2022; 96:e0115422. [PMID: 36073922 PMCID: PMC9517731 DOI: 10.1128/jvi.01154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have increasingly been recognized as being integral to cellular processes, including the antiviral immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is costly to the global swine industry. To identify PRRSV-related lncRNAs, we performed RNA deep sequencing and compared the profiles of lncRNAs in PRRSV-infected and uninfected Marc-145 cells. We identified a novel lncRNA called MAHAT (maintaining cell morphology-associated and highly conserved antiviral transcript; LTCON_00080558) that inhibits PRRSV replication. MAHAT binds and negatively regulates ZNF34 expression by recruiting and binding DDX6, an RNA helicase forming a complex with ZNF34. Inhibition of ZNF34 expression results in increased type I interferon expression and decreased PRRSV replication. This finding reveals a novel mechanism by which PRRSV evades the host antiviral innate immune response by downregulating the MAHAT-DDX6-ZNF34 pathway. MAHAT could be a host factor target for antiviral therapies against PRRSV infection. IMPORTANCE Long noncoding RNAs (lncRNAs) play important roles in viral infection by regulating the transcription and expression of host genes, and interferon signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses in the swine industry worldwide, but the mechanisms of its pathogenesis and immunology are not fully understood. Here, a new lncRNA, designated MAHAT, was identified as a regulator of host innate immune responses. MAHAT negatively regulates the expression of its target gene, ZNF34, by recruiting and binding DDX6, an RNA helicase, forming a complex with ZNF34. Inhibition of ZNF34 expression increases type I interferon expression and decreases PRRSV replication. This finding suggests that MAHAT has potential as a new target for developing antiviral drugs against PRRSV infection.
Collapse
|
9
|
Kavarana S, Kwon JH, Zilinskas K, Kang L, Turek JW, Mohiuddin MM, Rajab TK. Recent advances in porcine cardiac xenotransplantation: from aortic valve replacement to heart transplantation. Expert Rev Cardiovasc Ther 2022; 20:597-608. [PMID: 35818712 DOI: 10.1080/14779072.2022.2100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cardiac xenotransplantation presents significant potential to the field of heart failure by addressing the high demand for donor organs. The availability of xenograft hearts would substantially augment the number of life-saving organs available to patients and may ultimately liberalize eligibility criteria for transplantation. AREAS COVERED In this review, we will discuss the need for cardiac xenotransplantation and the history of research and clinical practice in this field. Specifically, we address immunologic concepts and clinical lessons learned from heart valve replacement using xenogeneic tissues, the advancement of xenotransplantation using organs from genetically modified animals, and the progression of this research to the first-in-man pig-to-human heart transplantation. EXPERT OPINION Cardiac xenotransplantation holds tremendous promise, but the indications for this new treatment will need to be clearly defined because mechanical support with ventricular assist devices and total artificial hearts are increasingly successful alternatives for adults in heart failure. Cardiac xenotransplantation will also serve as temporary bridge to allotransplantation in babies with complex congenital heart disease who are too small for the currently available mechanical assist devices. Moreover, xenotransplantation of the part of the heart containing a heart valve could deliver growing heart valve implants for babies with severe heart valve dysfunction.
Collapse
|
10
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways, genetic and epigenetic regulatory circuits, and multicellular interactions that underlie cardiovascular disease. The advent of CRISPR genome editing has ushered in a new era of cardiovascular research and possibilities for genetic correction of disease. Next-generation sequencing technologies have greatly accelerated the identification of disease-causing mutations, and advances in gene editing have enabled the rapid modeling of these mutations in mice and patient-derived induced pluripotent stem cells. The ability to correct the genetic drivers of cardiovascular disease through delivery of gene editing components in vivo, while still facing challenges, represents an exciting therapeutic frontier. In this review, we provide an overview of cardiovascular disease mechanisms and the potential applications of CRISPR genome editing for disease modeling and correction. We also discuss the extent to which mice can faithfully model cardiovascular disease and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
11
|
Ko N, Shim J, Kim HJ, Lee Y, Park JK, Kwak K, Lee JW, Jin DI, Kim H, Choi K. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model. Sci Rep 2022; 12:9611. [PMID: 35688851 PMCID: PMC9187654 DOI: 10.1038/s41598-022-13536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pig-to-human organ transplantation is a feasible solution to resolve the shortage of organ donors for patients that wait for transplantation. To overcome immunological rejection, which is the main hurdle in pig-to-human xenotransplantation, various engineered transgenic pigs have been developed. Ablation of xeno-reactive antigens, especially the 1,3-Gal epitope (GalT), which causes hyperacute rejection, and insertion of complement regulatory protein genes, such as hCD46, hCD55, and hCD59, and genes to regulate the coagulation pathway or immune cell-mediated rejection may be required for an ideal xenotransplantation model. However, the technique for stable and efficient expression of multi-transgenes has not yet been settled to develop a suitable xenotransplantation model. To develop a stable and efficient transgenic system, we knocked-in internal ribosome entry sites (IRES)-mediated transgenes into the α 1,3-galactosyltransferase (GGTA1) locus so that expression of these transgenes would be controlled by the GGTA1 endogenous promoter. We constructed an IRES-based polycistronic hCD55/hCD39 knock-in vector to target exon4 of the GGTA1 gene. The hCD55/hCD39 knock-in vector and CRISPR/Cas9 to target exon4 of the GGTA1 gene were co-transfected into white yucatan miniature pig fibroblasts. After transfection, hCD39 expressed cells were sorted by FACS. Targeted colonies were verified using targeting PCR and FACS analysis, and used as donors for somatic cell nuclear transfer. Expression of GalT, hCD55, and hCD39 was analyzed by FACS and western blotting. Human complement-mediated cytotoxicity and human antibody binding assays were conducted on peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs), and deposition of C3 by incubation with human complement serum and platelet aggregation were analyzed in GGTA1 knock-out (GTKO)/CD55/CD39 pig cells. We obtained six targeted colonies with high efficiency of targeting (42.8% of efficiency). Selected colony and transgenic pigs showed abundant expression of targeted genes (hCD55 and hCD39). Knocked-in transgenes were expressed in various cell types under the control of the GGTA1 endogenous promoter in GTKO/CD55/CD39 pig and IRES was sufficient to express downstream expression of the transgene. Human IgG and IgM binding decreased in GTKO/CD55/CD39 pig and GTKO compared to wild-type pig PBMCs and RBCs. The human complement-mediated cytotoxicity of RBCs and PBMCs decreased in GTKO/CD55/CD39 pig compared to cells from GTKO pig. C3 was also deposited less in GTKO/CD55/CD39 pig cells than wild-type pig cells. The platelet aggregation was delayed by hCD39 expression in GTKO/CD55/CD39 pig. In the current study, knock-in into the GGTA1 locus and GGTA1 endogenous promoter-mediated expression of transgenes are an appropriable strategy for effective and stable expression of multi-transgenes. The IRES-based polycistronic transgene vector system also caused sufficient expression of both hCD55 and hCD39. Furthermore, co-transfection of CRISPR/Cas9 and the knock-in vector not only increased the knock-in efficiency but also induced null for GalT by CRISPR/Cas9-mediated double-stranded break of the target site. As shown in human complement-mediated lysis and human antibody binding to GTKO/CD55/CD39 transgenic pig cells, expression of hCD55 and hCD39 with ablation of GalT prevents an effective immunological reaction in vitro. As a consequence, our technique to produce multi-transgenic pigs could improve the development of a suitable xenotransplantation model, and the GTKO/CD55/CD39 pig developed could prolong the survival of pig-to-primate xenotransplant recipients.
Collapse
Affiliation(s)
- Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jae-Kyung Park
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kyungmin Kwak
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Dajeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
12
|
Xu K, Yu H, Chen S, Zhang Y, Guo J, Yang C, Jiao D, Nguyen TD, Zhao H, Wang J, Wei T, Li H, Jia B, Jamal MA, Zhao HY, Huang X, Wei HJ. Production of Triple-Gene (GGTA1, B2M and CIITA)-Modified Donor Pigs for Xenotransplantation. Front Vet Sci 2022; 9:848833. [PMID: 35573408 PMCID: PMC9097228 DOI: 10.3389/fvets.2022.848833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of human immune T-cells by swine leukocyte antigens class I (SLA-I) and class II (SLA-II) leads to xenograft destruction. Here, we generated the GGTA1, B2M, and CIITA (GBC) triple-gene-modified Diannan miniature pigs, analyzed the transcriptome of GBC-modified peripheral blood mononuclear cells (PBMCs) in the pig's spleen, and investigated their effectiveness in anti-immunological rejection. A total of six cloned piglets were successfully generated using somatic cell nuclear transfer, one of them carrying the heterozygous mutations in triple genes and the other five piglets carrying the homozygous mutations in GGTA1 and CIITA genes, but have the heterozygous mutation in the B2M gene. The autopsy of GBC-modified pigs revealed that a lot of spot bleeding in the kidney, severe suppuration and necrosis in the lungs, enlarged peripulmonary lymph nodes, and adhesion between the lungs and chest wall were found. Phenotyping data showed that the mRNA expressions of triple genes and protein expressions of B2M and CIITA genes were still detectable and comparable with wild-type (WT) pigs in multiple tissues, but α1,3-galactosyltransferase was eliminated, SLA-I was significantly decreased, and four subtypes of SLA-II were absent in GBC-modified pigs. In addition, even in swine umbilical vein endothelial cells (SUVEC) induced by recombinant porcine interferon gamma (IFN-γ), the expression of SLA-I in GBC-modified pig was lower than that in WT pigs. Similarly, the expression of SLA-II DR and DQ also cannot be induced by recombinant porcine IFN-γ. Through RNA sequencing (RNA-seq), 150 differentially expressed genes were identified in the PBMCs of the pig's spleen, and most of them were involved in immune- and infection-relevant pathways that include antigen processing and presentation and viral myocarditis, resulting in the pigs with GBC modification being susceptible to pathogenic microorganism. Furthermore, the numbers of human IgM binding to the fibroblast cells of GBC-modified pigs were obviously reduced. The GBC-modified porcine PBMCs triggered the weaker proliferation of human PBMCs than WT PBMCs. These findings indicated that the absence of the expression of α1,3-galactosyltransferase and SLA-II and the downregulation of SLA-I enhanced the ability of immunological tolerance in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghao Yu
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yaxuan Zhang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Life 2.0-A CRISPR path to a sustainable planet. Proc Natl Acad Sci U S A 2021; 118:2107418118. [PMID: 34050031 DOI: 10.1073/pnas.2107418118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|