1
|
Mazzone RJ, Winsor NJ, Li LY, Barry KT, Ranger A, Goyal S, Meade JJ, Bruce J, Philpott DJ, Mogridge J, Girardin SE. NLRP1B allele 2 does not respond to Val-boro-Pro (VbP) in intestinal epithelial cells. Microbes Infect 2024; 26:105398. [PMID: 39047896 DOI: 10.1016/j.micinf.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The intestinal mucosa must balance tolerance to commensal microbes and luminal antigens with rapid detection of enteric pathogens in order to maintain homeostasis. This balance is facilitated through the regulation of epithelial layer integrity by innate immune receptors. Certain NOD-like receptors (NLRs) expressed in intestinal epithelial cells, including NLRC4 and NLRP9B, form inflammasomes that protect against pathogens by activating caspase-1 to cause extrusion of infected cells. NLRP1B is a murine NLR encoded by five alleles of a highly polymorphic gene homologous to human NLRP1. NLRP1B forms inflammasomes in response to a variety of pathogens that cause intestinal infections, but it has almost exclusively been studied in immune cells and has not been characterized in cells of the intestinal epithelium. Here, we show that Nlrp1b allele 2 is expressed in ileal and colonic organoids derived for C57BL/6J mice, while the related gene Nlrp1a was not expressed. Nlrp1b was upregulated by interleukin-13 in organoids and by the protozoan Tritrichomonas muris in vivo, suggesting that NLRP1B may be involved in defense against enteric parasites. Surprisingly, while Val-boro-Pro (VbP) activated C57BL/6J-derived bone marrow-derived macrophages, which expressed both Nlrp1a and Nlrp1b, it did not activate intestinal organoids of the same genotype. We furthermore did not detect Nlrp1b in organoids derived from Balb/cJ mice, which express a different allele than the one expressed in C57BL/6J mice. Together, our results suggest that NLRP1B may have an allele-dependent function in murine IECs whose regulation is distinct from that of macrophages, and that the response to VbP might be exclusively driven by NLRP1A in C57BL/6J mice.
Collapse
Affiliation(s)
- Ryan J Mazzone
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Nathaniel J Winsor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Kristian T Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Adrienne Ranger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Shawn Goyal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Justin J Meade
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jessica Bruce
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Dana J Philpott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
2
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Paužuolis M, Samperio Ventayol P, Neyazi M, Bartfeld S. Organoids as a tool to study the impact of heterogeneity in gastrointestinal epithelium on host-pathogen interactions. Clin Exp Immunol 2024; 218:16-27. [PMID: 38245816 PMCID: PMC11404121 DOI: 10.1093/cei/uxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelium of the gastrointestinal (GI) tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity but also a preference or tropism for specific GI segments or even cell types-some of these preferences are so specific, that these pathogens still cannot be cultured invitro. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focussing on the GI tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for GI tract infection studies.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | | | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Hinnant T, Ning W, Lechler T. Compartment specific responses to contractility in the small intestinal epithelium. PLoS Genet 2024; 20:e1010899. [PMID: 38517900 PMCID: PMC10990186 DOI: 10.1371/journal.pgen.1010899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/03/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Tissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level. In this study, we probed the cell and tissue-level effects of contractility by using mouse models to genetically increase the level of myosin activity in the two distinct morphologic compartments of the intestinal epithelium, the crypts and villi. We found that increased contractility in the villar compartment caused shape changes in the cells that expressed the transgene and their immediate neighbors. While there were no discernable effects on villar architecture or cell polarity, even low levels of transgene induction in the villi caused non-cell autonomous hyperproliferation of the transit amplifying cells in the crypt, driving increased cell flux through the crypt-villar axis. In contrast, induction of increased contractility in the proliferating cells of the crypts resulted in nuclear deformations, DNA damage, and apoptosis. This study reveals the complex and diverse responses of different intestinal epithelial cells to contractility and provides important insight into mechanical regulation of intestinal physiology.
Collapse
Affiliation(s)
- Taylor Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina United States of America
| | - Wenxiu Ning
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Center for Life Sciences, School of Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases. Yunnan University, Kunming, China
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina United States of America
| |
Collapse
|
6
|
Hellman S, Martin F, Tydén E, Sellin ME, Norman A, Hjertner B, Svedberg P, Fossum C. Equine enteroid-derived monolayers recapitulate key features of parasitic intestinal nematode infection. Vet Res 2024; 55:25. [PMID: 38414039 PMCID: PMC10900620 DOI: 10.1186/s13567-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Frida Martin
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Albin Norman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Pia Svedberg
- Vidilab AB, P.O. Box 33, 745 21, Enköping, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
7
|
Lin Z, Chen Q, Ruan HB. To die or not to die: Gasdermins in intestinal health and disease. Semin Immunol 2024; 71:101865. [PMID: 38232665 PMCID: PMC10872225 DOI: 10.1016/j.smim.2024.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Intestinal homeostasis is achieved by the balance among intestinal epithelium, immune cells, and gut microbiota. Gasdermins (GSDMs), a family of membrane pore forming proteins, can trigger rapid inflammatory cell death in the gut, mainly pyroptosis and NETosis. Importantly, there is increasing literature on the non-cell lytic roles of GSDMs in intestinal homeostasis and disease. While GSDMA is low and PJVK is not expressed in the gut, high GSDMB and GSDMC expression is found almost restrictively in intestinal epithelial cells. Conversely, GSDMD and GSDME show more ubiquitous expression among various cell types in the gut. The N-terminal region of GSDMs can be liberated for pore formation by an array of proteases in response to pathogen- and danger-associated signals, but it is not fully understood what cell type-specific mechanisms activate intestinal GSDMs. The host relies on GSDMs for pathogen defense, tissue tolerance, and cancerous cell death; however, pro-inflammatory milieu caused by pyroptosis and excessive cytokine release may favor the development and progression of inflammatory bowel disease and cancer. Therefore, a thorough understanding of spatiotemporal mechanisms that control gasdermin expression, activation, and function is essential for the development of future therapeutics for intestinal disorders.
Collapse
Affiliation(s)
- Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Qianyue Chen
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Fattinger SA, Maurer L, Geiser P, Bernard EM, Enz U, Ganguillet S, Gül E, Kroon S, Demarco B, Mack V, Furter M, Barthel M, Pelczar P, Shao F, Broz P, Sellin ME, Hardt WD. Gasdermin D is the only Gasdermin that provides protection against acute Salmonella gut infection in mice. Proc Natl Acad Sci U S A 2023; 120:e2315503120. [PMID: 37988464 PMCID: PMC10691232 DOI: 10.1073/pnas.2315503120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023] Open
Abstract
Gasdermins (GSDMs) share a common functional domain structure and are best known for their capacity to form membrane pores. These pores are hallmarks of a specific form of cell death called pyroptosis and mediate the secretion of pro-inflammatory cytokines such as interleukin 1β (IL1β) and interleukin 18 (IL18). Thereby, Gasdermins have been implicated in various immune responses against cancer and infectious diseases such as acute Salmonella Typhimurium (S.Tm) gut infection. However, to date, we lack a comprehensive functional assessment of the different Gasdermins (GSDMA-E) during S.Tm infection in vivo. Here, we used epithelium-specific ablation, bone marrow chimeras, and mouse lines lacking individual Gasdermins, combinations of Gasdermins or even all Gasdermins (GSDMA1-3C1-4DE) at once and performed littermate-controlled oral S.Tm infections in streptomycin-pretreated mice to investigate the impact of all murine Gasdermins. While GSDMA, C, and E appear dispensable, we show that GSDMD i) restricts S.Tm loads in the gut tissue and systemic organs, ii) controls gut inflammation kinetics, and iii) prevents epithelium disruption by 72 h of the infection. Full protection requires GSDMD expression by both bone-marrow-derived lamina propria cells and intestinal epithelial cells (IECs). In vivo experiments as well as 3D-, 2D-, and chimeric enteroid infections further show that infected IEC extrusion proceeds also without GSDMD, but that GSDMD controls the permeabilization and morphology of the extruding IECs, affects extrusion kinetics, and promotes overall mucosal barrier capacity. As such, this work identifies a unique multipronged role of GSDMD among the Gasdermins for mucosal tissue defense against a common enteric pathogen.
Collapse
Affiliation(s)
- Stefan A. Fattinger
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Luca Maurer
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
| | - Elliott M. Bernard
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Ursina Enz
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Suwannee Ganguillet
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Ersin Gül
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Benjamin Demarco
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Vanessa Mack
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Markus Furter
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4002, Switzerland
| | - Feng Shao
- National Institute of Biological Sciences, Beijing102206, China
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Mikael E. Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
10
|
Gül E, Fattinger SA, Sellin ME, Hardt WD. Epithelial inflammasomes, gasdermins, and mucosal inflammation - Lessons from Salmonella and Shigella infected mice. Semin Immunol 2023; 70:101812. [PMID: 37562110 DOI: 10.1016/j.smim.2023.101812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023]
Abstract
Besides its crucial function in nutrient absorbance and as barrier against the microbiota, the gut epithelium is essential for sensing pathogenic insults and mounting of an appropriate early immune response. In mice, the activation of the canonical NAIP/NLRC4 inflammasome is critical for the defense against enterobacterial infections. Activation of the NAIP/NLRC4 inflammasome triggers the extrusion of infected intestinal epithelial cells (IEC) into the gut lumen, concomitant with inflammasome-mediated lytic cell death. The membrane permeabilization, a hallmark of pyroptosis, is caused by the pore-forming proteins called gasdermins (GSDMs). Recent work has revealed that NAIP/NLRC4-dependent extrusion of infected IECs can, however, also be executed in the absence of GSDMD. In fact, several reports highlighted that various cell death pathways (e.g., pyroptosis or apoptosis) and unique mechanisms specific to particular infection models and stages of gut infection are in action during epithelial inflammasome defense against intestinal pathogens. Here, we summarize the current knowledge regarding the underlying mechanisms and speculate on the putative functions of the epithelial inflammasome activation and cell death, with a particular emphasis on mouse infection models for two prominent enterobacterial pathogens, Salmonella Typhimurium and Shigella flexneri.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Hinnant T, Ning W, Lechler T. Compartment specific responses to contractility in the small intestinal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552224. [PMID: 37609300 PMCID: PMC10441304 DOI: 10.1101/2023.08.07.552224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Tissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level. In this study, we probed the cell and tissue-level effects of contractility by using mouse models to genetically increase the level of myosin activity in the two distinct morphologic compartments of the intestinal epithelium, the crypts and villi. We found that increased contractility in the villar compartment caused shape changes in the cells that expressed the transgene and their immediate neighbors. While there were no discernable effects on villar architecture, even low levels of transgene induction in the villi caused non-cell autonomous hyperproliferation of the transit amplifying cells in the crypt, driving increased cell flux through the crypt-villar axis. In contrast, induction of increased contractility in the proliferating cells of the crypts resulted in nuclear deformations, DNA damage, and apoptosis. This study reveals the complex and diverse responses of different intestinal epithelial cells to contractility and provides important insight into mechanical regulation of intestinal physiology.
Collapse
Affiliation(s)
- Taylor Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Wenxiu Ning
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
13
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
14
|
Egan MS, Zhang J, Shin S. Human and mouse NAIP/NLRC4 inflammasome responses to bacterial infection. Curr Opin Microbiol 2023; 73:102298. [PMID: 37058933 PMCID: PMC10225321 DOI: 10.1016/j.mib.2023.102298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 04/16/2023]
Abstract
Intracellular immune complexes known as inflammasomes sense breaches of cytosolic sanctity. Inflammasomes promote downstream proinflammatory events, including interleukin-1 (IL-1) family cytokine release and pyroptotic cell death. The nucleotide-binding leucine-rich repeat family, apoptosis inhibitory protein/nucleotide-binding leucine-rich repeat family, caspase recruitment domain (CARD) domain-containing protein 4 (NAIP/NLRC4) inflammasome is involved in a range of pathogenic and protective inflammatory processes in mammalian hosts. In particular, the NAIP/NLRC4 inflammasome responds to flagellin and components of the virulence-associated type III secretion (T3SS) apparatus in the host cytosol, thereby allowing it to be a critical mediator of host defense during bacterial infection. Notable species- and cell type-specific differences exist in NAIP/NLRC4 inflammasome responses to bacterial pathogens. With a focus on Salmonella enterica serovar Typhimurium as a model pathogen, we review differences between murine and human NAIP/NLRC4 inflammasome responses. Differences in NAIP/NLRC4 inflammasome responses across species and cell types may have arisen in part due to evolutionary pressures.
Collapse
Affiliation(s)
- Marisa S Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
16
|
Abstract
Enteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health.
Collapse
Affiliation(s)
- Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Ute Römling Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Volker M. Lauschke Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
17
|
Gong W, Yang K, Zhao W, Zheng J, Yu J, Guo K, Sun X. Intestinal Gasdermins for regulation of inflammation and tumorigenesis. Front Immunol 2022; 13:1052111. [PMID: 36505474 PMCID: PMC9732009 DOI: 10.3389/fimmu.2022.1052111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gasdermins (GSDMs) protein family express in intestinal epithelial cells or lamina propria immune cells, and play a nonnegligible function during gut homeostasis. With the gradually in-depth investigation of GSDMs protein family, the proteases that cleave GSDMA-E have been identified. Intestinal GSDMs-induced pyroptosis is demonstrated to play a crucial role in the removal of self-danger molecules and clearance of pathogenic organism infection by mediating inflammatory reaction and collapsing the protective niche for pathogens. Simultaneously, excessive pyroptosis leading to the release of cellular contents including inflammatory mediators into the extracellular environment, enhancing the mucosal immune response. GSDMs-driver pyroptosis also participates in a novel inflammatory cell death, PANoptosis, which makes a significant sense to the initiation and progression of gut diseases. Moreover, GSDMs are expressed in healthy intestinal tissue without obvious pyroptosis and inflammation, indicating the potential intrinsic physiological functions of GSDMs that independent of pyroptotic cell death during maintenance of intestinal homeostasis. This review provides an overview of the latest advances in the physiological and pathological properties of GSDMs, including its mediated pyroptosis, related PANoptosis, and inherent functions independent of pyroptosis, with a focus on their roles involved in intestinal inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Kun Guo
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| |
Collapse
|
18
|
[NLRC4 plays a regulatory role in F. nucleatum-induced pyroptosis in macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1560-1565. [PMID: 36329592 PMCID: PMC9637494 DOI: 10.12122/j.issn.1673-4254.2022.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the mechanism of F.nucleatum-induced pyroptosis in macrophages and the regulatory role of inflammasomes. METHODS Lactate dehydrogenase (LDH) cytotoxicity assay and Hoechst 33342/PI double fluorescence staining were used to analyze cytolysis in F.nucleatum-infected macrophage RAW264.7 cells.The expressions of pyroptosis-related proteins caspase-1, GSDMD and IL-1β were determined using Western blotting.Inflammasome activation in the cells was analyzed by detecting the mRNA expressions of NLRP3, NLRC4, AIM2, and NLRP1 with qRT-PCR.RNA interference technique was used to knock down the key molecules involved in pyroptosis regulation in the macrophages, and the pyroptosis and necrosis rates of the cells following F.nucleatum infection were examined. RESULTS The results of LDH cytotoxicity assay and double-fluorescence staining showed that F.nucleatum infection caused swelling and lytic cell death in RAW264.7 cells.F.nucleatum infection resulted in the activation of caspase-1 and GSDMD and upregulated IL-1β expression in a multiplicity of infection (MOI)-and time-dependent manner (P < 0.05).qRT-PCR revealed significantly increased expression of NLRC4 mRNA in the macrophages after F.nucleatum infection (P < 0.05).NLRC4 silencing by siRNA strongly inhibited the activation of caspase-1/GSDMD pathway and reduced cell death (P < 0.05) and IL-1β expression in F.nucleatum-infected cells. CONCLUSION NLRC4 inflammasome drives caspase-1/GSDMD-mediated pyroptosis and inflammatory signaling in F.nucleatum-infected macrophages, suggesting the potential of NLRC4 inflammasome as a therapeutic target for F.nucleatum infections.
Collapse
|
19
|
Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation. Microbiol Spectr 2022; 10:e0212421. [PMID: 35658572 PMCID: PMC9241593 DOI: 10.1128/spectrum.02124-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limosilactobacillus reuteri plays an important role in regulating intestinal functions and maintaining barrier integrity in animals. In this study, Limosilactobacillus reuteri strain SLZX19-12 was isolated from the fecal microbiota of Tibetan pigs, and it was found that this strain is sensitive to common antibiotics and has strong resistance to stress. Upon being administered by gavage at different doses, including low, medium, and high doses, for 14 days, Limosilactobacillus reuteri SLZX19-12 may enhance the intestinal barrier. After administration of a high dose of SLZX19-12, mice were challenged with Salmonella enterica serovar Typhimurium SL1344. Infection with Salmonella Typhimurium SL1344 led to disordered colonic microbiotas, colonic inflammation through the S100A8/S100A9-NF-κB pathway and potential apoptosis, and translocation of pathogens to parenteral visceral organs in mice. However, the mice pretreated with Limosilactobacillus reuteri SLZX19-12 showed lower loads of Salmonella in visceral organs, less colonic inflammation, and higher barrier integrity. More importantly, the administration of strain SLZX19-12 resulted in a more stable microbiota structure of the colon, in which the abundance of Alloprevotella was greatly enhanced. Therefore, this study suggests that Limosilactobacillus reuteri SLZX19-12 can protect the colon from infection by enhancing the stability of gut microbiota and barrier integrity and reducing inflammation. IMPORTANCE The use of antibiotics to treat bacterial infections leads to a series of side effects. As an alternative method, the biocontrol strategy, which uses probiotics to suppress pathogens, is considered a potential way to deal with bacterial infections in gut. However, there are few probiotics that are currently safe and can protect against infection. In this study, Limosilactobacillus reuteri strain SLZX19-12 was obtained from Tibetan pigs, which have higher resistance to infection. This strain is sensitive to conventional antibiotics, secretes a wide spectrum of enzymes, and also promotes the intestinal barrier function in mice. In addition, Limosilactobacillus reuteri SLZX19-12 can promote the stability of the gut microbiota to avoid or alleviate the occurrence or development of foodborne infections.
Collapse
|
20
|
Gutierrez MG, Enninga J. Intracellular niche switching as host subversion strategy of bacterial pathogens. Curr Opin Cell Biol 2022; 76:102081. [PMID: 35487154 DOI: 10.1016/j.ceb.2022.102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
Numerous bacterial pathogens "confine" themselves within host cells with an intracellular localization as main or exclusive niche. Many of them switch dynamically between a membrane-bound or cytosolic lifestyle. This requires either membrane damage and/or repair of the bacterial-containing compartment. Niche switching has profound consequences on how the host cell recognizes the pathogens in time and space for elimination. Moreover, niche switching impacts how bacteria communicate with host cells to obtain nutrients, and it affects the accessibility to antibiotics. Understanding the local environments and cellular phenotypes that lead to niche switching is critical for developing new host-targeted antimicrobial strategies, and has the potential to shed light into fundamental cellular processes.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
Ek V, Fattinger SA, Florbrant A, Hardt WD, Di Martino ML, Eriksson J, Sellin ME. A Motile Doublet Form of Salmonella Typhimurium Diversifies Target Search Behaviour at the Epithelial Surface. Mol Microbiol 2022; 117:1156-1172. [PMID: 35332598 PMCID: PMC9325389 DOI: 10.1111/mmi.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
Abstract
The behaviors of infectious bacteria are commonly studied in bulk. This is effective to define the general properties of a given isolate, but insufficient to resolve subpopulations and unique single‐microbe behaviors within the bacterial pool. We here employ microscopy to study single‐bacterium characteristics among Salmonella enterica serovar Typhimurium (S.Tm), as they prepare for and launch invasion of epithelial host cells. We find that during the bacterial growth cycle, S.Tm populations switch gradually from fast planktonic growth to a host cell‐invasive phenotype, characterized by flagellar motility and expression of the Type‐three‐secretion‐system‐1. The indistinct nature of this shift leads to the establishment of a transient subpopulation of S.Tm “doublets”—waist‐bearing bacteria anticipating cell division—which simultaneously express host cell invasion machinery. In epithelial cell culture infections, these S.Tm doublets outperform their “singlet” brethren and represent a hyperinvasive subpopulation. Atop both glass and enteroid‐derived monolayers, doublets swim along markedly straighter trajectories than singlets, thereby diversifying search patterns and improving the surface exploration capacity of the total bacterial population. The straighter swimming, combined with an enhanced cell‐adhesion propensity, suffices to account for the hyperinvasive doublet phenotype. This work highlights bacterial cell length heterogeneity as a key determinant of target search patterns atop epithelia.
Collapse
Affiliation(s)
- Viktor Ek
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Stefan A Fattinger
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.,Institute of Microbiology, Department of Biology, ETH, Zurich, Zurich, Switzerland
| | - Alexandra Florbrant
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH, Zurich, Zurich, Switzerland
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| |
Collapse
|
22
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
23
|
Bonfim-Melo A, Noordstra I, Gupta S, Chan AH, Jones MJK, Schroder K, Yap AS. Rapid lamellipodial responses by neighbor cells drive epithelial sealing in response to pyroptotic cell death. Cell Rep 2022; 38:110316. [PMID: 35108534 DOI: 10.1016/j.celrep.2022.110316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
Cell injury poses a substantial challenge for epithelia homeostasis. Several cellular processes preserve epithelial barriers in response to apoptosis, but less is known about other forms of cell death, such as pyroptosis. Here we use an inducible caspase-1 system to analyze how colon epithelial monolayers respond to pyroptosis. We confirm that sporadic pyroptotic cells are physically eliminated from confluent monolayers by apical extrusion. This is accompanied by a transient defect in barrier function at the site of the pyroptotic cells. By visualizing cell shape changes and traction patterns in combination with cytoskeletal inhibitors, we show that rapid lamellipodial responses in the neighbor cells are responsible for correcting the leakage and resealing the barrier. Cell contractility is not required for this resealing response, in contrast to the response to apoptosis. Therefore, pyroptosis elicits a distinct homeostatic response from the epithelium that is driven by the stimulation of lamellipodia in neighbor cells.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Shafali Gupta
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Amy H Chan
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mathew J K Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
24
|
Scarfe L, Mackie GM, Maslowski KM. Inflammasome-independent functions of NAIPs and NLRs in the intestinal epithelium. Biochem Soc Trans 2021; 49:2601-2610. [PMID: 34854889 PMCID: PMC8786307 DOI: 10.1042/bst20210365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The gut relies on the complex interaction between epithelial, stromal and immune cells to maintain gut health in the face of food particles and pathogens. Innate sensing by the intestinal epithelium is critical for maintaining epithelial barrier function and also orchestrating mucosal immune responses. Numerous innate pattern recognition receptors (PRRs) are involved in such sensing. In recent years, several Nucleotide-binding-domain and Leucine-rich repeat-containing receptors (NLRs) have been found to partake in pathogen or damage sensing while also being implicated in gut pathologies, such as colitis and colorectal cancer (CRC). Here, we discuss the current literature focusing on NLR family apoptosis inhibitory proteins (NAIPs) and other NLRs that have non-inflammasome roles in the gut. The mechanisms behind NLR-mediated protection often converges on similar signalling pathways, such as STAT3, MAPK and NFκB. Further understanding of how these NLRs contribute to the maintenance of gut homeostasis will be important for understanding gut pathologies and developing new therapies.
Collapse
Affiliation(s)
- Lisa Scarfe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Gillian M. Mackie
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kendle M. Maslowski
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
25
|
Wei Z, Zhan X, Ding K, Xu G, Shi W, Ren L, Fang Z, Liu T, Hou X, Zhao J, Li H, Li J, Li Z, Li Q, Lin L, Yang Y, Xiao X, Bai Z, Cao J. Dihydrotanshinone I Specifically Inhibits NLRP3 Inflammasome Activation and Protects Against Septic Shock In Vivo. Front Pharmacol 2021; 12:750815. [PMID: 34721038 PMCID: PMC8552015 DOI: 10.3389/fphar.2021.750815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
The abnormal activation of the NLRP3 inflammasome is closely related to the occurrence and development of many inflammatory diseases. Targeting the NLRP3 inflammasome has been considered an efficient therapy to treat infections. We found that dihydrotanshinone I (DHT) specifically blocked the canonical and non-canonical activation of the NLRP3 inflammasome. Nevertheless, DHT had no relation with the activation of AIM2 or the NLRC4 inflammasome. Further study demonstrated that DHT had no influences on potassium efflux, calcium flux, or the production of mitochondrial ROS. We also discovered that DHT suppressed ASC oligomerization induced by NLRP3 agonists, suggesting that DHT inhibited the assembly of the NLRP3 inflammasome. Importantly, DHT possessed a significant therapeutic effect on NLRP3 inflammasome–mediated sepsis in mice. Therefore, our results aimed to clarify DHT as a specific small-molecule inhibitor for the NLRP3 inflammasome and suggested that DHT can be used as a potential drug against NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Ziying Wei
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaoyan Zhan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Wei Shi
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Lutong Ren
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhie Fang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Tingting Liu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jia Zhao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Hui Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jiayi Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhiyong Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Qiang Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Li Lin
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Yan Yang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Inflammasome activation by Salmonella. Curr Opin Microbiol 2021; 64:27-32. [PMID: 34563937 DOI: 10.1016/j.mib.2021.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Host recognition of bacteria such as Salmonella enterica serovar Typhimurium requires multiple host detection systems to generate complex inflammatory responses which can be cell type specific and has the potential for bacterial subversion of the host. Host detection of Salmonella requires Pattern Recognition Receptors (PRRs) sensing Pathogen Associated Molecular Patterns (PAMPs). These bacteria possess a diverse array of PAMPs including lipopolysaccharide, flagellin, proteins, lipoproteins, DNA, RNA and metabolites which can potentially activate multiple PRRs concurrently in different cell types. Salmonella is sensed by the inflammasome forming cytosolic nucleotide oligomerisation domain leucine rich repeat-like receptor (NLR) PRRs NLRC4 and NLRP3 as well as by the non canonical inflammasome formed by caspase 11 in mice, caspase 4 and 5 in humans. This review will discuss the different inflammasomes and how their activity regulates the host response to Salmonella infection.
Collapse
|
28
|
Fattinger SA, Sellin ME, Hardt WD. Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Curr Opin Microbiol 2021; 64:9-18. [PMID: 34492596 DOI: 10.1016/j.mib.2021.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
Salmonella Typhimurium (S.Tm) is a major cause of diarrheal disease. The invasion into intestinal epithelial cells (IECs) is a central step in the infection cycle. It is associated with gut inflammation and thought to benefit S.Tm proliferation also in the intestinal lumen. Importantly, it is still not entirely clear how inflammation is elicited and to which extent it links to IEC invasion efficiency in vivo. In this review, we summarize recent findings explaining IEC invasion by type-three-secretion-system-1 (TTSS-1) effector proteins and discuss their effects on invasion and gut inflammation. In non-polarized tissue culture cells, the TTSS-1 effectors (mainly SopB/E/E2) elicit large membrane ruffles fueling cooperative invasion, and can directly trigger pro-inflammatory signaling. By contrast, in the murine gut, we observe discreet-invasion (mainly via the TTSS-1 effector SipA) and a prominent pro-inflammatory role of the host?"s epithelial inflammasome(s), which sense pathogen associated molecular patterns (PAMPs). We discuss why it has remained a major challenge to tease apart direct and indirect inflammatory effects of TTSS-1 effectors and explain why further research will be needed to fully determine their inflammation-modulating role(s).
Collapse
Affiliation(s)
- Stefan A Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
High-Definition DIC Imaging Uncovers Transient Stages of Pathogen Infection Cycles on the Surface of Human Adult Stem Cell-Derived Intestinal Epithelium. mBio 2021; 13:e0002222. [PMID: 35100876 PMCID: PMC8805028 DOI: 10.1128/mbio.00022-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.
Collapse
|