1
|
Quinlivan KM, Howard IV, Southan F, Bayer RL, Torres KL, Serhan CN, Panigrahy D. Exploring the Unique Role of Specialized Pro-Resolving Mediators in Cancer Therapeutics. Prostaglandins Other Lipid Mediat 2024:106944. [PMID: 39722403 DOI: 10.1016/j.prostaglandins.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Unresolved chronic inflammation, a hallmark of cancer, promotes tumor growth and metastasis in various cancer types. In contrast to blocking inflammation, stimulation of resolution of inflammation is an entirely novel approach to "resolve" inflammation. Resolution of inflammation mechanisms in cancer includes clearance of tumor debris, counter-regulation of pro-inflammatory eicosanoids and cytokines, and suppression of leukocyte infiltration. Conventional cytotoxic chemotherapy, radiation, anti-angiogenic therapy, and immune checkpoint inhibitors directly or indirectly can lead to the generation of pro-tumorigenic cellular debris. Over the past two decades, a potential paradigm shift has emerged in the inflammation field with the discovery of specialized pro-resolving mediators (SPMs), including resolvins, lipoxins, maresins, and protectins. SPMs are structurally distinct families of mediators grouped together by their pro-resolving "debris-clearing" functions. "Pro-resolving" therapies are in clinical development for various inflammation-driven diseases, including cancer. SPMs, as novel cancer therapeutics, have tremendous potential to enhance current cancer therapy. The mechanisms of SPMs as anti-cancer therapeutics are under active investigation by various laboratories worldwide. Here, we explore the current appreciation of the SPMs as innovative potential treatments designed to harness the unique anti-cancer activity of SPMs.
Collapse
Affiliation(s)
- Katherine M Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.
| | - Isabella V Howard
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Franciska Southan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Rachel L Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kimberly L Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
2
|
Mohamed AA, Armanious M, Bedair RW, Amin NS, El Tayebi HM. When less is more: The association between the expression of polymorphic CYPs and AFB1-induced HCC. Eur J Clin Invest 2024; 54:e14297. [PMID: 39099542 DOI: 10.1111/eci.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND An individual's genetic fingerprint is emerging as a pivotal predictor of numerous disease- and treatment-related factors. Single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes play key roles in an individual's exposure to a malignancy-associated risk, such as Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma (HCC). AIM This study aimed at reviewing literature on the polymorphisms that exist in CYP enzymes and their possible link with susceptibility to AFB1-induced HCC. MATERIALS & METHODS A set of keywords associated with the study subject of interest was used to search the Google Scholar and the PubMed database. The last ten years' worth of research projects were included in the results filter. The research involved HCC patients and any connection between polymorphic forms of CYP enzymes and their susceptibility to AFB1-induced HCC, including older but significant data. RESULTS Variations in CYP1A2 and CYP3A4 were reported to impact the rate and magnitude of AFB1 bio-activation, thus influencing an individual's vulnerability to develop HCC. In HCC patients, the activity of CYP isoforms varies, where increased activity has been reported with CYP2C9, CYP2D6, and CYP2E1, while CYP1A2, CYP2C8, and CYP2C19 exhibit decreased activity. CYP2D6*10 frequency has been discovered to differ considerably in HCC patients. Rs2740574 (an upstream polymorphism in CYP3A4 as detected in CYP3A4*1B) and rs776746 (which affects CYP3A5 RNA splicing), both of which influence CYP3A expression, thus impacting the variability of AFB1-epoxide adducts in HCC patients. DISCUSSION CYP1A2 is the primary enzyme accountable for the formation of harmful AFBO globally. CYP3A4, CYP3A5, CYP3A7, CYP2B7, and CYP3A3 are also implicated in the bio-activation of AFB1 to mutagenic metabolites. It is thought that CYP3A4 is the protein that interacts with AFB1 metabolism the most. CONCLUSION Polymorphic variants of CYP enzymes have a functional impact on the susceptibility to AFB1-induced HCC. Outlining such variation and their implications may provide deeper insights into approaching HCC in a more personalized manner for guiding future risk-assessment, diagnosis, and treatment.
Collapse
Affiliation(s)
- Asmaa Ashraf Mohamed
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monica Armanious
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana W Bedair
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nada Sherif Amin
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Chen Y, Zhao H, Zhang H, Wang B, Ma J. Cytokine profile of cerebrospinal fluid in pediatric patients with metastatic medulloblastoma. Heliyon 2024; 10:e38504. [PMID: 39524698 PMCID: PMC11546137 DOI: 10.1016/j.heliyon.2024.e38504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Medulloblastoma (MB) is a malignant pediatric central nervous system tumor that is prone to leptomeningeal metastasis. Currently, apart from magnetic resonance imaging and cerebrospinal fluid (CSF) cytology, there are no reliable biomarkers for MB progression. Cytokines are key proteins in signaling pathways in the tumor microenvironment and are closely related to tumor recurrence and progression. This study aimed to investigate the CSF cytokine profile in pediatric patients with MB to identify biomarkers of tumor progression and metastasis. Methods In total, 10 patients were recruited for this study. Five patients had nonmetastatic MB and five had metastatic MB. A cytokine antibody array was used to detect the expression of 120 cytokines in the CSF, and differentially expressed cytokines were screened by integrated bioinformatics analysis. Results Twenty-seven cytokines were upregulated in patients with MB compared to control individuals. Of these, eight were upregulated by > 1.5-fold (CCL2, BMP-4, beta-NGF, FGF-7, IL-12p40, eotaxin-2, M-CSF, and NT-4). Twelve cytokines were differentially expressed between patients with metastatic MB and nonmetastatic (nine cytokines were upregulated and three were downregulated). Among them, NAP-2, MIP-1α, MIP-1β, IGFBP-1, IGFBP-2 and IGFBP-3 were upregulated by more than two-fold. Gene Ontology analysis revealed that the upregulated cytokines were enriched mainly in "epithelial cell proliferation" and "chemotaxis," and the Kyoto Encyclopedia of Genes and Genomes analysis indicated the enrichment of the "MAPK," "PI3K-Akt," and "Ras" signaling pathways. Conclusions The present study investigated cytokine profiles in the CSF of pediatric patients with MB. Our results suggest that these differentially expressed cytokines may serve as novel markers for detecting MB, especially for assessing the risk of progression and metastasis.
Collapse
Affiliation(s)
| | | | | | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Nakane K, Morisseau C, Dowker-Key PD, Benitez G, Aguilan JT, Nagai E, Sidoli S, Hammock BD, Bettaieb A, Shinoda K, Kitamura S. In Vivo-Active Soluble Epoxide Hydrolase-Targeting PROTACs with Improved Potency and Stability. ACS Med Chem Lett 2024; 15:1891-1898. [PMID: 39563815 PMCID: PMC11571017 DOI: 10.1021/acsmedchemlett.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and a promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency. One of the most potent molecules (compound 8) exhibits a half-maximal degradation concentration in the sub-nM range, is stable in vivo, and effectively degrades sEH in mouse livers and brown adipose tissues. Given the role played by sEH in many metabolic and nonmetabolic diseases, the presented molecules provide useful chemical probes for the study of sEH biology. They also hold potential for therapeutic development against a range of disease conditions, including diabetes, inflammation, and metabolic disorders.
Collapse
Affiliation(s)
- Keita Nakane
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Christophe Morisseau
- Department
of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Presley D. Dowker-Key
- Department
of Nutrition, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gabrielle Benitez
- Department
of Medicine, Albert Einstein College of
Medicine, Bronx, New York 10461, United States
| | - Jennifer T. Aguilan
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Emiko Nagai
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Bruce D. Hammock
- Department
of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ahmed Bettaieb
- Department
of Nutrition, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kosaku Shinoda
- Department
of Medicine, Albert Einstein College of
Medicine, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| | - Seiya Kitamura
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Nakane K, Morisseau C, Dowker-Key PD, Benitez G, Aguilan JT, Nagai E, Sidoli S, Hammock BD, Bettaieb A, Shinoda K, Kitamura S. In vivo -Active Soluble Epoxide Hydrolase-targeting PROTACs with Improved Potency and Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604814. [PMID: 39211216 PMCID: PMC11361158 DOI: 10.1101/2024.07.23.604814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency. One of the most potent molecules (compound 8 ) exhibits a half-maximal degradation concentration in the sub-nM range, is stable in vivo , and effectively degrades sEH in mouse livers and brown adipose tissues. Given the role played by sEH in many metabolic and nonmetabolic diseases, the presented molecules provide useful chemical probes for the study of sEH biology. They also hold potential for therapeutic development against a range of disease conditions, including diabetes, inflammation, and metabolic disorders.
Collapse
|
6
|
Blériot C, Dunsmore G, Alonso-Curbelo D, Ginhoux F. A temporal perspective for tumor-associated macrophage identities and functions. Cancer Cell 2024; 42:747-758. [PMID: 38670090 DOI: 10.1016/j.ccell.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/13/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a central role at each of its stages, from tumor initiation to metastasis. In this context, macrophages represent well-established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages, inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-associated macrophage biology, we propose a new framework to better contextualize their significance in the inflammatory processes that precede and result from the onset of cancer and shape its evolution.
Collapse
Affiliation(s)
- Camille Blériot
- Gustave Roussy, INSERM, Villejuif, France; Institut Necker des Enfants Malades (INEM), INSERM, CNRS, Université Paris Cité, Paris, France
| | | | - Direna Alonso-Curbelo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Florent Ginhoux
- Gustave Roussy, INSERM, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS, Singapore, Singapore.
| |
Collapse
|
7
|
Valenzuela R, Walbaum B, Farias C, Acevedo F, Vargas C, Bennett JT, Bravo ML, Pinto MP, Medina L, Merino T, Ibañez C, Parada A, Sanchez C. High linoleic acid levels in red blood cells predict a poor response to neoadjuvant chemotherapy in human epidermal growth factor receptor type 2-positive breast cancer patients. Nutrition 2024; 121:112357. [PMID: 38430738 DOI: 10.1016/j.nut.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Polyunsaturated fatty acids are categorized as ω-3 or ⍵-6. Previous studies demonstrate that breast cancers display a high expression of fatty acid synthase and high fatty acid levels. Our study sought to determine if changes in plasma or red blood cell membrane fatty acid levels were associated with the response to preoperative (neoadjuvant) chemotherapy in non-metastatic breast cancer patients. METHODS Our prospective study assessed fatty acid levels in plasma and red blood cell membrane. Response to neoadjuvant chemotherapy was evaluated by the presence or absence of pathologic complete response and/or residual cancer burden. RESULTS A total of 28 patients were included. First, patients who achieved pathologic complete response had significantly higher neutrophil-to-lymphocyte ratio versus no pathologic complete response (P = 0.003). Second, total red blood cell membrane polyunsaturated fatty acids were higher in the absence of pathologic complete response (P = 0.0028). Third, total red blood cell membrane ⍵-6 polyunsaturated fatty acids were also higher in no pathologic complete response (P < 0.01). Among ⍵-6 polyunsaturated fatty acids, red blood cell membrane linoleic acid was higher in the absence of pathologic complete response (P < 0.01). Notably, plasma polyunsaturated fatty acid, ⍵-6, and linoleic acid levels did not have significant differences. A multivariate analysis confirmed red blood cell membrane linoleic acid was associated with no pathologic complete response; this was further confirmed by receiver operating characteristic analysis (specificity = 92.3%, sensitivity = 76.9%, and area under the curve = 0.855). CONCLUSIONS Pending further validation, red blood cell membrane linoleic acid might serve as a predictor biomarker of poorer response to neoadjuvant chemotherapy in non-metastatic human epidermal growth factor receptor type 2-positive breast cancer. Measuring fatty acids in red blood cell membrane could offer a convenient, minimally invasive strategy to identifying patients more likely to respond or those with chemoresistance.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Benjamín Walbaum
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Farias
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Acevedo
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Vargas
- Department of Surgical Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomas Bennett
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Loreto Bravo
- Support Team for Oncological Research and Medicine (STORM), Santiago, Chile
| | - Mauricio P Pinto
- Support Team for Oncological Research and Medicine (STORM), Santiago, Chile
| | - Lidia Medina
- Centro del Cáncer Nuestra Señora de la Esperanza, UC CHRISTUS Healthcare Network, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomas Merino
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ibañez
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Parada
- Department of Health Sciences. School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cesar Sanchez
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Panigrahy D, Kelly AG, Wang W, Yang J, Hwang SH, Gillespie M, Howard I, Bueno-Beti C, Asimaki A, Penna V, Lavine K, Edin ML, Zeldin DC, Hammock BD, Saffitz JE. Inhibition of Soluble Epoxide Hydrolase Reduces Inflammation and Myocardial Injury in Arrhythmogenic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580812. [PMID: 38463975 PMCID: PMC10925075 DOI: 10.1101/2024.02.17.580812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Previous studies have implicated persistent innate immune signaling in the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a familial non-ischemic heart muscle disease characterized by life-threatening arrhythmias and progressive myocardial injury. Here, we provide new evidence implicating inflammatory lipid autocoids in ACM. We show that specialized pro-resolving lipid mediators are reduced in hearts of Dsg2mut/mut mice, a well characterized mouse model of ACM. We also found that ACM disease features can be reversed in rat ventricular myocytes expressing mutant JUP by the pro-resolving epoxy fatty acid (EpFA) 14,15-eicosatrienoic acid (14-15-EET), whereas 14,15-EE-5(Z)E which antagonizes actions of the putative 14,15-EET receptor, intensified nuclear accumulation of the desmosomal protein plakoglobin. Soluble epoxide hydrolase (sEH), an enzyme that rapidly converts pro-resolving EpFAs into polar, far less active or even pro-inflammatory diols, is highly expressed in cardiac myocytes in Dsg2mut/mut mice. Inhibition of sEH prevented progression of myocardial injury in Dsg2mut/mut mice and led to recovery of contractile function. This was associated with reduced myocardial expression of genes involved in the innate immune response and fewer pro-inflammatory macrophages expressing CCR2, which mediate myocardial injury in Dsg2mut/mut mice. These results suggest that pro-inflammatory eicosanoids contribute to the pathogenesis of ACM and, further, that inhibition of sEH may be an effective, mechanism-based therapy for ACM patients.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Abigail G. Kelly
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Weicang Wang
- Department of Entomology and Nematology and UC-Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Jun Yang
- Department of Entomology and Nematology and UC-Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC-Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Michael Gillespie
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Isabella Howard
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carlos Bueno-Beti
- Cardiovascular and Genomics Research Institute, St. George’s, University of London, UK
| | - Angeliki Asimaki
- Cardiovascular and Genomics Research Institute, St. George’s, University of London, UK
| | - Vinay Penna
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO
| | - Kory Lavine
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO
| | | | | | - Bruce D. Hammock
- Department of Entomology and Nematology and UC-Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Kelly AG, Wang W, Rothenberger E, Yang J, Gilligan MM, Kipper FC, Attaya A, Gartung A, Hwang SH, Gillespie MJ, Bayer RL, Quinlivan KM, Torres KL, Huang S, Mitsiades N, Yang H, Hammock BD, Panigrahy D. Enhancing cancer immunotherapy via inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 2024; 121:e2314085121. [PMID: 38330013 PMCID: PMC10873624 DOI: 10.1073/pnas.2314085121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.
Collapse
Affiliation(s)
- Abigail G. Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Food Science, Purdue University, West Lafayette, IN47907
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Molly M. Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Franciele C. Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Michael J. Gillespie
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Rachel L. Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Katherine M. Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Kimberly L. Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA98109
| | - Nicholas Mitsiades
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Internal Medicine, University of CaliforniaDavis,CA95817
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
10
|
Wang T, Li X, Liao G, Wang Z, Han X, Gu J, Mu X, Qiu J, Qian Y. AFB1 Triggers Lipid Metabolism Disorders through the PI3K/Akt Pathway and Mediates Apoptosis Leading to Hepatotoxicity. Foods 2024; 13:163. [PMID: 38201191 PMCID: PMC10778638 DOI: 10.3390/foods13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.
Collapse
Affiliation(s)
- Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishuang Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxu Han
- National Center of Technology Innovation for Dairy, Hohhot 010100, China;
| | - Jingyi Gu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
11
|
Jin J, Kouznetsova VL, Kesari S, Tsigelny IF. Synergism in actions of HBV with aflatoxin in cancer development. Toxicology 2023; 499:153652. [PMID: 37858775 DOI: 10.1016/j.tox.2023.153652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Aflatoxin B1 (AFB1) is a fungal metabolite found in animal feeds and human foods. It is one of the most toxic and carcinogenic of aflatoxins and is classified as a Group 1 carcinogen. Dietary exposure to AFB1 and infection with chronic Hepatitis B Virus (HBV) make up two of the major risk factors for hepatocellular carcinoma (HCC). These two major risk factors raise the probability of synergism between the two agents. This review proposes some collaborative molecular mechanisms underlying the interaction between AFB1 and HBV in accelerating or magnifying the effects of HCC. The HBx viral protein is one of the main viral proteins of HBV and has many carcinogenic qualities that are involved with HCC. AFB1, when metabolized by CYP450, becomes AFB1-exo-8,9-epoxide (AFBO), an extremely toxic compound that can form adducts in DNA sequences and induce mutations. With possible synergisms that exist between HBV and AFB1 in mind, it is best to treat both agents simultaneously to reduce the risk by HCC.
Collapse
Affiliation(s)
- Joshua Jin
- IUL Scientific Program, San Diego, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA, USA; BiAna, La Jolla, CA, USA; Curescience Institute, San Diego, CA, USA
| | | | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA, USA; BiAna, La Jolla, CA, USA; Curescience Institute, San Diego, CA, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Frangiamone M, Lozano M, Cimbalo A, Lazaro A, Font G, Manyes L. The Protective Effect of Pumpkin and Fermented Whey Mixture against AFB1 and OTA Immune Toxicity In Vitro. A Transcriptomic Approach. Mol Nutr Food Res 2023; 67:e2200902. [PMID: 37544930 DOI: 10.1002/mnfr.202200902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Indexed: 08/08/2023]
Abstract
SCOPE The aim of the study is to investigate in Jurkat cells the possible beneficial effect of pumpkin (P) and fermented milk whey (FW) mixture against aflatoxin B1 (AFB1) and ochratoxin A (OTA) induced alterations in gene expression profile. METHODS AND RESULTS Human T cells are exposed for 7 days to digested bread extracts containing P-FW mixture along with AFB1 and OTA, individually and in combination. The results of RNA sequencing show that AFB1 P-FW exposure resulted in 34 differentially expressed genes (DEGs) while 3450 DEGs are found in OTA P-FW exposure and 3264 DEGs in AFB1-OTA P-FW treatment. Gene ontology analysis reveals biological processes and molecular functions related to immune system and inflammatory response. Moreover, PathVisio analysis points to eicosanoid signaling via lipoxygenase as the main pathway altered by AFB1 P-FW exposure whereas interferon signaling is the most affected pathway after OTA P-FW and AFB1-OTA P-FW treatments. CONCLUSIONS The mitigation of genes and inherent pathways typically associated with the inflammatory response suggest not only the anti-inflammatory and protective role of P-FW mixture but also their possible application in food industry to counteract AFB1 and OTA toxic effects on human and animal health.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alvaro Lazaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| |
Collapse
|
13
|
Zhang J, Zhang WH, Morisseau C, Zhang M, Dong HJ, Zhu QM, Huo XK, Sun CP, Hammock BD, Ma XC. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131890. [PMID: 37406527 PMCID: PMC10699546 DOI: 10.1016/j.jhazmat.2023.131890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.
Collapse
Affiliation(s)
- Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Wen-Hao Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Min Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hong-Jun Dong
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China.
| |
Collapse
|
14
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
15
|
Abdalla HB, Alvarez C, Wu YC, Rojas P, Hammock BD, Maddipati KR, Trindade-da-Silva CA, Soares MQS, Clemente-Napimoga JT, Kantarci A, Napimoga MH, Van Dyke TE. Soluble epoxide hydrolase inhibition enhances production of specialized pro-resolving lipid mediator and promotes macrophage plasticity. Br J Pharmacol 2023; 180:1597-1615. [PMID: 36508312 PMCID: PMC10175184 DOI: 10.1111/bph.16009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFA) are lipid mediators that are rapidly inactivated by soluble epoxide hydrolase (sEH). Uncontrolled and chronic inflammatory disorders fail to sufficiently activate endogenous regulatory pathways, including the production of specialized pro-resolving mediators (SPMs). Here, we addressed the relationship between SPMs and the EET/sEH axis and explored the effects of sEH inhibition on resolving macrophage phenotype. EXPERIMENTAL APPROACH Mice were treated with a sEH inhibitor, EETs, or sEH inhibitor + EETs (combination) before ligature placement to induce experimental periodontitis. Using RT-qPCR, gingival samples were used to examine SPM receptors and osteolytic and inflammatory biomarkers. Maxillary alveolar bone loss was quantified by micro-CT and methylene blue staining. SPM levels were analysed by salivary metabolo-lipidomics. Gingival macrophage phenotype plasticity was determined by RT-qPCR and flow cytometry. Effects of sEH inhibition on macrophage polarization and SPM production were assessed with bone marrow-derived macrophages (BMDMs). KEY RESULTS Pharmacological inhibition of sEH suppressed bone resorption and the inflammatory cytokine storm in experimental periodontitis. Lipidomic analysis revealed that sEH inhibition augmented levels of LXA4, RvE1, RvE2, and 4-HDoHE, concomitant with up-regulation of LTB4R1, CMKLR1/ChemR23, and ALX/FPR2 SPM receptors. Notably, there is an impact on gingival macrophage plasticity was affected suggesting an inflammation resolving phenotype with sEH inhibition. In BMDMs, sEH inhibition reduced inflammatory macrophage activation, and resolving macrophages were triggered to produce SPMs. CONCLUSION AND IMPLICATIONS Pharmacological sEH inhibition increased SPM synthesis associated with resolving macrophages, suggesting a potential target to control osteolytic inflammatory disorders.
Collapse
Affiliation(s)
- Henrique B Abdalla
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Carla Alvarez
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yu-Chiao Wu
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Paola Rojas
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | | | - Carlos Antonio Trindade-da-Silva
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Mariana Q S Soares
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Marcelo H Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Wang Y, Morisseau C, Takamura A, Wan D, Li D, Sidoli S, Yang J, Wolan DW, Hammock BD, Kitamura S. PROTAC-Mediated Selective Degradation of Cytosolic Soluble Epoxide Hydrolase Enhances ER Stress Reduction. ACS Chem Biol 2023; 18:884-896. [PMID: 36947831 PMCID: PMC10586715 DOI: 10.1021/acschembio.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme responsible for lipid metabolism and is a promising drug target. Here, we report the first-in-class PROTAC small-molecule degraders of sEH. Our optimized PROTAC selectively targets the degradation of cytosolic but not peroxisomal sEH, resulting in exquisite spatiotemporal control. Remarkably, our sEH PROTAC molecule has higher potency in cellular assays compared to the parent sEH inhibitor as measured by the significantly reduced ER stress. Interestingly, our mechanistic data indicate that our PROTAC directs the degradation of cytosolic sEH via the lysosome, not through the proteasome. The molecules presented here are useful chemical probes to study the biology of sEH with the potential for therapeutic development. Broadly, our results represent a proof of concept for the superior cellular potency of sEH degradation over sEH enzymatic inhibition, as well as subcellular compartment-selective modulation of a protein by PROTACs.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Akihiro Takamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Debin Wan
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Dongyang Li
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
18
|
Zhang J, Zhang M, Huo XK, Ning J, Yu ZL, Morisseau C, Sun CP, Hammock BD, Ma XC. Macrophage Inactivation by Small Molecule Wedelolactone via Targeting sEH for the Treatment of LPS-Induced Acute Lung Injury. ACS CENTRAL SCIENCE 2023; 9:440-456. [PMID: 36968547 PMCID: PMC10037491 DOI: 10.1021/acscentsci.2c01424] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Soluble epoxide hydrolase (sEH) plays a critical role in inflammation by modulating levels of epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFAs). Here, we investigate the possible role of sEH in lipopolysaccharide (LPS)-mediated macrophage activation and acute lung injury (ALI). In this study, we found that a small molecule, wedelolactone (WED), targeted sEH and led to macrophage inactivation. Through the molecular interaction with amino acids Phe362 and Gln384, WED suppressed sEH activity to enhance levels of EETs, thus attenuating inflammation and oxidative stress by regulating glycogen synthase kinase 3beta (GSK3β)-mediated nuclear factor-kappa B (NF-κB) and nuclear factor E2-related factor 2 (Nrf2) pathways in vitro. In an LPS-stimulated ALI animal model, pharmacological sEH inhibition by WED or sEH knockout (KO) alleviated pulmonary damage, such as the increase in the alveolar wall thickness and collapse. Additionally, WED or sEH genetic KO both suppressed macrophage activation and attenuated inflammation and oxidative stress in vivo. These findings provided the broader prospects for ALI treatment by targeting sEH to alleviate inflammation and oxidative stress and suggested WED as a natural lead candidate for the development of novel synthetic sEH inhibitors.
Collapse
Affiliation(s)
- Juan Zhang
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- School
of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Min Zhang
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
- School
of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Xiao-Kui Huo
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Christophe Morisseau
- Department
of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Cheng-Peng Sun
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bruce D. Hammock
- Department
of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
19
|
Inhibition effect of 1-acetoxy-6α-(2-methylbutyryl)eriolanolide toward soluble epoxide hydrolase: Multispectral analysis, molecular dynamics simulation, biochemical, and in vitro cell-based studies. Int J Biol Macromol 2023; 235:123911. [PMID: 36878397 DOI: 10.1016/j.ijbiomac.2023.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Soluble epoxide hydrolase (sEH) serves as a potential target in inflammation-related diseases. Based on the bioactivity-guided separation, a new sesquiterpenoid inulajaponoid A (1) was isolated from Inula japonica with a sEH inhibitory effect, together with five known compounds, such as 1-O-acetyl-6-O-isobutyrylbritannilactone (2), 6β-hydroxytomentosin (3), 1β,8β-dihydroxyeudesma-4(15),11(13)-dien-12,6α-olide (4), (4S,6S,7S,8R)-1-O-acetyl-6-O-(3-methylvaleryloxy)-britannilactone (5), and 1-acetoxy-6α-(2-methylbutyryl)eriolanolide (6). Among them, compounds 1 and 6 were assigned as mixed and uncompetitive inhibitors, respectively. The result of immunoprecipitation (IP)-MS demonstrated the specific binding of compound 6 to sEH in the complex system, which was further confirmed by the fluorescence-based binding assay showing its equilibrium dissociation constant (Kd = 2.43 μM). The detail molecular stimulation revealed the mechanism of action of compound 6 with sEH through the hydrogen bond of amino acid residue Gln384. Furthermore, this natural sEH inhibitor (6) could suppress the MAPK/NF-κB activation to regulate inflammatory mediators, such as NO, TNF-α, and IL-6, which confirmed the anti-inflammatory effect of inhibition of sEH by 6. These findings provided a useful insight to develop sEH inhibitors upon the sesquiterpenoids.
Collapse
|
20
|
Qi L, Pan X, Chen X, Liu P, Chen M, Zhang Q, Hang X, Tang M, Wen D, Dai L, Chen C, Liu Y, Xu Z. COX-2/PGE2 upregulation contributes to the chromosome 17p-deleted lymphoma. Oncogenesis 2023; 12:5. [PMID: 36750552 PMCID: PMC9905509 DOI: 10.1038/s41389-023-00451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.
Collapse
Affiliation(s)
- Lu Qi
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xuelan Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Pengpeng Liu
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Mei Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Qi Zhang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaohang Hang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Minghai Tang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Dan Wen
- grid.449525.b0000 0004 1798 4472Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Chong Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhengmin Xu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
21
|
Yang JC, Xu P, Ning S, Wasielewski LJ, Adomat H, Hwang SH, Morisseau C, Gleave M, Corey E, Gao AC, Lara PN, Evans CP, Hammock BD, Liu C. Novel inhibition of AKR1C3 and androgen receptor axis by PTUPB synergizes enzalutamide treatment in advanced prostate cancer. Oncogene 2023; 42:693-707. [PMID: 36596844 PMCID: PMC9975039 DOI: 10.1038/s41388-022-02566-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.
Collapse
Affiliation(s)
- Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Pengfei Xu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Logan J Wasielewski
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Primo N Lara
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
22
|
Nakamura N. Radiation-induced increases in cancer mortality result from an earlier onset of the disease in mice and atomic bomb survivors. Int J Radiat Biol 2023:1-9. [PMID: 36525558 DOI: 10.1080/09553002.2023.2158246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE It has long been thought that the carcinogenic effect of radiation is due to the induction of oncogenic mutations, which means that a fraction of the irradiated individuals will be affected in a dose-dependent manner. This dogma was recently challenged because it was found that the model does not properly explain the life shortening effect of radiation which is seen as a parallel shift of mouse survival curves toward younger ages following an exposure to radiation. Specifically, according to the mutation induction theory, an irradiated mouse or human population evolves into two subpopulations with different mean lifespans, which would lead to a wider distribution of individual lifespans, and hence to a shallower slope in the survival curve, which is not what is observed. Instead, the parallel shift indicates that a large fraction of the irradiated mice are affected (but there are exceptions). Thus, it was thought important to pursue how the excess risk for cancer develops following an exposure to radiation. METHOD In the present study, cancer mortality data from mice and atomic-bomb survivors is presented to understand the increasing patterns of cancer risks. RESULTS In both species, it was found that cancer mortality starts to increase earlier in the exposed group. CONCLUSION The results are consistent with the notion that in many irradiated organs (but not all) radiation-induced tissue damage can lead to the development of an altered microenvironment (most probably inflammation), which is favorable to the growth of spontaneously arising tumor cells and can lead to an earlier onset of the diseases or to an apparently increased risk of cancer.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
23
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
24
|
Wang W, Wang Y, Yang J, Wagner KM, Hwang SH, Cheng J, Singh N, Edwards P, Morisseau C, Zhang G, Panigrahy D, Hammock BD. Aflatoxin B 1 exposure disrupts the intestinal immune function via a soluble epoxide hydrolase-mediated manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114417. [PMID: 36525946 PMCID: PMC9879385 DOI: 10.1016/j.ecoenv.2022.114417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 05/05/2023]
Abstract
Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jeff Cheng
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nalin Singh
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Guodong Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Dipak Panigrahy
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.
| |
Collapse
|
25
|
Zhang J, Luan ZL, Huo XK, Zhang M, Morisseau C, Sun CP, Hammock BD, Ma XC. Direct targeting of sEH with alisol B alleviated the apoptosis, inflammation, and oxidative stress in cisplatin-induced acute kidney injury. Int J Biol Sci 2023; 19:294-310. [PMID: 36594097 PMCID: PMC9760444 DOI: 10.7150/ijbs.78097] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, K D = 1.32 μM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3β-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.
Collapse
Affiliation(s)
- Juan Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Zhi-Lin Luan
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Min Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Cheng-Peng Sun
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| |
Collapse
|
26
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
27
|
Role of ER Stress in Xenobiotic-Induced Liver Diseases and Hepatotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4640161. [PMID: 36388166 PMCID: PMC9652065 DOI: 10.1155/2022/4640161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The liver is a highly metabolic organ and plays a crucial role in the transportation, storage, and/or detoxication of xenobiotics. Liver damage induced by xenobiotics (e.g., heavy metal, endocrine disrupting chemicals, Chinese herbal medicine, or nanoparticles) has become a pivotal reason for liver diseases, leading to great clinical challenge and much attention for the past decades. Given that endoplasmic reticulum (ER) is the prominent organelle involved in hepatic metabolism, ER dysfunction, namely, ER stress, is clearly observed in various liver diseases. In response to ER stress, a conserved adaptive signaling pathway known as unfolded protein response (UPR) is activated to restore ER homeostasis. However, the prolonged ER stress with UPR eventually leads to the death of hepatocytes, which is a pathogenic event in many hepatic diseases. Therefore, analyzing the perturbation in the activation or inhibition of ER stress and the UPR signaling pathway is likely an effective marker for investigating the molecular mechanisms behind the toxic effects of xenobiotics on the liver. We review the role of ER stress in hepatic diseases and xenobiotic-induced hepatotoxicity, which not only provides a theoretical basis for further understanding the pathogenesis of liver diseases and the mechanisms of hepatotoxicity induced by xenobiotics but also presents a potential target for the prevention and treatment of xenobiotic-related liver diseases.
Collapse
|
28
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
29
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Prognosis value of IL-6, IL-8, and IL-1β in serum of patients with lung cancer: A fresh look at interleukins as a biomarker. Heliyon 2022; 8:e09953. [PMID: 35928100 PMCID: PMC9343932 DOI: 10.1016/j.heliyon.2022.e09953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Interleukins are assumed to be closely related to the occurrence and development of human malignant tumors, while a few of them were commonly used as diagnostic markers in clinical cancer, including lung cancer. This study aimed to explore the value of serum interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) combined with carcinoembryonic antigen (CEA) as biomarker panel for the diagnosis and metastasis prediction of lung cancer. IL-1β, IL-6, IL-8, and CEA in serum were determined using electrochemiluminescence immunoassay (ECLIA) and flow cytometry, and the diagnostic value of each marker was analyzed using receiver operating characteristic (ROC) curves and logistic fitting regression. We found that the levels of serum IL-1β, IL-6, and IL-8 showed no significant difference among squamous cell carcinoma, adenocarcinoma, and small cell carcinoma, while they were significantly higher in the lung cancer group or benign group than those in the healthy group. The levels of IL-8 and CEA were positively correlated with clinical stages respectively. Importantly, the panel of CEA + IL-6 + IL-8 has the highest efficacy for the diagnosis of lung cancer (AUC = 0.883) among all the detected panels, while the panel of IL-8 + CEA showed the most promising predictive value for the lymph node metastasis (AUC = 0.686) and distant metastasis of lung cancer (AUC = 0.793). In conclusion, IL-6 and IL-8 could be used as promising molecular biomarkers to diagnose and predict the metastasis of lung cancer independent of pathological types, improving the specificity and sensitivity of diagnosis for lung cancer when they were combined with CEA.
Collapse
|
31
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
32
|
Zhang YZ, Zhao QH, Duan HW, Zou YJ, Sun SC, Hu LL. Aflatoxin B1 exposure disrupts organelle distribution in mouse oocytes. PeerJ 2022; 10:e13497. [PMID: 35646486 PMCID: PMC9135037 DOI: 10.7717/peerj.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 01/17/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a secondary metabolite produced by the fungus Aspergillus, which is ubiquitous in moldy grain products. Aflatoxin B1 has been reported to possess hepatotoxicity, renal toxicity, and reproductive toxicity. Previous studies have shown that AFB1 is toxic to mammalian oocytes. However, the potential toxicity of AFB1 on the organelles of mouse oocytes is unknown. In this study, we found that exposure to AFB1 significantly reduced mouse oocyte development capacity. Further analysis showed that the endoplasmic reticulum (ER) failed to accumulate around the spindle, and scattered in the cytoplasm under AFB1 exposure. Similar to the ER, the Golgi apparatus showed a uniform localization pattern following AFB1 treatment. In addition, we found that AFB1 exposure caused the condensation of lysosomes in the cytoplasm, presenting as a clustered or spindle peripheral-localization pattern, which indicated that protein modification, transport, and degradation were affected. Mitochondrial distribution was also altered by AFB1 treatment. In summary, our study showed that AFB1 exposure had toxic effects on the distribution of mouse oocyte organelles, which further led to a decline in oocyte quality.
Collapse
Affiliation(s)
- Yan-Zhe Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian-Han Zhao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Wei Duan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lin-Lin Hu
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
33
|
Protective Effects of Taraxasterol against Deoxynivalenol-Induced Damage to Bovine Mammary Epithelial Cells. Toxins (Basel) 2022; 14:toxins14030211. [PMID: 35324708 PMCID: PMC8948886 DOI: 10.3390/toxins14030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is one of the most prevalent contaminants in livestock feed and causes very large losses to animal husbandry every year. Taraxasterol, isolated from Taraxacum officinale, has anti-inflammatory, antioxidative stress, and antitumor effects. In the present study, bovine mammary epithelial cells (MAC-T) were used as a model, and different concentrations of taraxasterol (0, 1, 5, 10, and 20 μg/mL) were used to protect against DON-induced cell damage. The results showed that taraxasterol at a concentration of 10 μg/mL significantly increased cell viability. Analysis of lactate dehydrogenase (LDH) levels indicated that taraxasterol substantially decreased LDH release caused by DON. Taraxasterol effectively alleviated the depletion of glutathione (GSH), the increase in the lipid peroxidation of malondialdehyde (MDA), the reduction in total superoxide dismutase (T-SOD) activity, and the decrease in total antioxidant capacity (T-AOC) induced by DON. The results further showed that taraxasterol reduced the accumulation of reactive oxygen species (ROS). Taraxasterol was found to relieve endoplasmic reticulum (ER) stress by suppressing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4) and the transcription factor C/EBP homologous protein (CHOP), and reducing cell apoptosis by suppressing the expression of caspase-3 and Bcl2-associated X (BAX) and upregulating the expression of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2). Our research results indicate that taraxasterol could alleviate DON-induced damage to MAC-T cells.
Collapse
|
34
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Multifaceted functions of chronic inflammation in regulating tumor dormancy and relapse. Semin Cancer Biol 2022; 78:17-22. [PMID: 33785450 PMCID: PMC8473586 DOI: 10.1016/j.semcancer.2021.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023]
Abstract
Inflammation is a double-edged sword exhibiting multifaceted functions. On one hand, it either induces tumor cell apoptosis, or establishes tumor dormancy by inhibiting tumor cell proliferation; on the other hand, it either facilitates the tumorigenesis process or reawakens dormant tumor cells, resulting in disease recurrences. Each outcome would depend on the balance between type I and type II inflammation as well as the duration of inflammation being acute or chronic. In this essay, we provide a critical review of the empirical evidence suggesting that chronic inflammation, dominated by type I inflammatory cells and cytokines as a result of trauma and microbiome dysbiosis, could facilitate the carcinogenesis process in normal cells and retain nascent transformed cells in a dormant state. On the other hand, an elevated type II inflammation along with inefficient resolution of type I inflammation following trauma or major surgeries could delay the wound healing process and promote the growth and reawakening of dormant tumor cells, resulting in disease recurrences. Finally, cytokines exhibiting type I and II inflammatory functions, simultaneously, tend to promote tumor recurrence when become chronic. Therefore, the risk of reawakening dormant tumor cells should be considered in cancer survivors who experience major surgeries and trauma, or suffer from chronic inflammatory diseases.
Collapse
|
36
|
Akkoc Y, Gozuacik D. Autophagy and Hepatic Tumor Microenvironment Associated Dormancy. J Gastrointest Cancer 2021; 52:1277-1293. [PMID: 34921672 DOI: 10.1007/s12029-021-00774-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
The goal of successful cancer treatment is targeting the eradication of cancer cells. Although surgical removal of the primary tumors and several rounds of chemo- and radiotherapy reduce the disease burden, in some cases, asymptomatic dormant cancer cells may still exist in the body. Dormant cells arise from the disseminated tumor cells (DTCs) from the primary lesion. DTCs escape from immune system and cancer therapy and reside at the secondary organ without showing no sign of proliferation. However, under some conditions. dormant cells can be re-activated and enter a proliferative state even after decades. As a stress response mechanism, autophagy may help the adaptation of DTCs at this futile foreign microenvironment and may control the survival and re-activation of dormant cells. Studies indicate that hepatic microenvironment serves a favorable condition for cancer cell dormancy. Although, no direct study was pointing out the role of autophagy in liver-assisted dormancy, involvement of autophagy in both liver microenvironment, health, and disease conditions has been indicated. Therefore, in this review article, we will summarize cancer dormancy and discuss the role and importance of autophagy and hepatic microenvironment in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.
| | - Devrim Gozuacik
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.,Koç University School of Medicine, Istanbul, 34010, Turkey
| |
Collapse
|
37
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
38
|
Haak VM, Huang S, Panigrahy D. Debris-stimulated tumor growth: a Pandora's box? Cancer Metastasis Rev 2021; 40:791-801. [PMID: 34665387 PMCID: PMC8524220 DOI: 10.1007/s10555-021-09998-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell “debris” which can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically linked to treatment by stimulating resolution of tumor-promoting debris.
Collapse
Affiliation(s)
- Victoria M Haak
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Abstract
Cancer therapy, such as chemotherapy, induces tumor cell death (“debris”), which can stimulate metastasis. Chemotherapy-generated debris upregulates soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4), which triggers a macrophage-derived storm of proinflammatory and proangiogenic lipid autacoid and cytokine mediators. Although sEH inhibitors and EP4 antagonists are in clinical development for multiple inflammatory diseases, their combined role in cancer is unknown. Here, we show that the synergistic antitumor activity of sEH and EP4 inhibition suppresses hepato-pancreatic tumor growth, without overt toxicity, via macrophage phagocytosis of debris and counterregulation of a debris-stimulated cytokine storm. Thus, stimulating the resolution of inflammation via combined inhibition of sEH and EP4 may be an approach for preventing metastatic progression driven by cancer therapy. Cancer therapy reduces tumor burden via tumor cell death (“debris”), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.
Collapse
|
40
|
Snail Upregulates Transcription of FN, LEF, COX2, and COL1A1 in Hepatocellular Carcinoma: A General Model Established for Snail to Transactivate Mesenchymal Genes. Cells 2021; 10:cells10092202. [PMID: 34571852 PMCID: PMC8467536 DOI: 10.3390/cells10092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Collapse
|
41
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
42
|
Nakamura N. Reexamining the role of tissue inflammation in radiation carcinogenesis: a hypothesis to explain an earlier onset of cancer. Int J Radiat Biol 2021; 97:1341-1351. [PMID: 34270352 DOI: 10.1080/09553002.2021.1955998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Ionizing radiation is a well-known carcinogen, and epidemiologic efforts have been made to evaluate cancer risks following a radiation exposure. The basic approach has been to estimate increased levels of cancer mortality resulting from exposures to radiation, which is consistent with the somatic mutation theory of cancer. However, the possibility that an irradiation might cause an earlier onset of cancer has also been raised since the earliest days of animal studies. Recently, the mutation induction model has been challenged because it is unable to explain the observed dose-related parallel shift of entire mouse survival curves toward younger ages following an irradiation. This is because if it is assumed that only a fraction of the irradiated individuals are affected, the irradiated population would consist of two subpopulations with different mean lifespans, which makes the overall distribution of individual lifespans broader, and hence the slope of the survival curves shallower. To explain this parallel shift, it is necessary to assume that all individuals of a population are affected. As a result of these observations, possible mechanisms which could account for the parallel shift of mouse survival curves were sought by examining the radiation induction of various types of tissue damage which could facilitate an earlier onset of spontaneously arising cancers. CONCLUSION A proposed mechanism postulates that a radiation exposure leads to tissue inflammation which subsequently stimulates spontaneously arising cancers and allows them to appear earlier than usual. This notion is not unprecedented, and because the background incidence of cancer increases exponentially with an increase in age, a slight shift of the onset age toward younger ages may make it appear as if the risk is increased. In this scenario, a radiation exposure induces DNA damage, cell death, chromosome aberrations etc., which leads to the multi-pathway responses including activation of stromal fibroblasts, macrophages and various inflammatory factors. Such an inflamed microenvironment favors the growth of spontaneously arising tumor cells although currently, the sequential order or relative importance of the individual factors remains to be known.
Collapse
Affiliation(s)
- Nori Nakamura
- Department, of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
43
|
Lavy M, Gauttier V, Poirier N, Barillé-Nion S, Blanquart C. Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities. Front Immunol 2021; 12:702785. [PMID: 34276698 PMCID: PMC8278519 DOI: 10.3389/fimmu.2021.702785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy.
Collapse
|
44
|
Wang S, Yang X, Liu F, Wang X, Zhang X, He K, Wang H. Comprehensive Metabolomic Analysis Reveals Dynamic Metabolic Reprogramming in Hep3B Cells with Aflatoxin B1 Exposure. Toxins (Basel) 2021; 13:toxins13060384. [PMID: 34072178 PMCID: PMC8229485 DOI: 10.3390/toxins13060384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and development of hepatocellular carcinoma (HCC), but their combined impacts and the potential metabolic mechanisms remain poorly characterized. Here, a comprehensive non-targeted metabolomic study was performed following AFB1 exposed to Hep3B cells at two different doses: 16 μM and 32 μM. The metabolites were identified and quantified by an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based strategy. A total of 2679 metabolites were identified, and 392 differential metabolites were quantified among three groups. Pathway analysis indicated that dynamic metabolic reprogramming was induced by AFB1 and various pathways changed significantly, including purine and pyrimidine metabolism, hexosamine pathway and sialylation, fatty acid synthesis and oxidation, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and amino acid metabolism. To the best of our knowledge, the alteration of purine and pyrimidine metabolism and decrease of hexosamine pathways and sialylation with AFB1 exposure have not been reported. The results indicated that our metabolomic strategy is powerful to investigate the metabolome change of any stimulates due to its high sensitivity, high resolution, rapid separation, and good metabolome coverage. Besides, these findings provide an overview of the metabolic mechanisms of the AFB1 combined with HBV and new insight into the toxicological mechanism of AFB1. Thus, targeting these metabolic pathways may be an approach to prevent carcinogen-induced cancer, and these findings may provide potential drug targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun He
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| | - Hongxia Wang
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| |
Collapse
|
45
|
Ricketts TD, Prieto-Dominguez N, Gowda PS, Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front Immunol 2021; 12:642285. [PMID: 34025653 PMCID: PMC8139576 DOI: 10.3389/fimmu.2021.642285] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a specialized class of innate immune cells with multifaceted roles in modulation of the inflammatory response, homeostasis, and wound healing. While developmentally derived or originating from circulating monocytes, naïve macrophages can adopt a spectrum of context-dependent activation states ranging from pro-inflammatory (classically activated, M1) to pro-wound healing (alternatively activated, M2). Tumors are known to exploit macrophage polarization states to foster a tumor-permissive milieu, particularly by skewing macrophages toward a pro-tumor (M2) phenotype. These pro-tumoral macrophages can support cancer progression by several mechanisms including immune suppression, growth factor production, promotion of angiogenesis and tissue remodeling. By preventing the adoption of this pro-tumor phenotype or reprogramming these macrophages to a more pro-inflammatory state, it may be possible to inhibit tumor growth. Here, we describe types of tumor-derived signaling that facilitate macrophage reprogramming, including paracrine signaling and activation of innate immune checkpoints. We also describe intervention strategies targeting macrophage plasticity to limit disease progression and address their implications in cancer chemo- and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Eric Ubil
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
46
|
Imig JD, Hye Khan MA, Burkhan A, Chen G, Adebesin AM, Falck JR. Kidney-Targeted Epoxyeicosatrienoic Acid Analog, EET-F01, Reduces Inflammation, Oxidative Stress, and Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2021; 22:2793. [PMID: 33801911 PMCID: PMC7998941 DOI: 10.3390/ijms22062793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Although epoxyeicosatrienoic acid (EET) analogs have performed well in several acute and chronic kidney disease models, targeted delivery of EET analogs to the kidney can be reasonably expected to reduce the level of drug needed to achieve a therapeutic effect and obviate possible side effects. For EET analog kidney-targeted delivery, we conjugated a stable EET analog to folic acid via a PEG-diamine linker. Next, we compared the kidney targeted EET analog, EET-F01, to a well-studied EET analog, EET-A. EET-A or EET-F01 was infused i.v. and plasma and kidney tissue collected. EET-A was detected in the plasma but was undetectable in the kidney. On the other hand, EET-F01 was detected in the plasma and kidney. Experiments were conducted to compare the efficacy of EET-F01 and EET-A for decreasing cisplatin nephrotoxicity. Cisplatin was administered to WKY rats treated with vehicle, EET-A (10 mg/kg i.p.) or EET-F01 (20 mg/kg or 2 mg/kg i.p.). Cisplatin increased kidney injury markers, viz., blood urea nitrogen (BUN), N-acetyl-β-(D)-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), and thiobarbituric acid reactive substances (TBARS). EET-F01 was as effective as EET-A in decreasing BUN, NAG, KIM-1, TBARS, and renal histological injury caused by cisplatin. Despite its almost 2×-greater molecular weight compared with EET-A, EET-F01 was comparably effective in decreasing renal injury at a 10-fold w/w lower dose. EET-F01 decreased cisplatin nephrotoxicity by reducing oxidative stress and inflammation. These data demonstrate that EET-F01 targets the kidney, allows for a lower effective dose, and combats cisplatin nephrotoxicity. In conclusion, we have developed a kidney targeted EET analog, EET-F01, that demonstrates excellent potential as a therapeutic for kidney diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacokinetics
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cisplatin
- Female
- Humans
- Inflammation/metabolism
- Inflammation/prevention & control
- Kidney/metabolism
- Kidney/pathology
- Kidney Diseases/chemically induced
- Kidney Diseases/metabolism
- Kidney Diseases/prevention & control
- Male
- Mice, Nude
- Oxidative Stress/drug effects
- Rats, Inbred WKY
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays/methods
- Mice
- Rats
Collapse
Affiliation(s)
- John D. Imig
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Md Abdul Hye Khan
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Anna Burkhan
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Guan Chen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Adeniyi Michael Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (J.R.F.)
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (J.R.F.)
| |
Collapse
|
47
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|