1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Beraldo-Neto E, Ferreira VF, Vigerelli H, Fernandes KR, Juliano MA, Nencioni ALA, Pimenta DC. Unraveling neuroprotection with Kv1.3 potassium channel blockade by a scorpion venom peptide. Sci Rep 2024; 14:27888. [PMID: 39537765 PMCID: PMC11561340 DOI: 10.1038/s41598-024-79152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Voltage-gated potassium channels play a crucial role in cellular repolarization and are potential therapeutic targets in neuroinflammatory disorders and neurodegenerative diseases. This study explores Tityus bahiensis scorpion venom for neuroactive peptides. We identified the αKtx12 peptide as a potent neuroprotective agent. In SH-SY5Y cells, αKtx12 significantly enhances viability, validating its pharmacological potential. And in the animal model, we elucidate central nervous system (CNS) mechanism of αKtx12 through neuroproteomic analyses highlighting αKtx12 as a valuable tool for characterizing neuroplasticity and neurotropism, revealing its ability to elicit more physiological responses. The peptide's potential to promote cell proliferation and neuroprotection suggests a role in functional recovery from nervous system injury or disease. This research unveils the neuroactive potential of scorpion venom-derived αKtx12's, offering insights into its pharmacological utility. The peptide's impact on neuronal processes suggests a promising avenue for therapeutic development, particularly in neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Hugo Vigerelli
- Genetics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Karolina Rosa Fernandes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
3
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
4
|
Bowen CA, Nguyen HM, Lin Y, Bagchi P, Natu A, Espinosa-Garcia C, Werner E, Kumari R, Brandelli AD, Kumar P, Tobin BR, Wood L, Faundez V, Wulff H, Seyfried NT, Rangaraju S. Proximity Labeling Proteomics Reveals Kv1.3 Potassium Channel Immune Interactors in Microglia. Mol Cell Proteomics 2024; 23:100809. [PMID: 38936775 DOI: 10.1016/j.mcpro.2024.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.
Collapse
Affiliation(s)
- Christine A Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Young Lin
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Rashmi Kumari
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Prateek Kumar
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Brendan R Tobin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Enigneering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Heike Wulff
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; School of Medicine, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Cs Szabo B, Szabo M, Nagy P, Varga Z, Panyi G, Kovacs T, Zakany F. Novel insights into the modulation of the voltage-gated potassium channel K V1.3 activation gating by membrane ceramides. J Lipid Res 2024; 65:100596. [PMID: 39019344 PMCID: PMC11367112 DOI: 10.1016/j.jlr.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.
Collapse
Affiliation(s)
- Bence Cs Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Lee RD, Chen YJ, Nguyen HM, Singh L, Dietrich CJ, Pyles BR, Cui Y, Weinstein JR, Wulff H. Repurposing the K Ca3.1 Blocker Senicapoc for Ischemic Stroke. Transl Stroke Res 2024; 15:518-532. [PMID: 37088858 PMCID: PMC11106165 DOI: 10.1007/s12975-023-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
Senicapoc, a small molecule inhibitor of the calcium-activated potassium channel KCa3.1, was safe and well-tolerated in clinical trials for sickle cell anemia. We previously reported proof-of-concept data suggesting that both pharmacological inhibition and genetic deletion of KCa3.1 reduces infarction and improves neurologic recovery in rodents by attenuating neuroinflammation. Here we evaluated the potential of repurposing senicapoc for ischemic stroke. In cultured microglia, senicapoc inhibited KCa3.1 currents with an IC50 of 7 nM, reduced Ca2+ signaling induced by the purinergic agonist ATP, suppressed expression of pro-inflammatory cytokines and enzymes (iNOS and COX-2), and prevented induction of the inflammasome component NLRP3. When transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in male C57BL/6 J mice, twice daily administration of senicapoc at 10 and 40 mg/kg starting 12 h after reperfusion dose-dependently reduced infarct area determined by T2-weighted magnetic resonance imaging (MRI) and improved neurological deficit on day 8. Ultra-high-performance liquid chromatography/mass spectrometry analysis of total and free brain concentrations demonstrated sufficient KCa3.1 target engagement. Senicapoc treatment significantly reduced microglia/macrophage and T cell infiltration and activation and attenuated neuronal death. A different treatment paradigm with senicapoc started at 3 h and MRI on day 3 and day 8 revealed that senicapoc reduces secondary infarct growth and suppresses expression of inflammation markers, including T cell cytokines in the brain. Lastly, we demonstrated that senicapoc does not impair the proteolytic activity of tissue plasminogen activator (tPA) in vitro. We suggest that senicapoc could be repurposed as an adjunctive immunocytoprotective agent for combination with reperfusion therapy for ischemic stroke.
Collapse
Affiliation(s)
- Ruth D Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Connor J Dietrich
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Benjamin R Pyles
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Yanjun Cui
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Schilardi G, Kralik J, Kleinlogel S. Selective Block of Upregulated Kv1.3 Potassium Channels in ON-Bipolar Cells of the Blind Retina Enhances Optogenetically Restored Signaling. Int J Mol Sci 2023; 24:14207. [PMID: 37762510 PMCID: PMC10531754 DOI: 10.3390/ijms241814207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Loss of photoreceptors in retinal degenerative diseases also impacts the inner retina: bipolar cell dendrites retract, neurons rewire, and protein expression changes. ON-bipolar cells (OBCs) represent an attractive target for optogenetic vision restoration. However, the above-described maladaptations may negatively impact the quality of restored vision. To investigate this question, we employed human post-mortem retinas and transgenic rd1_Opto-mGluR6 mice expressing the optogenetic construct Opto-mGluR6 in OBCs and carrying the retinal degeneration rd1 mutation. We found significant changes in delayed rectifier potassium channel expression in OBCs of degenerative retinas. In particular, we found an increase in Kv1.3 expression already in early stages of degeneration. Immunohistochemistry localized Kv1.3 channels specifically to OBC axons. In whole-cell patch-clamp experiments, OBCs in the degenerated murine retina were less responsive, which could be reversed by application of the specific Kv1.3 antagonist Psora-4. Notably, Kv1.3 block significantly increased the amplitude and kinetics of Opto-mGluR6-mediated light responses in OBCs of the blind retina and increased the signal-to-noise ratio of light-triggered responses in retinal ganglion cells. We propose that reduction in Kv1.3 activity in the degenerated retina, either by pharmacological block or by KCNA3 gene silencing, could improve the quality of restored vision.
Collapse
|
11
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
12
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Zhao K, Wu Y, Zhao D, Zhang H, Lin J, Wang Y. Six mitophagy-related hub genes as peripheral blood biomarkers of Alzheimer's disease and their immune cell infiltration correlation. Front Neurosci 2023; 17:1125281. [PMID: 37274215 PMCID: PMC10232817 DOI: 10.3389/fnins.2023.1125281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Background Alzheimer's disease (AD), a neurodegenerative disorder with progressive symptoms, seriously endangers human health worldwide. AD diagnosis and treatment are challenging, but molecular biomarkers show diagnostic potential. This study aimed to investigate AD biomarkers in the peripheral blood. Method Utilizing three microarray datasets, we systematically analyzed the differences in expression and predictive value of mitophagy-related hub genes (MRHGs) in the peripheral blood mononuclear cells of patients with AD to identify potential diagnostic biomarkers. Subsequently, a protein-protein interaction network was constructed to identify hub genes, and functional enrichment analyses were performed. Using consistent clustering analysis, AD subtypes with significant differences were determined. Finally, infiltration patterns of immune cells in AD subtypes and the relationship between MRHGs and immune cells were investigated by two algorithms, CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). Results Our study identified 53 AD- and mitophagy-related differentially expressed genes and six MRHGs, which may be potential biomarkers for diagnosing AD. Functional analysis revealed that six MRHGs significantly affected biologically relevant functions and signaling pathways such as IL-4 Signaling Pathway, RUNX3 Regulates Notch Signaling Pathway, IL-1 and Megakaryocytes in Obesity Pathway, and Overview of Leukocyteintrinsic Hippo Pathway. Furthermore, CIBERSORT and ssGSEA algorithms were used for all AD samples to analyze the abundance of infiltrating immune cells in the two disease subtypes. The results showed that these subtypes were significantly related to immune cell types such as activated mast cells, regulatory T cells, M0 macrophages, and neutrophils. Moreover, specific MRHGs were significantly correlated with immune cell levels. Conclusion Our findings suggest that MRHGs may contribute to the development and prognosis of AD. The six identified MRHGs could be used as valuable diagnostic biomarkers for further research on AD. This study may provide new promising diagnostic and therapeutic targets in the peripheral blood of patients with AD.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yinyan Wu
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongliang Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Zhang
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyang Lin
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanwei Wang
- Department of Neurology, Shuyang Hospital Affiliated to Xuzhou Medical University, Shuyang, Jiangsu, China
| |
Collapse
|
14
|
Wynne ME, Ogunbona O, Lane AR, Gokhale A, Zlatic SA, Xu C, Wen Z, Duong DM, Rayaprolu S, Ivanova A, Ortlund EA, Dammer EB, Seyfried NT, Roberts BR, Crocker A, Shanbhag V, Petris M, Senoo N, Kandasamy S, Claypool SM, Barrientos A, Wingo A, Wingo TS, Rangaraju S, Levey AI, Werner E, Faundez V. APOE expression and secretion are modulated by mitochondrial dysfunction. eLife 2023; 12:e85779. [PMID: 37171075 PMCID: PMC10231934 DOI: 10.7554/elife.85779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
Collapse
Affiliation(s)
- Meghan E Wynne
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Oluwaseun Ogunbona
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Pathology and Laboratory Medicine, Emory UniversityAtlantaUnited States
| | - Alicia R Lane
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Avanti Gokhale
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
| | - Zhexing Wen
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Duc M Duong
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Sruti Rayaprolu
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Anna Ivanova
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric A Ortlund
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric B Dammer
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | | | - Blaine R Roberts
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury CollegeMiddleburyUnited States
| | - Vinit Shanbhag
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Michael Petris
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins UniversityBaltimoreUnited States
| | | | | | - Antoni Barrientos
- Department of Neurology and Biochemistry & Molecular Biology, University of MiamiMiamiUnited States
| | - Aliza Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Srikant Rangaraju
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Allan I Levey
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Erica Werner
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Victor Faundez
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
15
|
Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol 2023; 14:1190476. [PMID: 37180699 PMCID: PMC10166874 DOI: 10.3389/fphar.2023.1190476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.
Collapse
Affiliation(s)
- Ruth D. Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hai M. Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Wishart CL, Spiteri AG, Locatelli G, King NJC. Integrating transcriptomic datasets across neurological disease identifies unique myeloid subpopulations driving disease-specific signatures. Glia 2023; 71:904-925. [PMID: 36527260 PMCID: PMC10952672 DOI: 10.1002/glia.24314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease. We demonstrate that the bulk microglial and monocyte program is highly contingent on the disease environment, challenging the notion of a universal microglial disease signature. Integration of six single-cell RNA-sequencing datasets revealed that these disease-specific signatures are likely driven by differing proportions of unique myeloid subpopulations that were individually expanded in different disease settings. These subsets were functionally-defined as neurodegeneration-associated, inflammatory, interferon-responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellular states, revealing a core set of myeloid responses at the single-cell level that are conserved across CNS pathology. Showcasing the predictive and practical value of this resource, we performed differential expression analysis on microglia and monocytes across disease and identified Cd81 as a new neuroinflammatory-stable gene that accurately identified microglia and distinguished them from monocyte-derived cells across all experimental models at both the bulk and single-cell level. Together, this resource dissects the influence of disease environment on shared immune response programmes to build a unified perspective of myeloid behavior across CNS pathology.
Collapse
Affiliation(s)
- Claire L. Wishart
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Alanna G. Spiteri
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Giuseppe Locatelli
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
- Novartis Institutes for BioMedical ResearchNovartisBaselSwitzerland
| | - Nicholas J. C. King
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute for Infectious Diseases, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- The University of Sydney Nano Institute, Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
17
|
Domain and cell type-specific immunolocalisation of voltage-gated potassium channels in the mouse striatum. J Chem Neuroanat 2023; 128:102233. [PMID: 36640913 DOI: 10.1016/j.jchemneu.2023.102233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Diverse classes of voltage-gated potassium channels (Kv) are integral to the variety of electrical activity patterns that distinguish different classes of neurons in the brain. A feature of their heterogenous expression patterns is the highly precise manner in which specific cell types target their location within functionally specialised sub-cellular domains. Although Kv expression profiles in cortical brain regions are widely reported, their immunolocalisation in sub-cortical areas such as the striatum, and in associated diseases such as Parkinson's disease (PD), remain less well described. Therefore, the broad aims of this study were to provide a high resolution immunolocalisation analysis of various Kv subtypes within the mouse striatum and assess their potential plasticity in a model of PD. Immunohistochemistry and confocal microscopy revealed that immunoreactivity for Kv1.1, 1.2 and 1.4 overlapped to varying degrees with excitatory and inhibitory axonal marker proteins suggesting these Kv subtypes are targeted to axons innervating striatal medium spiny neurons (MSNs). Immunoreactivity for Kv1.3 strongly overlapped with signal for mitochondrial marker proteins in MSN somata and dendrites. Kv1.5 immunoreactivity was expressed in parvalbumin-immunopositive neurons whereas Kv1.6 was located in cells immunopositive for microglia. Signal for Kv2.1 was concentrated on the somatic and proximal dendritic plasma membrane of MSNs, whilst immunoreactivity for Kv4.2 was targeted to their distal dendritic regions. Finally, striatal Kv2.1 expression, at both the mRNA and protein levels, was decreased in alpha-synuclein overexpressing mice, yet increased in alpha-synuclein knockout mice, compared to wild-type counterparts. The data indicate a variety of Kv expression patterns that are distinctive to the striatum and susceptible to pathology that mirrors PD. Furthermore, these findings advance our understanding of the molecular diversity of various striatal cell types, and potentially have implications for the homeostatic changes of MSN excitability during associated medical conditions such as PD.
Collapse
|
18
|
Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA, Norton RS. A Biodistribution Study of the Radiolabeled Kv1.3-Blocking Peptide DOTA-HsTX1[R14A] Demonstrates Brain Uptake in a Mouse Model of Neuroinflammation. Mol Pharm 2023; 20:255-266. [PMID: 36331024 DOI: 10.1021/acs.molpharmaceut.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 μM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Brett M Paterson
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Blockade of Kv1.3 Potassium Channel Inhibits Microglia-Mediated Neuroinflammation in Epilepsy. Int J Mol Sci 2022; 23:ijms232314693. [PMID: 36499018 PMCID: PMC9740890 DOI: 10.3390/ijms232314693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.
Collapse
|
21
|
Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol Dis 2022; 174:105861. [PMID: 36115552 PMCID: PMC9617777 DOI: 10.1016/j.nbd.2022.105861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a critical pathophysiological hallmark of neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and traumatic brain injury (TBI). Microglia, the first responders of the brain, are the drivers of this neuroinflammation. Microglial activation, leading to induction of pro-inflammatory factors, like Interleukin 1-β (IL-1β), Tumor necrosis factor-α (TNFα), nitrites, and others, have been shown to induce neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD, but the mechanism underlying the microglial activation is still under active research. Recently, microglial ion channels have come to the forefront as potential drug targets in multiple neurodegenerative disorders, including AD and PD. Microglia expresses a variety of ion channels, including potassium channels, calcium channels, chloride channels, sodium channels, and proton channels. The diversity of channels present on microglia is responsible for the dynamic nature of these immune cells of the brain. These ion channels regulate microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation, apoptosis, and cell signaling leading to inflammation, among other critical functions. Understanding the role of these ion channels and the signaling mechanism these channels regulate under pathological conditions is an active area of research. This review will be focusing on the roles of different microglial ion channels, and their potential role in regulating microglial functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Dept. of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
23
|
Revuelta M, Urrutia J, Villarroel A, Casis O. Microglia-Mediated Inflammation and Neural Stem Cell Differentiation in Alzheimer's Disease: Possible Therapeutic Role of K V1.3 Channel Blockade. Front Cell Neurosci 2022; 16:868842. [PMID: 35530176 PMCID: PMC9070300 DOI: 10.3389/fncel.2022.868842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid β peptides increasing the phagocytic response (CD163, IGF-1 or BDNF) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (TNF-α, IL-1β) in response to reactive gliosis activated by the amyloid β aggregates. Microglia activation correlated with an increase KV1.3 channels expression, protein levels and current density. Several studies highlight the importance of KV1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid β accumulation. In recent studies using in vitro cells derived from mice models, it has been demonstrated that KV1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines IL-1β and TNF-α through the NF-kB and p38MAPK pathway. Overall, we conclude that KV1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients.
Collapse
Affiliation(s)
- Miren Revuelta
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Janire Urrutia
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alvaro Villarroel
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas (CSIC)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Oscar Casis
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
24
|
Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, Kozlova A, Bitarafan S, Kumar P, Beaulieu-Abdelahad D, Zhang X, Collier L, Szekeres C, Wood LB, Duan J, Thinakaran G, Rangaraju S. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener 2022; 17:33. [PMID: 35526014 PMCID: PMC9077874 DOI: 10.1186/s13024-022-00535-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ari Sudwarts
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Supriya Ramesha
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Shuai Wang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Mitchell Hansen
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Alena Kozlova
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Prateek Kumar
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - David Beaulieu-Abdelahad
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Xiaolin Zhang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Lisa Collier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Charles Szekeres
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Jubao Duan
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637 USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | | |
Collapse
|
25
|
Cocozza G, Garofalo S, Capitani R, D’Alessandro G, Limatola C. Microglial Potassium Channels: From Homeostasis to Neurodegeneration. Biomolecules 2021; 11:1774. [PMID: 34944418 PMCID: PMC8698630 DOI: 10.3390/biom11121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
The growing interest in the role of microglia in the progression of many neurodegenerative diseases is developing in an ever-expedited manner, in part thanks to emergent new tools for studying the morphological and functional features of the CNS. The discovery of specific biomarkers of the microglia phenotype could find application in a wide range of human diseases, and creates opportunities for the discovery and development of tailored therapeutic interventions. Among these, recent studies highlight the pivotal role of the potassium channels in regulating microglial functions in physiological and pathological conditions such as Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. In this review, we summarize the current knowledge of the involvement of the microglial potassium channels in several neurodegenerative diseases and their role as modulators of microglial homeostasis and dysfunction in CNS disorders.
Collapse
Affiliation(s)
- Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Giuseppina D’Alessandro
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
26
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Nicolazzo JA, Pan Y, Di Stefano I, Choy KHC, Reddiar SB, Low YL, Wai DCC, Norton RS, Jin L. Blockade of Microglial Kv1.3 Potassium Channels by the Peptide HsTX1[R14A] Attenuates Lipopolysaccharide-mediated Neuroinflammation. J Pharm Sci 2021; 111:638-647. [PMID: 34767826 DOI: 10.1016/j.xphs.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
The expression of voltage-gated potassium Kv1.3 channels is increased in activated microglia, with non-selective blockade reported to attenuate microglial-mediated neuroinflammation. In this study, we evaluated the impact of a potent and selective peptidic blocker of Kv1.3 channels, HsTX1[R14A], on microglial-mediated neuroinflammation in vitro and in vivo. Treatment with both 0.1 and 1 µg/mL lipopolysaccharide (LPS) significantly (p < 0.05) increased Kv1.3 abundance on the surface of BV-2 microglia in association with increased levels of mRNA for tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The increased transcription of TNF-α and IL-6 was significantly attenuated (by 24.9 and 20.2%, respectively) by HsTX1[R14A] (100 nM). The concomitant increase in TNF-α and IL-6 release from BV-2 microglia was significantly attenuated by HsTX1[R14A] by 10.7 and 12.6%, respectively. In LPS-treated primary mouse microglia, the levels of TNF-α and nitric oxide were also attenuated by HsTX1[R14A] (26.1 and 20.4%, respectively). In an LPS-induced mouse model of neuroinflammation, both an immediate and delayed subcutaneous dose of HsTX1[R14A] (2 mg/kg) significantly reduced plasma and brain levels of the pro-inflammatory mediators TNF-α, IL-1β and IL-6, with no impact on the anti-inflammatory IL-10. These results demonstrate that HsTX1[R14A] is a promising therapeutic candidate for the treatment of diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ilenia Di Stefano
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
28
|
Chen Y, Cui Y, Singh L, Wulff H. The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol 2021; 8:2070-2082. [PMID: 34617690 PMCID: PMC8528456 DOI: 10.1002/acn3.51456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The voltage-gated potassium channel Kv1.3, which is expressed on activated, disease-associated microglia and memory T cells, constitutes an attractive target for immunocytoprotection after endovascular thrombectomy (EVT). Using young male mice and rats we previously demonstrated that the Kv1.3 blocker PAP-1 when started 12 h after reperfusion dose-dependently reduces infarction and improves neurological deficit on day 8. However, these proof-of-concept findings are of limited translational value because the majority of strokes occur in patients over 65 and, when considering overall lifetime risk, in females. Here, we therefore tested whether Kv1.3 deletion or delayed pharmacological therapy would be beneficial in females and aged animals. METHODS Transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in 16-week-old and 80-week-old male and female wild-type C57BL/6J and Kv1.3-/- mice. Stroke outcomes were assessed daily with the 14-score tactile and proprioceptive limp placing test and on day 8 before sacrifice by T2-weighted MRI. Young and old female mice were treated twice daily with 40 mg/kg PAP-1 starting 12 h after reperfusion. Microglia/macrophage activation and T-cell infiltration were evaluated in whole slide scans. RESULTS Kv1.3 deletion provided no significant benefit in young females but improved outcomes in young males, old males, and old females compared with wild-type controls of the same sex. Delayed PAP-1 treatment improved outcomes in both young and old females. In old females, Kv1.3 deletion and PAP-1 treatment significantly reduced Iba-1 and CD3 staining intensity in the ipsilateral hemisphere. INTERPRETATION Our preclinical studies using aged and female mice further validate Kv1.3 inhibitors as potential adjunctive treatments for reperfusion therapy in stroke by providing both genetic and pharmacological verification.
Collapse
Affiliation(s)
- Yi‐Je Chen
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
- Animal Models CoreDepartment of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Yanjun Cui
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Latika Singh
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Heike Wulff
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| |
Collapse
|