1
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
2
|
Lui PP, Xu JZ, Aziz H, Sen M, Ali N. Jagged-1+ skin Tregs modulate cutaneous wound healing. Sci Rep 2024; 14:20999. [PMID: 39251686 PMCID: PMC11385218 DOI: 10.1038/s41598-024-71512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Skin-resident regulatory T cells (Tregs) play an irreplaceable role in orchestrating cutaneous immune homeostasis and repair, including the promotion of hair regeneration via the Notch signaling ligand Jagged-1 (Jag1). While skin Tregs are indispensable for facilitating tissue repair post-wounding, it remains unknown if Jag1-expressing skin Tregs impact wound healing. Using a tamoxifen inducible Foxp3creERT2Jag1fl/fl model, we show that loss of functional Jag1 in Tregs significantly delays the rate of full-thickness wound closure. Unlike in hair regeneration, skin Tregs do not utilize Jag1 to impact epithelial stem cells during wound healing. Instead, mice with Treg-specific Jag1 ablation exhibit a significant reduction in Ly6G + neutrophil accumulation at the wound site. However, during both homeostasis and wound healing, the loss of Jag1 in Tregs does not impact the overall abundance or activation profile of immune cell targets in the skin, such as CD4+ and CD8+ T cells, or pro-inflammatory macrophages. This collectively suggests that skin Tregs may utilize Jag1-Notch signalling to co-ordinate innate cell recruitment under conditions of injury but not homeostasis. Overall, our study demonstrates the importance of Jag1 expression in Tregs to facilitate adequate wound repair in the skin.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Jessie Z Xu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Hafsah Aziz
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Monica Sen
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
3
|
Siegmund D, Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 2023; 19:576-591. [PMID: 37542139 DOI: 10.1038/s41584-023-01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Korn T. Foxp3 + regulatory T cells in the central nervous system and other nonlymphoid tissues. Eur J Immunol 2023; 53:e2250227. [PMID: 37143298 DOI: 10.1002/eji.202250227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Foxp3+ regulatory T (Treg) cells are indispensable for the maintenance of immunologic self-tolerance as well as for the confinement of autoimmune inflammation after the breach of self-tolerance. In order to fulfill these tasks, Treg cells operate in secondary lymphoid tissues and nonlymphoid tissues. The conditions for Treg cell stability and for their modes of action are different according to their compartment of residence. In addition, Treg cells initiate residency programs to inhabit niches in nonlympoid tissues (NLT) in steady state and after re-establishment of previously deflected homeostasis for extended periods of time. These NLT Treg cells are different from lymphoid tissue residing Treg cells and are functionally specialized to subserve not only immune functions but support intrinsic functions of their tissue of residence. This review will highlight current ideas about the functional specialization of NLT Treg cells in particular in the central nervous system (CNS) and discuss challenges that we are facing in an effort to exploit the power of NLT Treg cells for maintenance of tissue homeostasis and perhaps also tissue regeneration.
Collapse
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Zhao R, Cao G, Zhang B, Wei L, Zhang X, Jin M, He B, Zhang B, He Z, Bie Q. TNF+ regulatory T cells regulate the stemness of gastric cancer cells through the IL13/STAT3 pathway. Front Oncol 2023; 13:1162938. [PMID: 37534250 PMCID: PMC10392945 DOI: 10.3389/fonc.2023.1162938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Regulatory T cells (Tregs) are an important component of the tumor microenvironment; however, the interaction between Tregs and gastric cancer cells is not completely understood. Recent studies have shown that Tregs participate in cancer cell stemness maintenance. In this study, we performed single-cell RNA sequencing of gastric cancer and adjacent tissues and found that Tregs with high TNF expression were recruited to gastric cancer tissues and were significantly correlated with patient survival. TNF+ Tregs significantly contribute to tumor growth and progression. Our studies have further demonstrated that TNF+ Tregs promote the stemness of gastric cancer cells through the IL13/STAT3 pathway. Therefore, blocking the interaction between TNF+ Tregs and gastric cancer cells may be a new approach in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guanjie Cao
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baogui Zhang
- Colorectal Ward, Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li Wei
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiaobei Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Meng Jin
- Hernia and Abdominal Wall Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhun He
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
Pegoretti V, Bauer J, Fischer R, Paro I, Douwenga W, Kontermann RE, Pfizenmaier K, Houben E, Broux B, Hellings N, Baron W, Laman JD, Eisel ULM. Sequential treatment with a TNFR2 agonist and a TNFR1 antagonist improves outcomes in a humanized mouse model for MS. J Neuroinflammation 2023; 20:106. [PMID: 37138340 PMCID: PMC10157968 DOI: 10.1186/s12974-023-02785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Iskra Paro
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelien Houben
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Bieke Broux
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Niels Hellings
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Wia Baron
- Department Biomedical Sciences of Cells and Systems (BSCS), Section Molecular Neurobiology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jon D Laman
- Department Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
7
|
Picher-Martel V, Boutej H, Vézina A, Cordeau P, Kaneb H, Julien JP, Genge A, Dupré N, Kriz J. Distinct Plasma Immune Profile in ALS Implicates sTNFR-II in pAMPK/Leptin Homeostasis. Int J Mol Sci 2023; 24:ijms24065065. [PMID: 36982140 PMCID: PMC10049559 DOI: 10.3390/ijms24065065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically highly heterogeneous disease with a survival rate ranging from months to decades. Evidence suggests that a systemic deregulation of immune response may play a role and affect disease progression. Here, we measured 62 different immune/metabolic mediators in plasma of sporadic ALS (sALS) patients. We show that, at the protein level, the majority of immune mediators including a metabolic sensor, leptin, were significantly decreased in the plasma of sALS patients and in two animal models of the disease. Next, we found that a subset of patients with rapidly progressing ALS develop a distinct plasma assess immune–metabolic molecular signature characterized by a differential increase in soluble tumor necrosis factor receptor II (sTNF-RII) and chemokine (C-C motif) ligand 16 (CCL16) and further decrease in the levels of leptin, mostly dysregulated in male patients. Consistent with in vivo findings, exposure of human adipocytes to sALS plasma and/or sTNF-RII alone, induced a significant deregulation in leptin production/homeostasis and was associated with a robust increase in AMP-activated protein kinase (AMPK) phosphorylation. Conversely, treatment with an AMPK inhibitor restored leptin production in human adipocytes. Together, this study provides evidence of a distinct plasma immune profile in sALS which affects adipocyte function and leptin signaling. Furthermore, our results suggest that targeting the sTNF-RII/AMPK/leptin pathway in adipocytes may help restore assess immune–metabolic homeostasis in ALS.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
- CHU de Québec, Department of Medicine, Université Laval, Québec City, QC G1J 1Z4, Canada
| | - Hejer Boutej
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Alexandre Vézina
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Pierre Cordeau
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Hannah Kaneb
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
| | - Angela Genge
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicolas Dupré
- CHU de Québec, Department of Medicine, Université Laval, Québec City, QC G1J 1Z4, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC G1J 2G3, Canada
- Correspondence: ; Tel.: +1-418-663-5000 (ext. 6732)
| |
Collapse
|
8
|
TNFR2 antagonistic antibody induces the death of tumor infiltrating CD4 +Foxp3 + regulatory T cells. Cell Oncol (Dordr) 2023; 46:167-177. [PMID: 36369606 DOI: 10.1007/s13402-022-00742-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND TNFR2 expression is a characteristic of highly potent immunosuppressive tumor infiltrating CD4+Foxp3+ regulatory T cells (Tregs). There is compelling evidence that TNF through TNFR2 preferentially stimulates the activation and expansion of Tregs. We and others, therefore, proposed that targeting TNFR2 may provide a novel strategy in cancer immunotherapy. Several studies have shown the effect of TNFR2 antagonistic antibodies in different tumor models. However, the exact action of the TNFR2 antibody on Tregs remained understood. METHOD TY101, an anti-murine TNFR2 antibody, was used to examine the effect of TNFR2 blockade on Treg proliferation and viability in vitro. The role of TNFR2 on Treg viability was further validated by TNFR2 knockout mice and in the TY101 antagonistic antibody-treated mouse tumor model. RESULTS In this study, we found that an anti-mouse TNFR2 antibody TY101 could inhibit TNF-induced proliferative expansion of Tregs, indicative of an antagonistic property. To examine the effect of TY101 antagonistic antibody on Treg viability, we treated unfractionated lymph node (L.N.) cells with Dexamethasone (Dex) which was known to induce T cell death. The result showed that TY101 antagonistic antibody treatment further promoted Treg death in the presence of Dex. This led us to find that TNFR2 expression was crucial for the survival of Tregs. In the mouse EG7 lymphoma model, treatment with TY101 antagonistic antibody potently inhibited tumor growth, resulting in complete regression of the tumor in 60% of mice. The treatment with TY101 antagonistic antibody elicited potent antitumor immune responses in this model, accompanied by enhanced death of Tregs. CONCLUSION This study, therefore, provides clear experimental evidence that TNFR2 antagonistic antibody, TY101, can promote the death of Tregs, and this effect may be attributable to the antitumor effect of TNFR2 antagonistic antibody.
Collapse
|
9
|
Du Y, Luo WJ, Zhan JL, Huang YL, Liang QW, Qu XS, Dong ZM. Anti-inflammatory effect of miR-125a-5p on experimental optic neuritis by promoting the differentiation of Treg cells. Neural Regen Res 2023; 18:451-455. [PMID: 35900445 PMCID: PMC9396506 DOI: 10.4103/1673-5374.346462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Methylprednisolone pulse treatment is currently used for optic neuritis. It can speed visual recovery, but does not improve the ultimate visual outcomes. Recent studies have reported that miR-125a-5p has immunomodulatory effects on autoimmune diseases. However, it remains unclear whether miR-125a-5p has effects on optic neuritis. In this study, we used adeno-associated virus to overexpress or silence miR-125a-5p in mice. We found that silencing miR-125a-5p increased the latency of visual evoked potential and aggravated inflammation of the optic nerve. Overexpression of miR-125a-5p suppressed inflammation of the optic nerve, protected retinal ganglion cells, and increased the percentage of Treg cells. Our findings show that miR-125a-5p exhibits anti-inflammatory effects through promoting the differentiation of Treg cells.
Collapse
|
10
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
11
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Kouyoumdjian A, Tchervenkov J, Paraskevas S. TFNR2 in Ischemia-Reperfusion Injury, Rejection, and Tolerance in Transplantation. Front Immunol 2022; 13:903913. [PMID: 35874723 PMCID: PMC9300818 DOI: 10.3389/fimmu.2022.903913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), and myeloid-derived suppressor cells (MDSCs). In solid organ transplantation, regulatory immune cells have been associated with decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases, cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2 signaling has found a clinical application in islet transplantation which could guide its wider use. This article reviews the current literature on TNFR2 expression in immune modulatory cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive impact of TNFR2 signaling especially in kidney and islet transplantation. However, further investigation of TNFR2 in all types of solid organ transplantation are required as well as dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
Collapse
Affiliation(s)
- Araz Kouyoumdjian
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- *Correspondence: Araz Kouyoumdjian,
| | - Jean Tchervenkov
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Steven Paraskevas
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, Borst J, de Kivit S. TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4 + T-Cell Metabolism. Front Immunol 2022; 13:881166. [PMID: 35844585 PMCID: PMC9282886 DOI: 10.3389/fimmu.2022.881166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thi Ngoc Minh Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Vargas JG, Wagner J, Shaikh H, Lang I, Medler J, Anany M, Steinfatt T, Mosca JP, Haack S, Dahlhoff J, Büttner-Herold M, Graf C, Viera EA, Einsele H, Wajant H, Beilhack A. A TNFR2-Specific TNF Fusion Protein With Improved In Vivo Activity. Front Immunol 2022; 13:888274. [PMID: 35769484 PMCID: PMC9234581 DOI: 10.3389/fimmu.2022.888274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.
Collapse
Affiliation(s)
- Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Jennifer Wagner
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, Giza, Egypt
| | - Tim Steinfatt
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Stephanie Haack
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Julia Dahlhoff
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Graf
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
17
|
Korn T. CNS T reg cells have alternative functions but run on conventional fuel. Nat Immunol 2022; 23:818-819. [PMID: 35618830 DOI: 10.1038/s41590-022-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany. .,Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
18
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
19
|
Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Insight Into Regulatory T Cells in Sepsis-Associated Encephalopathy. Front Neurol 2022; 13:830784. [PMID: 35370925 PMCID: PMC8965708 DOI: 10.3389/fneur.2022.830784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse central nervous system (CNS) dysfunction during sepsis, and is associated with increased mortality and poor outcomes in septic patients. Despite the high incidence and clinical relevance, the exact mechanisms driving SAE pathogenesis are not yet fully understood, and no specific therapeutic strategies are available. Regulatory T cells (Tregs) have a role in SAE pathogenesis, thought to be related with alleviation of sepsis-induced hyper-inflammation and immune responses, promotion of T helper (Th) 2 cells functional shift, neuroinflammation resolution, improvement of the blood-brain barrier (BBB) function, among others. Moreover, in a clinical point of view, these cells have the potential value of improving neurological and psychiatric/mental symptoms in SAE patients. This review aims to provide a general overview of SAE from its initial clinical presentation to long-term cognitive impairment and summarizes the main features of its pathogenesis. Additionally, a detailed overview on the main mechanisms by which Tregs may impact SAE pathogenesis is given. Finally, and considering that Tregs may be a novel target for immunomodulatory intervention in SAE, different therapeutic options, aiming to boost peripheral and brain infiltration of Tregs, are discussed.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Yu-lei Gao
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai
| |
Collapse
|
20
|
Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q. IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Front Immunol 2022; 12:783282. [PMID: 35003100 PMCID: PMC8732758 DOI: 10.3389/fimmu.2021.783282] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yani Peng
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Yannick D Muller
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
22
|
Segués A, van Duijnhoven SMJ, Parade M, Driessen L, Vukovic N, Zaiss D, Sijts AJAM, Berraondo P, van Elsas A. Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. J Immunol Methods 2021; 499:113173. [PMID: 34699840 DOI: 10.1016/j.jim.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Aina Segués
- Aduro Biotech Europe, Oss, the Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | | | | | | | - Nataša Vukovic
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Dietmar Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom; Institute of Immune Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
23
|
Sjaastad LE, Owen DL, Tracy SI, Farrar MA. Phenotypic and Functional Diversity in Regulatory T Cells. Front Cell Dev Biol 2021; 9:715901. [PMID: 34631704 PMCID: PMC8495164 DOI: 10.3389/fcell.2021.715901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
The concept that a subset of T cells exists that specifically suppresses immune responses was originally proposed over 50 years ago. It then took the next 30 years to solidify the concept of regulatory T cells (Tregs) into the paradigm we understand today - namely a subset of CD4+ FOXP3+ T-cells that are critical for controlling immune responses to self and commensal or environmental antigens that also play key roles in promoting tissue homeostasis and repair. Expression of the transcription factor FOXP3 is a defining feature of Tregs, while the cytokine IL2 is necessary for robust Treg development and function. While our initial conception of Tregs was as a monomorphic lineage required to suppress all types of immune responses, recent work has demonstrated extensive phenotypic and functional diversity within the Treg population. In this review we address the ontogeny, phenotype, and function of the large number of distinct effector Treg subsets that have been defined over the last 15 years.
Collapse
Affiliation(s)
- Louisa E. Sjaastad
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - David L. Owen
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Sean I. Tracy
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
25
|
Magliozzi R, Pezzini F, Pucci M, Rossi S, Facchiano F, Marastoni D, Montagnana M, Lippi G, Reynolds R, Calabrese M. Changes in Cerebrospinal Fluid Balance of TNF and TNF Receptors in Naïve Multiple Sclerosis Patients: Early Involvement in Compartmentalised Intrathecal Inflammation. Cells 2021; 10:cells10071712. [PMID: 34359880 PMCID: PMC8303813 DOI: 10.3390/cells10071712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naïve MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p < 0.001), sTNF-R1 (fold change: 1.693; p < 0.001) and sTNF-R2 (fold change: 2.189; p < 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p < 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-γ, IL-1β, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IFN-β, IFN-λ2, sIL-6Rα) was linked to Th cell differentiation and regulatory cytokine signalling. In conclusion, dysregulation of TNF and TNF-R1/2 pathways associates with specific clinical/MRI profiles and can be identified at a very early stage in MS patients, at the time of diagnosis, contributing to the prediction of the disease outcome.
Collapse
MESH Headings
- Adaptive Immunity
- Adult
- Antigens, CD/cerebrospinal fluid
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- C-Reactive Protein/cerebrospinal fluid
- C-Reactive Protein/genetics
- C-Reactive Protein/immunology
- Case-Control Studies
- Cerebral Cortex/diagnostic imaging
- Cerebral Cortex/immunology
- Cerebral Cortex/pathology
- Chemokine CXCL13/cerebrospinal fluid
- Chemokine CXCL13/genetics
- Chemokine CXCL13/immunology
- Chitinase-3-Like Protein 1/cerebrospinal fluid
- Chitinase-3-Like Protein 1/genetics
- Chitinase-3-Like Protein 1/immunology
- Cytokine TWEAK/cerebrospinal fluid
- Cytokine TWEAK/genetics
- Cytokine TWEAK/immunology
- Early Diagnosis
- Female
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Interleukins/cerebrospinal fluid
- Interleukins/genetics
- Interleukins/immunology
- Magnetic Resonance Imaging
- Male
- Meninges/diagnostic imaging
- Meninges/immunology
- Meninges/pathology
- Multiple Sclerosis/cerebrospinal fluid
- Multiple Sclerosis/diagnostic imaging
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Osteopontin/cerebrospinal fluid
- Osteopontin/genetics
- Osteopontin/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Tumor Necrosis Factor, Type I/cerebrospinal fluid
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/cerebrospinal fluid
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Serum Amyloid P-Component/cerebrospinal fluid
- Serum Amyloid P-Component/genetics
- Serum Amyloid P-Component/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Necrosis Factor Ligand Superfamily Member 14/cerebrospinal fluid
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/immunology
- Tumor Necrosis Factor-alpha/cerebrospinal fluid
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- White Matter/diagnostic imaging
- White Matter/immunology
- White Matter/pathology
Collapse
Affiliation(s)
- Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
- Department of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK;
- Correspondence:
| | - Francesco Pezzini
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| | - Mairi Pucci
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Higher Institute of Health Care, 00161 Rome, Italy; (S.R.); (F.F.)
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Higher Institute of Health Care, 00161 Rome, Italy; (S.R.); (F.F.)
| | - Damiano Marastoni
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| | - Martina Montagnana
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| | - Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| | - Richard Reynolds
- Department of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK;
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Singapore 308232, Singapore
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (F.P.); (M.P.); (D.M.); (M.M.); (G.L.); (M.C.)
| |
Collapse
|