1
|
Dey H, Perez-Hurtado M, Heidelberger R. Syntaxin 3B: A SNARE Protein Required for Vision. Int J Mol Sci 2024; 25:10665. [PMID: 39408994 PMCID: PMC11476516 DOI: 10.3390/ijms251910665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Syntaxin 3 is a member of a large protein family of syntaxin proteins that mediate fusion between vesicles and their target membranes. Mutations in the ubiquitously expressed syntaxin 3A splice form give rise to a serious gastrointestinal disorder in humans called microvillus inclusion disorder, while mutations that additionally involve syntaxin 3B, a splice form that is expressed primarily in retinal photoreceptors and bipolar cells, additionally give rise to an early onset severe retinal dystrophy. In this review, we discuss recent studies elucidating the roles of syntaxin 3B and the regulation of syntaxin 3B functionality in membrane fusion and neurotransmitter release in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.D.)
| |
Collapse
|
2
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Chiang HJ, Nishiwaki Y, Chiang WC, Masai I. Male germ cell-associated kinase is required for axoneme formation during ciliogenesis in zebrafish photoreceptors. Dis Model Mech 2024; 17:dmm050618. [PMID: 38813692 PMCID: PMC11273301 DOI: 10.1242/dmm.050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Vertebrate photoreceptors are highly specialized retinal neurons that have cilium-derived membrane organelles called outer segments, which function as platforms for phototransduction. Male germ cell-associated kinase (MAK) is a cilium-associated serine/threonine kinase, and its genetic mutation causes photoreceptor degeneration in mice and retinitis pigmentosa in humans. However, the role of MAK in photoreceptors is not fully understood. Here, we report that zebrafish mak mutants show rapid photoreceptor degeneration during embryonic development. In mak mutants, both cone and rod photoreceptors completely lacked outer segments and underwent apoptosis. Interestingly, zebrafish mak mutants failed to generate axonemes during photoreceptor ciliogenesis, whereas basal bodies were specified. These data suggest that Mak contributes to axoneme development in zebrafish, in contrast to mouse Mak mutants, which have elongated photoreceptor axonemes. Furthermore, the kinase activity of Mak was found to be critical in ciliary axoneme development and photoreceptor survival. Thus, Mak is required for ciliogenesis and outer segment formation in zebrafish photoreceptors to ensure intracellular protein transport and photoreceptor survival.
Collapse
Affiliation(s)
- Hung-Ju Chiang
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Wei-Chieh Chiang
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Kawai K, Ho MT, Ueno Y, Abdo D, Xue C, Nonaka H, Nishida H, Honma Y, Wallace VA, Shoichet MS. Hyaluronan improves photoreceptor differentiation and maturation in human retinal organoids. Acta Biomater 2024; 181:117-132. [PMID: 38705224 DOI: 10.1016/j.actbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. STATEMENT OF SIGNIFICANCE: Retinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Kotoe Kawai
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Margaret T Ho
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Yui Ueno
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Dhana Abdo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Hidenori Nonaka
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Hiroyuki Nishida
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yoichi Honma
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Canada
| | - Molly S Shoichet
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Department of Chemistry, University of Toronto, Canada.
| |
Collapse
|
5
|
Tebbe L, Kakakhel M, Al-Ubaidi MR, Naash MI. The role of syntaxins in retinal function and health. Front Cell Neurosci 2024; 18:1380064. [PMID: 38799985 PMCID: PMC11119284 DOI: 10.3389/fncel.2024.1380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) superfamily plays a pivotal role in cellular trafficking by facilitating membrane fusion events. These SNARE proteins, including syntaxins, assemble into complexes that actively facilitate specific membrane fusion events. Syntaxins, as integral components of the SNARE complex, play a crucial role in initiating and regulating these fusion activities. While specific syntaxins have been extensively studied in various cellular processes, including neurotransmitter release, autophagy and endoplasmic reticulum (ER)-to-Golgi protein transport, their roles in the retina remain less explored. This review aims to enhance our understanding of syntaxins' functions in the retina by shedding light on how syntaxins mediate membrane fusion events unique to the retina. Additionally, we seek to establish a connection between syntaxin mutations and retinal diseases. By exploring the intricate interplay of syntaxins in retinal function and health, we aim to contribute to the broader comprehension of cellular trafficking in the context of retinal physiology and pathology.
Collapse
Affiliation(s)
| | | | | | - Muna I. Naash
- *Correspondence: Muna I. Naash, ; Muayyad R. Al-Ubaidi,
| |
Collapse
|
6
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-101322-111204. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- 1Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; ; https://orcid.org/0000-0001-7104-042X
| | - David Zenisek
- 2Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA; ; https://orcid.org/0000-0001-6052-0348
| |
Collapse
|
7
|
Yang WQ, Ge JY, Zhang X, Zhu WY, Lin L, Shi Y, Xu B, Liu RJ. THUMPD2 catalyzes the N2-methylation of U6 snRNA of the spliceosome catalytic center and regulates pre-mRNA splicing and retinal degeneration. Nucleic Acids Res 2024; 52:3291-3309. [PMID: 38165050 PMCID: PMC11014329 DOI: 10.1093/nar/gkad1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Zhang
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064,Zhejiang Province, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Yang Y, Jiang X, Chen J, Liu L, Liu G, Sun K, Liu W, Zhu X, Guan Q. The m 6A reader YTHDC2 maintains visual function and retinal photoreceptor survival through modulating translation of PPEF2 and PDE6B. J Genet Genomics 2024; 51:208-221. [PMID: 38157933 DOI: 10.1016/j.jgg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.
Collapse
Affiliation(s)
- Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Junyao Chen
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guo Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Qiuyue Guan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
9
|
Sun M, Pylypenko O, Zhou Z, Xu M, Li Q, Houdusse A, van IJzendoorn SCD. Uncovering the Relationship Between Genes and Phenotypes Beyond the Gut in Microvillus Inclusion Disease. Cell Mol Gastroenterol Hepatol 2024; 17:983-1005. [PMID: 38307491 PMCID: PMC11041842 DOI: 10.1016/j.jcmgh.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Zhe Zhou
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mingqian Xu
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Clark AM, Yu D, Neiswanger G, Zhu D, Zou J, Maschek JA, Burgoyne T, Yang J. Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations. JCI Insight 2024; 9:e162621. [PMID: 37971880 PMCID: PMC10906455 DOI: 10.1172/jci.insight.162621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.
Collapse
Affiliation(s)
- Anna M. Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - J. Alan Maschek
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- Department of Otolaryngology, and
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Huang M, Chow CH, Gurdita A, Harada H, Pham Truong VQB, Eide S, Sun HS, Feng ZP, Monnier PP, Wallace VA, Sugita S. SNAP-25, but not SNAP-23, is essential for photoreceptor development, survival, and function in mice. Commun Biol 2024; 7:34. [PMID: 38182732 PMCID: PMC10770054 DOI: 10.1038/s42003-023-05760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
SNARE-mediated vesicular transport is thought to play roles in photoreceptor glutamate exocytosis and photopigment delivery. However, the functions of Synaptosomal-associated protein (SNAP) isoforms in photoreceptors are unknown. Here, we revisit the expression of SNAP-23 and SNAP-25 and generate photoreceptor-specific knockout mice to investigate their roles. Although we find that SNAP-23 shows weak mRNA expression in photoreceptors, SNAP-23 removal does not affect retinal morphology or vision. SNAP-25 mRNA is developmentally regulated and undergoes mRNA trafficking to photoreceptor inner segments at postnatal day 9 (P9). SNAP-25 knockout photoreceptors develop normally until P9 but degenerate by P14 resulting in severe retinal thinning. Photoreceptor loss in SNAP-25 knockout mice is associated with abolished electroretinograms and vision loss. We find mistrafficked photopigments, enlarged synaptic vesicles, and abnormal synaptic ribbons which potentially underlie photoreceptor degeneration. Our results conclude that SNAP-25, but not SNAP-23, mediates photopigment delivery and synaptic functioning required for photoreceptor development, survival, and function.
Collapse
Affiliation(s)
- Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Akshay Gurdita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Victor Q B Pham Truong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Sarah Eide
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Anatomy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Philippe P Monnier
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, M5T 3A9, Canada
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, M5T 3A9, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Super-resolution mapping in rod photoreceptors identifies rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway. PLoS Biol 2024; 22:e3002467. [PMID: 38190419 PMCID: PMC10773939 DOI: 10.1371/journal.pbio.3002467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient phototransduction and vision. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane, at the surface, in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
13
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Nishad R, Betancourt-Solis M, Dey H, Heidelberger R, McNew JA. Regulation of Syntaxin3B-Mediated Membrane Fusion by T14, Munc18, and Complexin. Biomolecules 2023; 13:1463. [PMID: 37892145 PMCID: PMC10604575 DOI: 10.3390/biom13101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Retinal neurons that form ribbon-style synapses operate over a wide dynamic range, continuously relaying visual information to their downstream targets. The remarkable signaling abilities of these neurons are supported by specialized presynaptic machinery, one component of which is syntaxin3B. Syntaxin3B is an essential t-SNARE protein of photoreceptors and bipolar cells that is required for neurotransmitter release. It has a light-regulated phosphorylation site in its N-terminal domain at T14 that has been proposed to modulate membrane fusion. However, a direct test of the latter has been lacking. Using a well-controlled in vitro fusion assay, we found that a phosphomimetic T14 syntaxin3B mutation leads to a small but significant enhancement of SNARE-mediated membrane fusion following the formation of the t-SNARE complex. While the addition of Munc18a had only a minimal effect on membrane fusion mediated by SNARE complexes containing wild-type syntaxin3B, a more significant enhancement was observed in the presence of Munc18a when the SNARE complexes contained a syntaxin3B T14 phosphomimetic mutant. Finally, we showed that the retinal-specific complexins (Cpx III and Cpx IV) inhibited membrane fusion mediated by syntaxin3B-containing SNARE complexes in a dose-dependent manner. Collectively, our results establish that membrane fusion mediated by syntaxin3B-containing SNARE complexes is regulated by the T14 residue of syntaxin3B, Munc18a, and Cpxs III and IV.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| | - Miguel Betancourt-Solis
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
- Lonza Biologics, 14905 Kirby Dr, Houston, TX 77047, USA
| | - Himani Dey
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - James A. McNew
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| |
Collapse
|
15
|
Starr CR, Zhylkibayev A, Mobley JA, Gorbatyuk MS. Proteomic analysis of diabetic retinas. Front Endocrinol (Lausanne) 2023; 14:1229089. [PMID: 37693346 PMCID: PMC10486886 DOI: 10.3389/fendo.2023.1229089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As a metabolic disease, diabetes often leads to health complications such as heart failure, nephropathy, neurological disorders, and vision loss. Diabetic retinopathy (DR) affects as many as 100 million people worldwide. The mechanism of DR is complex and known to impact both neural and vascular components in the retina. While recent advances in the field have identified major cellular signaling contributing to DR pathogenesis, little has been reported on the protein post-translational modifications (PTM) - known to define protein localization, function, and activity - in the diabetic retina overall. Protein glycosylation is the enzymatic addition of carbohydrates to proteins, which can influence many protein attributes including folding, stability, function, and subcellular localization. O-linked glycosylation is the addition of sugars to an oxygen atom in amino acids with a free oxygen atom in their side chain (i.e., threonine, serine). To date, more than 100 congenital disorders of glycosylation have been described. However, no studies have identified the retinal O-linked glycoproteome in health or disease. With a critical need to expedite the discovery of PTMomics in diabetic retinas, we identified both global changes in protein levels and the retinal O-glycoproteome of control and diabetic mice. Methods We used liquid chromatography/mass spectrometry-based proteomics and high throughput screening to identify proteins differentially expressed and proteins differentially O-glycosylated in the retinas of wildtype and diabetic mice. Results Changes in both global expression levels of proteins and proteins differentially glycosylated in the retinas of wild-type and diabetic mice have been identified. We provide evidence that diabetes shifts both global expression levels and O-glycosylation of metabolic and synaptic proteins in the retina. Discussion Here we report changes in the retinal proteome of diabetic mice. We highlight alterations in global proteins involved in metabolic processes, maintaining cellular structure, trafficking, and neuronal processes. We then showed changes in O-linked glycosylation of individual proteins in the diabetic retina.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Ikelle L, Makia M, Lewis T, Crane R, Kakakhel M, Conley SM, Birtley JR, Arshavsky VY, Al-Ubaidi MR, Naash MI. Comparative study of PRPH2 D2 loop mutants reveals divergent disease mechanism in rods and cones. Cell Mol Life Sci 2023; 80:214. [PMID: 37466729 PMCID: PMC10356684 DOI: 10.1007/s00018-023-04851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.
Collapse
Affiliation(s)
- Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Mustafa Makia
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Tylor Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA.
| |
Collapse
|
17
|
Perez-Hurtado M, Dao C, Saenz AE, Heidelberger R. Syntaxin 3 is haplosufficient for long-term photoreceptor survival in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1208805. [PMID: 37609371 PMCID: PMC10443939 DOI: 10.3389/fopht.2023.1208805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Biallelic loss-of-function mutations in the syntaxin 3 gene have been linked to a severe retinal dystrophy in humans that presents in early childhood. In mouse models, biallelic inactivation of the syntaxin 3 gene in photoreceptors rapidly leads to their death. What is not known is whether a monoallelic syntaxin 3 loss-of-function mutation might cause photoreceptor loss with advancing age. To address this question, we compared the outer nuclear layer of older adult mice (≈ 20 months of age) that were heterozygous for syntaxin 3 with those of similarly-aged control mice. We found that the photoreceptor layer maintains its thickness in mice that are heterozygous for syntaxin 3 relative to controls and that photoreceptor somatic counts are comparable. In addition, dendritic sprouting of the rod bipolar cell dendrites into the outer nuclear layer, which occurs following the loss of functional rod targets, was similar between genotypes. Thus, syntaxin 3 appears to be haplosufficient for photoreceptor survival, even with advancing age.
Collapse
Affiliation(s)
- Mariajose Perez-Hurtado
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX
| | - Calvin Dao
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX
| | - Amanda E. Saenz
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX
- The University of Texas MDAnderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX
| |
Collapse
|
18
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Mapping rhodopsin trafficking in rod photoreceptors with quantitative super-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537413. [PMID: 37131638 PMCID: PMC10153271 DOI: 10.1101/2023.04.20.537413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| |
Collapse
|
19
|
Kulesh B, Bozadjian R, Parisi RJ, Leong SA, Kautzman AG, Reese BE, Keeley PW. Quantitative trait loci on chromosomes 9 and 19 modulate AII amacrine cell number in the mouse retina. Front Neurosci 2023; 17:1078168. [PMID: 36816119 PMCID: PMC9932814 DOI: 10.3389/fnins.2023.1078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Sequence variants modulating gene function or expression affect various heritable traits, including the number of neurons within a population. The present study employed a forward-genetic approach to identify candidate causal genes and their sequence variants controlling the number of one type of retinal neuron, the AII amacrine cell. Data from twenty-six recombinant inbred (RI) strains of mice derived from the parental C57BL/6J (B6/J) and A/J laboratory strains were used to identify genomic loci regulating cell number. Large variation in cell number is present across the RI strains, from a low of ∼57,000 cells to a high of ∼87,000 cells. Quantitative trait locus (QTL) analysis revealed three prospective controlling genomic loci, on Chromosomes (Chrs) 9, 11, and 19, each contributing additive effects that together approach the range of variation observed. Composite interval mapping validated two of these loci, and chromosome substitution strains, in which the A/J genome for Chr 9 or 19 was introgressed on a B6/J genetic background, showed increased numbers of AII amacrine cells as predicted by those two QTL effects. Analysis of the respective genomic loci identified candidate controlling genes defined by their retinal expression, their established biological functions, and by the presence of sequence variants expected to modulate gene function or expression. Two candidate genes, Dtx4 on Chr 19, being a regulator of Notch signaling, and Dixdc1 on Chr 9, a modulator of the WNT-β-catenin signaling pathway, were explored in further detail. Postnatal overexpression of Dtx4 was found to reduce the frequency of amacrine cells, while Dixdc1 knockout retinas contained an excess of AII amacrine cells. Sequence variants in each gene were identified, being the likely sources of variation in gene expression, ultimately contributing to the final number of AII amacrine cells.
Collapse
Affiliation(s)
- Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel Bozadjian
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ryan J. Parisi
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephanie A. Leong
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Amanda G. Kautzman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E. Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W. Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
21
|
Miller LR, Tarantini S, Nyúl-Tóth Á, Johnston MP, Martin T, Bullen EC, Bickel MA, Sonntag WE, Yabluchanskiy A, Csiszar A, Ungvari ZI, Elliott MH, Conley SM. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci 2022; 14:788296. [PMID: 35356301 PMCID: PMC8959924 DOI: 10.3389/fnagi.2022.788296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Morgan P. Johnston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William E. Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
22
|
Janecke AR, Liu X, Adam R, Punuru S, Viestenz A, Strauß V, Laass M, Sanchez E, Adachi R, Schatz MP, Saboo US, Mittal N, Rohrschneider K, Escher J, Ganesh A, Al Zuhaibi S, Al Murshedi F, AlSaleem B, Alfadhel M, Al Sinani S, Alkuraya FS, Huber LA, Müller T, Heidelberger R, Janz R. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. Hum Genet 2021; 140:1143-1156. [PMID: 33974130 PMCID: PMC8263458 DOI: 10.1007/s00439-021-02284-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rüdiger Adam
- University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sumanth Punuru
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arne Viestenz
- Department of Ophthalmology, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Valeria Strauß
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Halle, Halle, Germany
| | - Martin Laass
- Klinik und Poliklinik f. Kinder- u. Jugendmedizin, University of Dresden, Dresden, Germany
| | - Elizabeth Sanchez
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martha P Schatz
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ujwala S Saboo
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Naveen Mittal
- Department of Department of Pediatrics, Division of Pediatric Gastroenterology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Johanna Escher
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anuradha Ganesh
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sana Al Zuhaibi
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Badr AlSaleem
- King Fahad Medical City, Children's Specialized Hospital, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics Division and Medical Genomic Research Lab, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Siham Al Sinani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA.
| | - Roger Janz
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Lewis TR, Makia MS, Castillo CM, Al-Ubaidi MR, Naash MI, Arshavsky VY. Photoreceptor Disc Enclosure Is Tightly Controlled by Peripherin-2 Oligomerization. J Neurosci 2021; 41:3588-3596. [PMID: 33707293 PMCID: PMC8055076 DOI: 10.1523/jneurosci.0041-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the PRPH2 gene encoding the photoreceptor-specific protein PRPH2 (also known as peripherin-2 or rds) cause a broad range of autosomal dominant retinal diseases. Most of these mutations affect the structure of the light-sensitive photoreceptor outer segment, which is composed of a stack of flattened "disc" membranes surrounded by the plasma membrane. The outer segment is renewed on a daily basis in a process whereby new discs are added at the outer segment base and old discs are shed at the outer segment tip. New discs are formed as serial membrane evaginations, which eventually enclose through a complex process of membrane remodeling (completely in rods and partially in cones). As disc enclosure proceeds, PRPH2 localizes to the rims of enclosed discs where it forms oligomers which fortify the highly curved membrane structure of these rims. In this study, we analyzed the outer segment phenotypes of mice of both sexes bearing a single copy of either the C150S or the Y141C PRPH2 mutation known to prevent or increase the degree of PRPH2 oligomerization, respectively. Strikingly, both mutations increased the number of newly forming, not-yet-enclosed discs, indicating that the precision of disc enclosure is regulated by PRPH2 oligomerization. Without tightly controlled enclosure, discs occasionally over-elongate and form large membranous "whorls" instead of disc stacks. These data show that the defects in outer segment structure arising from abnormal PRPH2 oligomerization are manifested at the stage of disc enclosure.SIGNIFICANCE STATEMENT The light-sensitive photoreceptor outer segment contains a stack of flattened "disc" membranes that are surrounded, or "enclosed," by the outer segment membrane. Disc enclosure is an adaptation increasing photoreceptor light sensitivity by facilitating the diffusion of the second messenger along the outer segment axes. However, the molecular mechanisms by which photoreceptor discs enclose within the outer segment membrane remain poorly understood. We now demonstrate that oligomers of the photoreceptor-specific protein peripherin-2, or PRPH2, play an active role in this process. We further propose that defects in disc enclosure because of abnormal PRPH2 oligomerization result in major structural abnormalities of the outer segment, ultimately leading to loss of visual function and cell degeneration in PRPH2 mutant models and human patients.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
24
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|