1
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
2
|
Yang Q, Abebe JS, Mai M, Rudy G, Kim SY, Devinsky O, Long C. T4 DNA polymerase prevents deleterious on-target DNA damage and enhances precise CRISPR editing. EMBO J 2024; 43:3733-3751. [PMID: 39039289 PMCID: PMC11377749 DOI: 10.1038/s44318-024-00158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Unintended on-target chromosomal alterations induced by CRISPR/Cas9 in mammalian cells are common, particularly large deletions and chromosomal translocations, and present a safety challenge for genome editing. Thus, there is still an unmet need to develop safer and more efficient editing tools. We screened diverse DNA polymerases of distinct origins and identified a T4 DNA polymerase derived from phage T4 that strongly prevents undesired on-target damage while increasing the proportion of precise 1- to 2-base-pair insertions generated during CRISPR/Cas9 editing (termed CasPlus). CasPlus induced substantially fewer on-target large deletions while increasing the efficiency of correcting common frameshift mutations in DMD and restored higher level of dystrophin expression than Cas9-alone in human cardiomyocytes. Moreover, CasPlus greatly reduced the frequency of on-target large deletions during mouse germline editing. In multiplexed guide RNAs mediating gene editing, CasPlus repressed chromosomal translocations while maintaining gene disruption efficiency that was higher or comparable to Cas9 in primary human T cells. Therefore, CasPlus offers a safer and more efficient gene editing strategy to treat pathogenic variants or to introduce genetic modifications in human applications.
Collapse
Affiliation(s)
- Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Jonathan S Abebe
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Michelle Mai
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Gabriella Rudy
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Orrin Devinsky
- New York University Langone Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, USA
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
3
|
Murase H, Lee J, Togo N, Taniguchi Y, Sasaki S. The selective chemical modification of the 6-amino group of adenosine of the premature termination codon induces readthrough to produce full-length peptide in the reconstituted E. Coli translation system. Bioorg Med Chem 2024; 111:117868. [PMID: 39137475 DOI: 10.1016/j.bmc.2024.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Nonsense mutations in the coding region turn amino acid codons into termination codons, resulting in premature termination codons (PTCs). In the case of the in-frame PTC, if translation does not stop at the PTC but continues to the natural termination codon (NTC) with the insertion of an amino acid, known as readthrough, the full-length peptide is formed, albeit with a single amino acid mutation. We have previously developed the functionality-transfer oligonucleotide (FT-Probe), which forms a hybrid complex with RNA of a complementary sequence to transfer the functional group, resulting in modification of the 4-amino group of cytosine or the 6-amino group of adenine. In this study, the FT-Probe was used to chemically modify the adenosines of the PTC (UAA, UAG, and UGA) of mRNA, which were assayed for the readthrough in a reconstituted Escherichia coli translation system. The third adenosine-modified UAA produced three readthrough peptides incorporating tyrosine, glutamine and lysine at the UAA site. It should be noted that the additional modification with a cyclodextrin only induced glutamine incorporation. The adenosine modified UGA induced readthrough very efficiently with selective tryptophan incorporation. Readthrough of the modified UGA is caused by inhibition of the RF2 function. This study has demonstrated that the chemical modification of the adenosine 6-amino group of the PTC is a strategy for effective readthrough in a prokaryotic translation system.
Collapse
Affiliation(s)
- Hirotaka Murase
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan; RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan
| | - Jeongsu Lee
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| | - Norihiro Togo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan; RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan.
| |
Collapse
|
4
|
Xiao Q, Li G, Han D, Wang H, Yao M, Ma T, Zhou J, Zhang Y, Zhang X, He B, Yuan Y, Shi L, Li T, Yang H, Huang J, Zhang H. Engineered IscB-ωRNA system with expanded target range for base editing. Nat Chem Biol 2024:10.1038/s41589-024-01706-1. [PMID: 39147927 DOI: 10.1038/s41589-024-01706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
As the evolutionary ancestor of Cas9 nuclease, IscB proteins serve as compact RNA-guided DNA endonucleases and nickases, making them strong candidates for base editing. Nevertheless, the narrow targeting scope limits the application of IscB systems; thus, it is necessary to find more IscBs that recognize different target-adjacent motifs (TAMs). Here, we identified 10 of 19 uncharacterized IscB proteins from uncultured microbes with activity in mammalian cells. Through protein and ωRNA engineering, we further enhanced the activity of IscB ortholog IscB.m16 and expanded its TAM scope from MRNRAA to NNNGNA, resulting in a variant named IscB.m16*. By fusing the deaminase domains with IscB.m16* nickase, we generated IscB.m16*-derived base editors that exhibited robust base-editing efficiency in mammalian cells and effectively restored Duchenne muscular dystrophy proteins in diseased mice through single adeno-associated virus delivery. Thus, this study establishes a set of compact base-editing tools for basic research and therapeutic applications.
Collapse
Affiliation(s)
- Qingquan Xiao
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Dingyi Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Mingyu Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Tingting Ma
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | | | - Yu Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Xiumei Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Bingbing He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Tong Li
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China.
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| | - Hainan Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
| |
Collapse
|
5
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
6
|
Roger AL, Biswas DD, Huston ML, Le D, Bailey AM, Pucci LA, Shi Y, Robinson-Hamm J, Gersbach CA, ElMallah MK. Respiratory characterization of a humanized Duchenne muscular dystrophy mouse model. Respir Physiol Neurobiol 2024; 326:104282. [PMID: 38782084 PMCID: PMC11472894 DOI: 10.1016/j.resp.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Davina Le
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Aidan M Bailey
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Logan A Pucci
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Yihan Shi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Mai K ElMallah
- Department of Pediatrics, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Dhoke NR, Kim H, Azzag K, Crist SB, Kiley J, Perlingeiro RCR. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs. Cells 2024; 13:972. [PMID: 38891104 PMCID: PMC11171783 DOI: 10.3390/cells13110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.
Collapse
Affiliation(s)
- Neha R. Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Sarah B. Crist
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Fan P, Wang H, Zhao F, Zhang T, Li J, Sun X, Yu Y, Xiong H, Lai L, Sui T. Targeted mutagenesis in mice via an engineered AsCas12f1 system. Cell Mol Life Sci 2024; 81:63. [PMID: 38280977 PMCID: PMC10821844 DOI: 10.1007/s00018-023-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
SpCas9 and AsCas12a are widely utilized as genome editing tools in human cells, but their applications are largely limited by their bulky size. Recently, AsCas12f1 protein, with a small size (422 amino acids), has been demonstrated to be capable of cleaving double-stranded DNA protospacer adjacent motif (PAM). However, low editing efficiency and large differences in activity against different genomic loci have been a limitation in its application. Here, we show that engineered AsCas12f1 sgRNA has significantly improved the editing efficiency in human cells and mouse embryos. Moreover, we successfully generated three stable mouse mutant disease models using the engineered CRISPR-AsCas12f1 system in this study. Collectively, our work uncovers the engineered AsCas12f1 system expands mini CRISPR toolbox, providing a remarkable promise for therapeutic applications.
Collapse
Affiliation(s)
- Peng Fan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hejun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Feiyu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Tao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jinze Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaodi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongduo Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haoyang Xiong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Saad FA, Saad JF, Siciliano G, Merlini L, Angelini C. Duchenne Muscular Dystrophy Gene Therapy. Curr Gene Ther 2024; 24:17-28. [PMID: 36411557 DOI: 10.2174/1566523223666221118160932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Duchenne and Becker muscular dystrophies are allelic X-linked recessive neuromuscular diseases affecting both skeletal and cardiac muscles. Therefore, owing to their single X chromosome, the affected boys receive pathogenic gene mutations from their unknowing carrier mothers. Current pharmacological drugs are palliative that address the symptoms of the disease rather than the genetic cause imbedded in the Dystrophin gene DNA sequence. Therefore, alternative therapies like gene drugs that could address the genetic cause of the disease at its root are crucial, which include gene transfer/implantation, exon skipping, and gene editing. Presently, it is possible through genetic reprogramming to engineer AAV vectors to deliver certain therapeutic cargos specifically to muscle or other organs regardless of their serotype. Similarly, it is possible to direct the biogenesis of exosomes to carry gene editing constituents or certain therapeutic cargos to specific tissue or cell type like brain and muscle. While autologous exosomes are immunologically inert, it is possible to camouflage AAV capsids, and lipid nanoparticles to evade the immune system recognition. In this review, we highlight current opportunities for Duchenne muscular dystrophy gene therapy, which has been known thus far as an incurable genetic disease. This article is a part of Gene Therapy of Rare Genetic Diseases thematic issue.
Collapse
Affiliation(s)
- Fawzy A Saad
- Department of Biology, Padua University School of Medicine, Via Trieste 75, Padova 35121, Italy
- Department of Gene Therapy, Saad Pharmaceuticals, Tornimäe 7-26, Tallinn, 10145, Estonia
| | - Jasen F Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Tornimäe 7-26, Tallinn, 10145, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Pisa, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, Bologna University School of Medicine, 40126 Bologna, Italy
| | - Corrado Angelini
- Department Neurosciences, Padova University School of Medicine, Padova, Italy
| |
Collapse
|
10
|
Song Y, Xu K, Xu HY, Guo YK, Xu R, Fu H, Yuan WF, Zhou ZQ, Xu T, Chen XJ, Wang YL, Fu C, Zhou H, Cai XT, Li XS. Longitudinal changes in magnetic resonance imaging biomarkers of the gluteal muscle groups and functional ability in Duchenne muscular dystrophy: a 12-month cohort study. Pediatr Radiol 2023; 53:2672-2682. [PMID: 37889296 PMCID: PMC10697878 DOI: 10.1007/s00247-023-05791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Quantitative magnetic resonance imaging (MRI) is considered an objective biomarker of Duchenne muscular dystrophy (DMD), but the longitudinal progression of MRI biomarkers in gluteal muscle groups and their predictive value for future motor function have not been described. OBJECTIVE To explore MRI biomarkers of the gluteal muscle groups as predictors of motor function decline in DMD by characterizing the progression over 12 months. MATERIALS AND METHODS A total of 112 participants with DMD were enrolled and underwent MRI examination of the gluteal muscles to determine fat fraction and longitudinal relaxation time (T1). Investigations were based on gluteal muscle groups including flexors, extensors, adductors, and abductors. The North Star Ambulatory Assessment and timed functional tests were performed. All participants returned for follow-up at an average of 12 months and were divided into two subgroups (functional stability/decline groups) based on changes in timed functional tests. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with future motor function decline. RESULTS For the functional decline group, all T1 values decreased, while fat fraction values increased significantly over 12 months (P<0.05). For the functional stability group, only the fat fraction of the flexors and abductors increased significantly over 12 months (P<0.05). The baseline T1 value was positively correlated with North Star Ambulatory Assessment and negatively correlated with timed functional tests at the 12-month follow-up (P<0.001), while the baseline fat fraction value was negatively correlated with North Star Ambulatory Assessment and positively correlated with timed functional tests at the 12-month follow-up (P<0.001). Multivariate regression showed that increased fat fraction of the abductors was associated with future motor function decline (model 1: odds ratio [OR]=1.104, 95% confidence interval [CI]: 1.026~1.187, P=0.008; model 2: OR=1.085, 95% CI: 1.013~1.161, P=0.019), with an area under the curve of 0.874. CONCLUSION Fat fraction of the abductors is a powerful predictor of future motor functional decline in DMD patients at 12 months, underscoring the importance of focusing early on this parameter in patients with DMD.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei-Feng Yuan
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Qi Zhou
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi-Jian Chen
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Lei Wang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Tang Cai
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Raghavan K, Dedeepiya VD, Srinivasan S, Pushkala S, Bharatidasan SS, Ikewaki N, Iwasaki M, Senthilkumar R, Preethy S, Abraham SJ. Beneficial immune-modulatory effects of the N-163 strain of Aureobasidium pullulans-produced 1,3-1,6 Beta glucans in Duchenne muscular dystrophy: Results of an open-label, prospective, exploratory case-control clinical study. IBRO Neurosci Rep 2023; 15:90-99. [PMID: 38053632 PMCID: PMC10694341 DOI: 10.1016/j.ibneur.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 12/07/2023] Open
Abstract
Background This exploratory case-control study is to evaluate the effects of supplementation of Aureobasidium pullulans-N-163 strain produced 1,3-1,- 6 beta glucan in young patients with Duchenne muscular dystrophy (DMD). Methods Twenty-seven male subjects aged 5-19 years with DMD were included, nine in the control arm and 18 in the treatment arm to receive N-163 beta glucan along with conventional therapies for 45 days. While performing the analysis, steroid usage was also taken into consideration, those not administered steroids (Steroid -ve) (Control, n = 5; treatment, n = 9), those administered steroids (Steroid +ve) (Control, n = 4; treatment, n = 9). Results IL-6 showed a significant decrease in the treatment groups, especially the N-163 Steroid -ve group. IL-13 decreased in both treatment groups and TGF-β levels showed a significant decrease in the treatment groups, especially the N-163 Steroid -ve group, (p < 0.05). Dystrophin levels increased by up to 32% in the treatment groups compared to the control. Medical research council (MRC) grading showed slight improvement in muscle strength improvement in 12 out of 18 patients (67%) in the treatment group and four out of nine (44%) subjects in the control group. Conclusion Supplementation with the N-163 beta glucan food supplement produced beneficial effects: a significant decrease in inflammation and fibrosis markers, increase in serum dystrophin and slight improvement in muscle strength in DMD subjects over 45 days, thus making this a potential adjunct treatment for DMD after validation. Trial registration The study was registered in Clinical trials registry of India, CTRI/2021/05/033346. Registered on 5th May, 2021.
Collapse
Affiliation(s)
- Kadalraja Raghavan
- Dept of Paediatric Neurology, Jesuit Antonyraj memorial Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Madurai, India
- Department of Paediatric Neurology, Kenmax Medical Service Private Limited, Madurai, India
- Department of Paediatric Neurology, Sarvee Integra Private Limited, Chennai, India
| | | | - Subramaniam Srinivasan
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Subramanian Pushkala
- Department of Immunology, The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032, India
| | - Sudhakar S. Bharatidasan
- Department of Anesthesia, Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Nobunao Ikewaki
- Dept. of Medical Life Science, Kyushu University of Health and Welfare, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - Rajappa Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Samuel J.K. Abraham
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Antony, Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
- Levy-Jurgen Transdisciplinary Exploratory (LJTE), Global Niche Corp., Wilmington, DE, USA
| |
Collapse
|
12
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
13
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
14
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
15
|
Egorova TV, Polikarpova AV, Vassilieva SG, Dzhenkova MA, Savchenko IM, Velyaev OA, Shmidt AA, Soldatov VO, Pokrovskii MV, Deykin AV, Bardina MV. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Mol Ther Methods Clin Dev 2023; 30:161-180. [PMID: 37457303 PMCID: PMC10339130 DOI: 10.1016/j.omtm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.
Collapse
Affiliation(s)
- Tatiana V. Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Anna V. Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A. Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M. Savchenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Oleg A. Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna A. Shmidt
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladislav O. Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Mikhail V. Pokrovskii
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Alexey V. Deykin
- Marlin Biotech LLC, Sochi 354340, Russia
- Joint Center for Genetic Technologies, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod 308015, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
16
|
Rok M, Wong TWY, Maino E, Ahmed A, Yang G, Hyatt E, Lindsay K, Fatehi S, Marks R, Delgado-Olguín P, Ivakine EA, Cohn RD. Prevention of early-onset cardiomyopathy in Dmd exon 52-54 deletion mice by CRISPR-Cas9-mediated exon skipping. Mol Ther Methods Clin Dev 2023; 30:246-258. [PMID: 37545481 PMCID: PMC10403712 DOI: 10.1016/j.omtm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo.
Collapse
Affiliation(s)
- Matthew Rok
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tatianna Wai Ying Wong
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eleonora Maino
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Abdalla Ahmed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Grace Yang
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Kyle Lindsay
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Sina Fatehi
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ryan Marks
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguín
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
17
|
Saad FA, Siciliano G, Angelini C. Advances in Dystrophinopathy Diagnosis and Therapy. Biomolecules 2023; 13:1319. [PMID: 37759719 PMCID: PMC10526396 DOI: 10.3390/biom13091319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.
Collapse
Affiliation(s)
- Fawzy A. Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Juhkentali 8, 10132 Tallinn, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Via Paradisa 2, 56100 Pisa, Italy;
| | - Corrado Angelini
- Department of Neurosciences, Padova University School of Medicine, Via Giustiniani 5, 35128 Padova, Italy;
| |
Collapse
|
18
|
Stirm M, Shashikadze B, Blutke A, Kemter E, Lange A, Stöckl JB, Jaudas F, Laane L, Kurome M, Keßler B, Zakhartchenko V, Bähr A, Klymiuk N, Nagashima H, Walter MC, Wurst W, Kupatt C, Fröhlich T, Wolf E. Systemic deletion of DMD exon 51 rescues clinically severe Duchenne muscular dystrophy in a pig model lacking DMD exon 52. Proc Natl Acad Sci U S A 2023; 120:e2301250120. [PMID: 37428903 PMCID: PMC10629550 DOI: 10.1073/pnas.2301250120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich80539, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Florian Jaudas
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Laeticia Laane
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki214-8571, Japan
| | - Maggie C. Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich80336, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg85674, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising85354, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich81675, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer, LMU Munich, Munich81377, Germany
| |
Collapse
|
19
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
20
|
Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, Xue M, Zhang W, Wang Y, Lin J, Zhou J, Shen X, Wei Y, Zhong N, Bai W, Yuan Y, Shi L, Zhou Y, Yang H. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun 2023; 14:2046. [PMID: 37041195 PMCID: PMC10090079 DOI: 10.1038/s41467-023-37829-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
The type V-F CRISPR-Cas12f system is a strong candidate for therapeutic applications due to the compact size of the Cas12f proteins. In this work, we identify six uncharacterized Cas12f1 proteins with nuclease activity in mammalian cells from assembled bacterial genomes. Among them, OsCas12f1 (433 aa) from Oscillibacter sp. and RhCas12f1 (415 aa) from Ruminiclostridium herbifermentans, which respectively target 5' T-rich Protospacer Adjacent Motifs (PAMs) and 5' C-rich PAMs, show the highest editing activity. Through protein and sgRNA engineering, we generate enhanced OsCas12f1 (enOsCas12f1) and enRhCas12f1 variants, with 5'-TTN and 5'-CCD (D = not C) PAMs respectively, exhibiting much higher editing efficiency and broader PAMs, compared with the engineered variant Un1Cas12f1 (Un1Cas12f1_ge4.1). Furthermore, by fusing the destabilized domain with enOsCas12f1, we generate inducible-enOsCas12f1 and demonstate its activity in vivo by single adeno-associated virus delivery. Finally, dead enOsCas12f1-based epigenetic editing and gene activation can also be achieved in mammalian cells. This study thus provides compact gene editing tools for basic research with remarkable promise for therapeutic applications.
Collapse
Affiliation(s)
- Xiangfeng Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hainan Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Guoling Li
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Zikang Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xuqiang Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Lecong Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Mingxing Xue
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weihong Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yao Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingxing Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xiaowen Shen
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yinghui Wei
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Na Zhong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weiya Bai
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yuan Yuan
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Linyu Shi
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yingsi Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
| | - Hui Yang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
21
|
Schimmel J, Muñoz-Subirana N, Kool H, van Schendel R, van der Vlies S, Kamp JA, de Vrij FMS, Kushner SA, Smith GCM, Boulton SJ, Tijsterman M. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Rep 2023; 42:112019. [PMID: 36701230 DOI: 10.1016/j.celrep.2023.112019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Gene editing through repair of CRISPR-Cas9-induced chromosomal breaks offers a means to correct a wide range of genetic defects. Directing repair to produce desirable outcomes by modulating DNA repair pathways holds considerable promise to increase the efficiency of genome engineering. Here, we show that inhibition of non-homologous end joining (NHEJ) or polymerase theta-mediated end joining (TMEJ) can be exploited to alter the mutational outcomes of CRISPR-Cas9. We show robust inhibition of TMEJ activity at CRISPR-Cas9-induced double-strand breaks (DSBs) using ART558, a potent polymerase theta (Polϴ) inhibitor. Using targeted sequencing, we show that ART558 suppresses the formation of microhomology-driven deletions in favor of NHEJ-specific outcomes. Conversely, NHEJ deficiency triggers the formation of large kb-sized deletions, which we show are the products of mutagenic TMEJ. Finally, we show that combined chemical inhibition of TMEJ and NHEJ increases the efficiency of homology-driven repair (HDR)-mediated precise gene editing. Our work reports a robust strategy to improve the fidelity and safety of genome engineering.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Núria Muñoz-Subirana
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sven van der Vlies
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Juliette A Kamp
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Simon J Boulton
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK; The Francis Crick Institute, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
22
|
Milanese JS, Marcotte R, Costain WJ, Kablar B, Drouin S. Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:21-55. [PMID: 37955770 DOI: 10.1007/978-3-031-38215-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The ability to assess various cellular events consequent to perturbations, such as genetic mutations, disease states and therapies, has been recently revolutionized by technological advances in multiple "omics" fields. The resulting deluge of information has enabled and necessitated the development of tools required to both process and interpret the data. While of tremendous value to basic researchers, the amount and complexity of the data has made it extremely difficult to manually draw inference and identify factors key to the study objectives. The challenges of data reduction and interpretation are being met by the development of increasingly complex tools that integrate disparate knowledge bases and synthesize coherent models based on current biological understanding. This chapter presents an example of how genomics data can be integrated with biological network analyses to gain further insight into the developmental consequences of genetic perturbations. State of the art methods for conducting similar studies are discussed along with modern methods used to analyze and interpret the data.
Collapse
Affiliation(s)
| | - Richard Marcotte
- Human Health Therapeutics, National Research Council of Canada , Montreal, QC, Canada
| | - Willard J Costain
- Human Health Therapeutics, National Research Council of Canada, Ottawa, ON, Canada
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Simon Drouin
- Human Health Therapeutics, National Research Council of Canada , Montreal, QC, Canada.
| |
Collapse
|
23
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
24
|
Japanese Regulatory Framework and Approach for Genome-edited Foods Based on Latest Scientific Findings. FOOD SAFETY (TOKYO, JAPAN) 2022; 10:113-128. [PMID: 36619008 PMCID: PMC9789915 DOI: 10.14252/foodsafetyfscj.d-21-00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The food supply system is facing important challenges and its sustainability has to be considered. Genome-editing technology, which accelerates the development of new variety, could be used to achieve sustainable development goals, thereby protecting the environment and ensuring the stable production of food for an increasing global population. The most widely used genome-editing tool, CRISPR/Cas9, is easy to use, affordable, and versatile. Foods produced by genome-editing technologies have been developed worldwide to create novel traits. In the first half of the review, the latest scientific findings on genome-editing technologies are summarized, and the technical challenge in genome sequence analysis are clarified. CRISPR/Cas9 has versatile alternative techniques, such as base editor and prime editor. Genome sequencing technology has developed rapidly in recent years. However, it is still difficult to detect large deletions and structural variations. Long-read sequencing technology would solve this challenge. In the second part, regulatory framework and approach for genome-edited foods is introduced. The four government ministries, including the Ministry of Environment, the Ministry of Agriculture, Forestry and Fisheries, and the Ministry of Health, Labour and Welfare (MHLW), started to discuss how the regulation should be implemented in 2019. The SDN-1 technique is excluded from the current genetically modified organism (GMO) regulation. The Japanese regulatory framework includes pre-submission consultation and submission of notification form. In the last part of this review, transparency of regulatory framework and consumer confidence were described. Since maintaining consumer trust is vital, transparency of regulatory framework is a key to consumers. The information of notification process on approved genome-edited foods is made public immediately. This review will help regulators build regulatory frameworks, and lead to harmonization of the framework between the countries.
Collapse
|
25
|
Inherited myopathies in the Middle East and North Africa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Hildyard JC, Riddell DO, Harron RC, Rawson F, Foster EM, Massey C, Taylor-Brown F, Wells DJ, Piercy RJ. The skeletal muscle phenotype of the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Res 2022; 7:238. [PMID: 36865375 PMCID: PMC9971692 DOI: 10.12688/wellcomeopenres.18251.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Animal models of Duchenne muscular dystrophy (DMD) are essential to study disease progression and assess efficacy of therapeutic intervention, however dystrophic mice fail to display a clinically relevant phenotype, limiting translational utility. Dystrophin-deficient dogs exhibit disease similar to humans, making them increasingly important for late-stage preclinical evaluation of candidate therapeutics. The DE50-MD canine model of DMD carries a mutation within a human 'hotspot' region of the dystrophin gene, amenable to exon-skipping and gene editing strategies. As part of a large natural history study of disease progression, we have characterised the DE50-MD skeletal muscle phenotype to identify parameters that could serve as efficacy biomarkers in future preclinical trials. Methods: Vastus lateralis muscles were biopsied from a large cohort of DE50-MD dogs and healthy male littermates at 3-monthly intervals (3-18 months) for longitudinal analysis, with multiple muscles collected post-mortem to evaluate body-wide changes. Pathology was characterised quantitatively using histology and measurement of gene expression to determine statistical power and sample sizes appropriate for future work. Results: DE50-MD skeletal muscle exhibits widespread degeneration/regeneration, fibrosis, atrophy and inflammation. Degenerative/inflammatory changes peak during the first year of life, while fibrotic remodelling appears more gradual. Pathology is similar in most skeletal muscles, but in the diaphragm, fibrosis is more prominent, associated with fibre splitting and pathological hypertrophy. Picrosirius red and acid phosphatase staining represent useful quantitative histological biomarkers for fibrosis and inflammation respectively, while qPCR can be used to measure regeneration ( MYH3, MYH8), fibrosis ( COL1A1), inflammation ( SPP1), and stability of DE50-MD dp427 transcripts. Conclusion: The DE50-MD dog is a valuable model of DMD, with pathological features similar to young, ambulant human patients. Sample size and power calculations show that our panel of muscle biomarkers are of strong pre-clinical value, able to detect therapeutic improvements of even 25%, using trials with only six animals per group.
Collapse
Affiliation(s)
- John C.W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Rachel C.M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Langford Veterinary Services, University of Bristol, Langford, UK
| | - Emma M.A. Foster
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Claire Massey
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Frances Taylor-Brown
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Cave Veterinary Specialists, George's Farm, West Buckland, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, London, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| |
Collapse
|
27
|
CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells 2022; 11:cells11192964. [PMID: 36230926 PMCID: PMC9564082 DOI: 10.3390/cells11192964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most common types of fatal genetic diseases, there is no curative treatment for this devastating disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the genetic source, thus enabling the permanent restoration of dystrophin expression and function throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR genome-editing systems, summarize recent advancements in their applications in DMD contexts, and discuss several potential obstacles lying ahead of clinical translation.
Collapse
|
28
|
Becker J, Fakhiri J, Grimm D. Fantastic AAV Gene Therapy Vectors and How to Find Them—Random Diversification, Rational Design and Machine Learning. Pathogens 2022; 11:pathogens11070756. [PMID: 35890005 PMCID: PMC9318892 DOI: 10.3390/pathogens11070756] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| |
Collapse
|
29
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways, genetic and epigenetic regulatory circuits, and multicellular interactions that underlie cardiovascular disease. The advent of CRISPR genome editing has ushered in a new era of cardiovascular research and possibilities for genetic correction of disease. Next-generation sequencing technologies have greatly accelerated the identification of disease-causing mutations, and advances in gene editing have enabled the rapid modeling of these mutations in mice and patient-derived induced pluripotent stem cells. The ability to correct the genetic drivers of cardiovascular disease through delivery of gene editing components in vivo, while still facing challenges, represents an exciting therapeutic frontier. In this review, we provide an overview of cardiovascular disease mechanisms and the potential applications of CRISPR genome editing for disease modeling and correction. We also discuss the extent to which mice can faithfully model cardiovascular disease and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
30
|
Utilization and Potential of RNA-Based Therapies in Cardiovascular Disease. JACC Basic Transl Sci 2022; 7:956-969. [PMID: 36317129 PMCID: PMC9617127 DOI: 10.1016/j.jacbts.2022.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
RNA-based therapeutics have the potential to reach previously “undruggable” pathways in cardiovascular disease RNA-based therapeutics constitute a vast array of technologies, including unique forms, chemistries, and modalities of delivery Rapid development of RNA-based vaccines was made possible by decades of foundational work Specificity and efficacy of targeting and determination of mechanism(s) of action remain a distinct challenge
Cardiovascular disease (CVD) remains the largest cause of mortality worldwide. The development of new effective therapeutics is a major unmet need. The current review focuses broadly on the concept of nucleic acid (NA)–based therapies, considering the use of various forms of NAs, including mRNAs, miRNAs, siRNA, and guide RNAs, the latter specifically for the purpose of CRISPR-Cas directed gene editing. We describe the current state-of-the-art of RNA target discovery and development, the status of RNA therapeutics in the context of CVD, and some of the challenges and hurdles to be overcome.
Collapse
|
31
|
Karri DR, Zhang Y, Chemello F, Min YL, Huang J, Kim J, Mammen PP, Xu L, Liu N, Bassel-Duby R, Olson EN. Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:154-167. [PMID: 35402069 PMCID: PMC8956962 DOI: 10.1016/j.omtn.2022.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
|
32
|
Saifullah, Motohashi N, Tsukahara T, Aoki Y. Development of Therapeutic RNA Manipulation for Muscular Dystrophy. Front Genome Ed 2022; 4:863651. [PMID: 35620642 PMCID: PMC9127466 DOI: 10.3389/fgeed.2022.863651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Approval of therapeutic RNA molecules, including RNA vaccines, has paved the way for next-generation treatment strategies for various diseases. Oligonucleotide-based therapeutics hold particular promise for treating incurable muscular dystrophies, including Duchenne muscular dystrophy (DMD). DMD is a severe monogenic disease triggered by deletions, duplications, or point mutations in the DMD gene, which encodes a membrane-linked cytoskeletal protein to protect muscle fibers from contraction-induced injury. Patients with DMD inevitably succumb to muscle degeneration and atrophy early in life, leading to premature death from cardiac and respiratory failure. Thus far, the disease has thwarted all curative strategies. Transcriptomic manipulation, employing exon skipping using antisense oligonucleotides (ASO), has made significant progress in the search for DMD therapeutics. Several exon-skipping drugs employing RNA manipulation technology have been approved by regulatory agencies and have shown promise in clinical trials. This review summarizes recent scientific and clinical progress of ASO and other novel RNA manipulations, including RNA-based editing using MS2 coat protein-conjugated adenosine deaminase acting on the RNA (MCP-ADAR) system illustrating the efficacy and limitations of therapies to restore dystrophin. Perhaps lessons from this review will encourage the application of RNA-editing therapy to other neuromuscular disorders.
Collapse
Affiliation(s)
- Saifullah
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
- Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
33
|
Happi Mbakam C, Lamothe G, Tremblay JP. Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Front Med (Lausanne) 2022; 9:859930. [PMID: 35419381 PMCID: PMC8995704 DOI: 10.3389/fmed.2022.859930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked hereditary disease characterized by progressive muscle wasting due to modifications in the DMD gene (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) that result in a lack of functional dystrophin expression. Many therapeutic approaches have so far been attempted to induce dystrophin expression and improve the patient phenotype. In this manuscript, we describe the relevant updates for some therapeutic strategies for DMD aiming to restore dystrophin expression. We also present and analyze in vitro and in vivo ongoing experimental approaches to treat the disease.
Collapse
Affiliation(s)
- Cedric Happi Mbakam
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
34
|
Svetlove A, Albers J, Hülsmann S, Markus MA, Zschüntzsch J, Alves F, Dullin C. Non-Invasive Optical Motion Tracking Allows Monitoring of Respiratory Dynamics in Dystrophin-Deficient Mice. Cells 2022; 11:cells11050918. [PMID: 35269540 PMCID: PMC8909479 DOI: 10.3390/cells11050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function can only be inadequately mapped in preclinical studies and a simple reliable translatable method of tracking the severity of the disease still lacks. We aimed to establish a sensitive, reliable, harmless and easy way to assess the effects of respiratory muscle weakness and subsequent irregularity in breathing pattern. Optical respiratory dynamics tracking (ORDT) was developed utilising a camera to track the movement of paper markers placed on the thoracic-abdominal region of the mouse. ORDT successfully distinguished diseased mdx phenotype from healthy controls by measuring significantly higher expiration constants (k) in mdx mice compared to wildtype (wt), which were also observed in the established X-ray based lung function (XLF). In contrast to XLF, with ORDT we were able to distinguish distinct fast and slow expiratory phases. In mdx mice, a larger part of the expiratory marker displacement was achieved in this initial fast phase as compared to wt mice. This phenomenon could not be observed in the XLF measurements. We further validated the simplicity and reliability of our approach by demonstrating that it can be performed using free-hand smartphone acquisition. We conclude that ORDT has a great preclinical potential to monitor DMD and other neuromuscular diseases based on changes in the breathing patterns with the future possibility to track therapy response.
Collapse
Affiliation(s)
- Angelika Svetlove
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
| | - Jonas Albers
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
| | - Swen Hülsmann
- Central Breathing Control, Clinic for Anesthesiology, University Medical Center, 37075 Göttingen, Germany;
| | - Marietta Andrea Markus
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
| | - Jana Zschüntzsch
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center, 37075 Göttingen, Germany;
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany; (A.S.); (M.A.M.); (F.A.)
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
- Clinic for Haematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
- Multiscale Bioimaging—From Molecular Machines to Networks of Excitable Cells, Cluster of Excellence (MBExC), 37075 Göttingen, Germany
| | - Christian Dullin
- X-ray Based Preclinical Imaging Technologies, Institute for Diagnostic and Interventional Radiology, University Medical Center, 37075 Göttingen, Germany;
- Institute for Diagnostic and Interventional Radiology, University Hospital, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
35
|
Bourg N, Vu Hong A, Lostal W, Jaber A, Guerchet N, Tanniou G, Bordier F, Bertil-Froidevaux E, Georger C, Daniele N, Richard I, Israeli D. Co-Administration of Simvastatin Does Not Potentiate the Benefit of Gene Therapy in the mdx Mouse Model for Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23042016. [PMID: 35216132 PMCID: PMC8878028 DOI: 10.3390/ijms23042016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and cureless muscle pediatric genetic disease, which is caused by the lack or the drastically reduced expression of dystrophin. Experimental therapeutic approaches for DMD have been mainly focused in recent years on attempts to restore the expression of dystrophin. While significant progress was achieved, the therapeutic benefit of treated patients is still unsatisfactory. Efficiency in gene therapy for DMD is hampered not only by incompletely resolved technical issues, but likely also due to the progressive nature of DMD. It is indeed suspected that some of the secondary pathologies, which are evolving over time in DMD patients, are not fully corrected by the restoration of dystrophin expression. We recently identified perturbations of the mevalonate pathway and of cholesterol metabolism in DMD patients. Taking advantage of the mdx model for DMD, we then demonstrated that some of these perturbations are improved by treatment with the cholesterol-lowering drug, simvastatin. In the present investigation, we tested whether the combination of the restoration of dystrophin expression with simvastatin treatment could have an additive beneficial effect in the mdx model. We confirmed the positive effects of microdystrophin, and of simvastatin, when administrated separately, but detected no additive effect by their combination. Thus, the present study does not support an additive beneficial effect by combining dystrophin restoration with a metabolic normalization by simvastatin.
Collapse
Affiliation(s)
- Nathalie Bourg
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Ai Vu Hong
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - William Lostal
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Abbass Jaber
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Nicolas Guerchet
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Guillaume Tanniou
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Fanny Bordier
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Emilie Bertil-Froidevaux
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Christophe Georger
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Nathalie Daniele
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - David Israeli
- Généthon, 91000 Evry, France; (N.B.); (A.V.H.); (W.L.); (A.J.); (N.G.); (G.T.); (F.B.); (E.B.-F.); (C.G.); (N.D.); (I.R.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
- Correspondence: ; Tel.: + 33-1-6947-2967
| |
Collapse
|
36
|
Sakai K, Motegi T, Chambers JK, Uchida K, Nishida H, Shimamura S, Tani H, Shimada T, Furuya M. Dystrophin-deficient muscular dystrophy in a Toy Poodle with a single base pair insertion in exon 45 of the Duchenne muscular dystrophy gene. J Vet Med Sci 2022; 84:502-506. [PMID: 35135937 PMCID: PMC9096033 DOI: 10.1292/jvms.21-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 10-month-old, intact male Toy Poodle was referred for a postural abnormality. Blood biochemical tests revealed a marked increase in plasma creatine phosphokinase (CPK) concentration. The isoenzyme test showed that 99% of serum CPK consisted of CPK-MM. Histopathological evaluation of muscle biopsy samples confirmed scattered degeneration and necrosis of myofibers. Immunohistochemistry for dystrophin showed an absence of staining in muscle cells. Based on these findings, the dog was diagnosed with dystrophin-deficient muscular dystrophy. Whole genome sequencing using genomic DNA extracted from blood revealed a single base pair insertion in exon 45 of the Duchenne muscular dystrophy (DMD) gene. This is the first report on muscular dystrophy in Toy Poodles and identified a novel mutation in the DMD gene.
Collapse
Affiliation(s)
- Kosei Sakai
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Tomoki Motegi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - James Ken Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hidetaka Nishida
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shunsuke Shimamura
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Terumasa Shimada
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
37
|
Erkut E, Yokota T. CRISPR Therapeutics for Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1832. [PMID: 35163754 PMCID: PMC8836469 DOI: 10.3390/ijms23031832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder with a prevalence of approximately 1 in 3500-5000 males. DMD manifests as childhood-onset muscle degeneration, followed by loss of ambulation, cardiomyopathy, and death in early adulthood due to a lack of functional dystrophin protein. Out-of-frame mutations in the dystrophin gene are the most common underlying cause of DMD. Gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising therapeutic for DMD, as it can permanently correct DMD mutations and thus restore the reading frame, allowing for the production of functional dystrophin. The specific mechanism of gene editing can vary based on a variety of factors such as the number of cuts generated by CRISPR, the presence of an exogenous DNA template, or the current cell cycle stage. CRISPR-mediated gene editing for DMD has been tested both in vitro and in vivo, with many of these studies discussed herein. Additionally, novel modifications to the CRISPR system such as base or prime editors allow for more precise gene editing. Despite recent advances, limitations remain including delivery efficiency, off-target mutagenesis, and long-term maintenance of dystrophin. Further studies focusing on safety and accuracy of the CRISPR system are necessary prior to clinical translation.
Collapse
Affiliation(s)
- Esra Erkut
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8613-114 Street, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8613-114 Street, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8613-114 Street, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
38
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
39
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
40
|
Johnston JR, McNally EM. Genetic correction strategies for Duchenne Muscular Dystrophy and their impact on the heart. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 63. [PMID: 34898968 DOI: 10.1016/j.ppedcard.2021.101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with early childhood onset characterized by profound loss of muscle strength and associated cardiomyopathy. DMD affects is most often caused by deletions involving single or multiple exons that disrupt the open reading frame of the DMD gene. Mutations causing loss or premature truncation of dystrophin result in dystrophin protein deficiency, which renders the plasma membrane of skeletal myofibers and cardiomyocytes weakened. Aim of Review Genetic correction is in use to treat DMD, since several drugs have been already approved which partially restore dystrophin production through the use of antisense oligonucleotides. There are multiple ongoing clinical trials to evaluate the efficacy of treating DMD with micro-dystrophins delivered by adeno-associated viruses. Future approaches entail gene editing to target the single copy of the DMD gene on the X-chromosome. The primary, near-term goal is restoration of skeletal muscle dystrophin, and for some of these treatments, the efficacy in the heart is not fully known. Here, we discuss the anticipated cardiac outcomes of dystrophin-targeted therapies, and how this information informs genomic medicine for cardiomyopathies, especially in childhood. Key Scientific Concepts of Review Many genetic treatment strategies are being implemented to treat DMD. Since most preclinical testing has focused on skeletal muscle, there is a gap in knowledge about the expected effects of these approaches on cardiac genetic correction and cardiomyopathy progression in DMD. Additional study is needed.
Collapse
Affiliation(s)
- Jamie R Johnston
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Duan D. A Cautiously Optimistic Outlook of a Designer Therapy for 1% of Duchenne Muscular Dystrophy Patients. Hum Gene Ther 2021; 32:872-874. [PMID: 34554886 DOI: 10.1089/hum.2021.29179.ddu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
42
|
Gerull B, Brodehl A. Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy. Curr Heart Fail Rep 2021; 18:378-390. [PMID: 34478111 PMCID: PMC8616880 DOI: 10.1007/s11897-021-00532-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. Recent Findings This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Summary Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center (CHFC), Department of Medicine I, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Andreas Brodehl
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| |
Collapse
|
43
|
Life 2.0-A CRISPR path to a sustainable planet. Proc Natl Acad Sci U S A 2021; 118:2107418118. [PMID: 34050031 DOI: 10.1073/pnas.2107418118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|