1
|
Evans BJ, Gvoždík V, Knytl M, Cauret CMS, Herrel A, Greenbaum E, Patel J, Premachandra T, Papenfuss TJ, Parente J, Horb ME, Measey J. Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes. Mol Biol Evol 2024; 41:msae234. [PMID: 39665151 PMCID: PMC11635168 DOI: 10.1093/molbev/msae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Sex chromosomes of some closely related species are not homologous, and sex chromosome turnover is often attributed to mechanisms that involve linkage to or recombination arrest around sex-determining loci. We examined sex chromosome turnover and recombination landscapes in African clawed frogs (genus Xenopus) with reduced representation genome sequences from 929 individuals from 19 species. We recovered extensive variation in sex chromosomes, including at least eight nonhomologous sex-associated regions-five newly reported here, with most maintaining female heterogamety, but two independent origins of Y chromosomes. Seven of these regions are found in allopolyploid species in the subgenus Xenopus, and all of these reside in one of their two subgenomes, which highlights functional asymmetry between subgenomes. In three species with chromosome-scale genome assemblies (Xenopus borealis, Xenopus laevis, and Xenopus tropicalis), sex-specific recombination landscapes have similar patterns of sex differences in rates and locations of recombination. Across these Xenopus species, sex-associated regions are significantly nearer chromosome ends than expected by chance, even though this is where the ancestral recombination rate is highest in both sexes before the regions became sex associated. As well, expansions of sex-associated recombination arrest occurred multiple times. New information on sex linkage along with among-species variation in female specificity of the sex-determining gene dm-w argues against a "jumping gene" model, where dm-w moves around the genome. The diversity of sex chromosomes in Xenopus raises questions about the roles of natural and sexual selection, polyploidy, the recombination landscape, and neutral processes in driving sex chromosome turnover in animal groups with mostly heterogametic females.
Collapse
Affiliation(s)
- Ben J Evans
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Martin Knytl
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
- Department of Cell Biology, Charles University, Viničná 7, Prague 12843, Czech Republic
| | - Caroline M S Cauret
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall 4605, 2701 SW Campus Way, Corvallis, OR 97331, USA
| | - Anthony Herrel
- UMR 7179, Mécanismes Adaptatifs et Evolution, Muséum national d'Histoire naturelle CNRS, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jay Patel
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | - Tharindu Premachandra
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | | | - James Parente
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John Measey
- UMR 7179, Mécanismes Adaptatifs et Evolution, Muséum national d'Histoire naturelle CNRS, Paris, France
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University in Kunming, Yunnan Province, China
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Cantu D, Massonnet M, Cochetel N. The wild side of grape genomics. Trends Genet 2024; 40:601-612. [PMID: 38777691 DOI: 10.1016/j.tig.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
With broad genetic diversity and as a source of key agronomic traits, wild grape species (Vitis spp.) are crucial to enhance viticulture's climatic resilience and sustainability. This review discusses how recent breakthroughs in the genome assembly and analysis of wild grape species have led to discoveries on grape evolution, from wild species' adaptation to environmental stress to grape domestication. We detail how diploid chromosome-scale genomes from wild Vitis spp. have enabled the identification of candidate disease-resistance and flower sex determination genes and the creation of the first Vitis graph-based pangenome. Finally, we explore how wild grape genomics can impact grape research and viticulture, including aspects such as data sharing, the development of functional genomics tools, and the acceleration of genetic improvement.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Genome Center, University of California, Davis, Davis, CA 95616, USA.
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Djari A, Madignier G, Di Valentin O, Gillet T, Frasse P, Djouhri A, Hu G, Julliard S, Liu M, Zhang Y, Regad F, Pirrello J, Maza E, Bouzayen M. Haplotype-resolved genome assembly and implementation of VitExpress, an open interactive transcriptomic platform for grapevine. Proc Natl Acad Sci U S A 2024; 121:e2403750121. [PMID: 38805269 PMCID: PMC11161759 DOI: 10.1073/pnas.2403750121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera. Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.
Collapse
Affiliation(s)
- Anis Djari
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Guillaume Madignier
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
- Fondation Jean Poupelain, Cognac, Javrezac16100, France
| | - Olivia Di Valentin
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Thibault Gillet
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Pierre Frasse
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Amel Djouhri
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Guojian Hu
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
- Fondation Jean Poupelain, Cognac, Javrezac16100, France
| | - Sebastien Julliard
- Conservatoire du vignoble charentais, Institut de Formation de Richemont, Cherves-Richemont16370, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| |
Collapse
|
4
|
Long Q, Cao S, Huang G, Wang X, Liu Z, Liu W, Wang Y, Xiao H, Peng Y, Zhou Y. Population comparative genomics discovers gene gain and loss during grapevine domestication. PLANT PHYSIOLOGY 2024; 195:1401-1413. [PMID: 38285049 PMCID: PMC11142336 DOI: 10.1093/plphys/kiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Plant domestication are evolutionary experiments conducted by early farmers since thousands years ago, during which the crop wild progenitors are artificially selected for desired agronomic traits along with dramatic genomic variation in the course of moderate to severe bottlenecks. However, previous investigations are mainly focused on small-effect variants, while changes in gene contents are rarely investigated due to the lack of population-level assemblies for both the crop and its wild relatives. Here, we applied comparative genomic analyses to discover gene gain and loss during grapevine domestication using long-read assemblies of representative population samples for both domesticated grapevines (V. vinifera ssp. vinifera) and their wild progenitors (V. vinifera ssp. sylvestris). Only ∼7% of gene families were shared by 16 Vitis genomes while ∼8% of gene families were specific to each accession, suggesting dramatic variations of gene contents in grapevine genomes. Compared to wild progenitors, the domesticated accessions exhibited an increased presence of genes associated with asexual reproduction, while the wild progenitors showcased a higher abundance of genes related to pollination, revealing the transition from sexual reproduction to clonal propagation during domestication processes. Moreover, the domesticated accessions harbored fewer disease-resistance genes than wild progenitors. The SVs occurred frequently in aroma and disease-resistance related genes between domesticated grapevines and wild progenitors, indicating the rapid diversification of these genes during domestication. Our study provides insights and resources for biological studies and breeding programs in grapevine.
Collapse
Affiliation(s)
- Qiming Long
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guizhou Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 C1P1, Ireland
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Wenwen Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yiwen Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
5
|
Unnikrishnan R, Balakrishnan S, Sumod M, Sujanapal P, Balan B, Dev SA. Gender specific SNP markers in Coscinium fenestratum (Gaertn.) Colebr. for resource augmentation. Mol Biol Rep 2024; 51:93. [PMID: 38194000 DOI: 10.1007/s11033-023-09044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Unregulated extraction of highly traded medicinal plant species results in drastic decline of the natural resources and alters viable sex ratio of populations. Conservation and long-term survival of such species, require gender specific restoration programs to ensure reproductive success. However, it is often difficult to differentiate sex of individuals before reaching reproductive maturity. C. fenestratum is one of the medicinally important and overexploited dioecious woody liana, with a reproductive maturity of 15 years. Currently, no information is available to identify sex of C. fenestratum in seedling stage while augmenting the resources. Thus, the current study envisages to utilize transcriptomics approach for gender differentiation which is imperative for undertaking viable resource augmentation programmes. METHODS AND RESULTS Gender specific SNPs with probable role in sexual reproduction/sex determination was located using comparative transcriptomics approach (sampling male and female individuals), alongside gene ontology and annotation. Nine sets of primers were synthesized from 7 transcripts (involved in sexual reproduction/other biological process) containing multiple SNP variants. Out of the nine primer pairs, only one SNP locus with no available information of its role in reproduction, showed consistent and accurate results (males-heterozygous and females-homozygous), in the analyzed 40 matured individuals of known sexes. Thus validated the efficiency of this SNP marker in differentiating male and female individuals. CONCLUSIONS The study could identify SNPs linked to the loci with apparent role in gender differentiation. This SNP marker can be used for early sexing of seedlings for in-situ conservation and resource augmentation of C. fenestratum in Kerala, India.
Collapse
Affiliation(s)
- Remya Unnikrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - Swathi Balakrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - M Sumod
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - P Sujanapal
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze-Ed. 4, Palermo, 90128, Italy
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India.
| |
Collapse
|
6
|
Cochetel N, Minio A, Guarracino A, Garcia JF, Figueroa-Balderas R, Massonnet M, Kasuga T, Londo JP, Garrison E, Gaut BS, Cantu D. A super-pangenome of the North American wild grape species. Genome Biol 2023; 24:290. [PMID: 38111050 PMCID: PMC10729490 DOI: 10.1186/s13059-023-03133-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. RESULTS Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. CONCLUSIONS This study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Human Technopole, Milan, Italy
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | | | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, CA, USA
| | - Jason P Londo
- Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Srivastava R, Bazakos C, Tsachaki M, Žanko D, Kalantidis K, Tsiantis M, Laurent S. Genealogical Analyses of 3 Cultivated and 1 Wild Specimen of Vitis vinifera from Greece. Genome Biol Evol 2023; 15:evad226. [PMID: 38128270 PMCID: PMC10735296 DOI: 10.1093/gbe/evad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Grapevine (Vitis vinifera) has been an important crop with considerable cultural and economic significance for over 2,500 years, and Greece has been an important entry point into Europe for lineages that were domesticated in Western Asia and the Caucasus. However, whole-genome-based investigation of the demographic history of Greek cultivars relative to other European lineages has only started recently. To understand how Greek cultivars relate to Eurasian domesticated and wild populations, we sequenced 3 iconic domesticated strains ('Xinomavro,' 'Agiorgitiko,' 'Mavrotragano') along with 1 wild accession (the vinetree of Pausanias-a historically important wild specimen) and analyzed their genomic diversity together with a large sample of publicly available domesticated and wild strains. We also reconstructed genealogies by leveraging the powerful tsinfer methodology which has not previously been used in this system. We show that cultivated strains from Greece differ genetically from other strains in Europe. Interestingly, all the 3 cultivated Greek strains clustered with cultivated and wild accessions from Transcaucasia, South Asia, and the Levant and are amongst the very few cultivated European strains belonging to this cluster. Furthermore, our results indicate that 'Xinomavro' shares close genealogical proximity with European elite cultivars such as 'Chardonnay,' 'Riesling,' and 'Gamay' but not 'Pinot.' Therefore, the proximity of 'Xinomavro' to Gouais/Heunisch Weiss is confirmed and the utility of ancestral recombination graph reconstruction approaches to study genealogical relationships in crops is highlighted.
Collapse
Affiliation(s)
- Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece
| | | | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion 71500, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion 70013, Greece
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- BioNTech, Mainz, Germany
| |
Collapse
|
8
|
Li B, Gschwend AR. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1234130. [PMID: 37719220 PMCID: PMC10501149 DOI: 10.3389/fpls.2023.1234130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Wild grapevines are important genetic resources in breeding programs to confer adaptive fitness traits and unique fruit characteristics, but the genetics underlying these traits, and their evolutionary origins, are largely unknown. To determine the factors that contributed to grapevine genome diversification, we performed comprehensive intragenomic and intergenomic analyses with three cultivated European (including the PN40024 reference genome) and two wild North American grapevine genomes, including our newly released Vitis labrusca genome. We found the heterozygosity of the cultivated grapevine genomes was twice as high as the wild grapevine genomes studied. Approximately 30% of V. labrusca and 48% of V. vinifera Chardonnay genes were heterozygous or hemizygous and a considerable number of collinear genes between Chardonnay and V. labrusca had different gene zygosity. Our study revealed evidence that supports gene gain-loss events in parental genomes resulted in the inheritance of hemizygous genes in the Chardonnay genome. Thousands of segmental duplications supplied source material for genome-specific genes, further driving diversification of the genomes studied. We found an enrichment of recently duplicated, adaptive genes in similar functional pathways, but differential retention of environment-specific adaptive genes within each genome. For example, large expansions of NLR genes were discovered in the two wild grapevine genomes studied. Our findings support variation in transposable elements contributed to unique traits in grapevines. Our work revealed gene zygosity, segmental duplications, gene gain-and-loss variations, and transposable element polymorphisms can be key driving forces for grapevine genome diversification.
Collapse
Affiliation(s)
| | - Andrea R. Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Sichel V, Sarah G, Girollet N, Laucou V, Roux C, Roques M, Mournet P, Cunff LL, Bert P, This P, Lacombe T. Chimeras in Merlot grapevine revealed by phased assembly. BMC Genomics 2023; 24:396. [PMID: 37452318 PMCID: PMC10347889 DOI: 10.1186/s12864-023-09453-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Chimerism is the phenomenon when several genotypes coexist in a single individual. Used to understand plant ontogenesis they also have been valorised through new cultivar breeding. Viticulture has been taking economic advantage out of chimeras when the variant induced an important modification of wine type such as berry skin colour. Crucial agronomic characters may also be impacted by chimeras that aren't identified yet. Periclinal chimera where the variant has entirely colonised a cell layer is the most stable and can be propagated through cuttings. In grapevine, leaves are derived from both meristem layers, L1 and L2. However, lateral roots are formed from the L2 cell layer only. Thus, comparing DNA sequences of roots and leaves allows chimera detection. In this study we used new generation Hifi long reads sequencing, recent bioinformatics tools and trio-binning with parental sequences to detect periclinal chimeras on 'Merlot' grapevine cultivar. Sequencing of cv. 'Magdeleine Noire des Charentes' and 'Cabernet Franc', the parents of cv. 'Merlot', allowed haplotype resolved assembly. Pseudomolecules were built with a total of 33 to 47 contigs and in few occasions a unique contig for one chromosome. This high resolution allowed haplotype comparison. Annotation was transferred from PN40024 VCost.v3 to all pseudomolecules. After strong selection of variants, 51 and 53 'Merlot' specific periclinal chimeras were found on the Merlot-haplotype-CF and Merlot-haplotype-MG respectively, 9 and 7 been located in a coding region. A subset of positions was analysed using Molecular Inversion Probes (MIPseq) and 69% were unambiguously validated, 25% are doubtful because of technological noise or weak depth and 6% invalidated. These results open new perspectives on chimera detection as an important resource to improve cultivars through clonal selection or breeding.
Collapse
Affiliation(s)
- V. Sichel
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
| | - G. Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - N. Girollet
- EGFV, Université de Bordeaux, Bordeaux-Sciences Agro, INRAe, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
| | - V. Laucou
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - C. Roux
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - M. Roques
- Institut Français de la Vigne et du Vin, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - P. Mournet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMR AGAP Institut, CIRAD, Montpellier, F-34398 France
| | - L. Le Cunff
- Institut Français de la Vigne et du Vin, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - P.F. Bert
- EGFV, Université de Bordeaux, Bordeaux-Sciences Agro, INRAe, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
| | - P. This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| | - T. Lacombe
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, F-34398 France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, F-34398 France
| |
Collapse
|
10
|
Liu HN, Pei MS, Ampomah-Dwamena C, He GQ, Wei TL, Shi QF, Yu YH, Guo DL. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species. Funct Integr Genomics 2023; 23:218. [PMID: 37393305 DOI: 10.1007/s10142-023-01128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | | | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Qiao-Fang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
11
|
Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y. The complete reference genome for grapevine ( Vitis vinifera L.) genetics and breeding. HORTICULTURE RESEARCH 2023; 10:uhad061. [PMID: 37213686 PMCID: PMC10199708 DOI: 10.1093/hr/uhad061] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/02/2023] [Indexed: 05/23/2023]
Abstract
Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.
Collapse
Affiliation(s)
- Xiaoya Shi
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Siyang Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yue Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhongjie Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenwen Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanling Peng
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Nan Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwen Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fan Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hui Xue
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Komlan Avia
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Jérôme Grimplet
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Systems Biotech Program, Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY 14853, USA
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Haibo Wang
- Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture/Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Liaoning Province, Xingcheng 125100, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450004, China
| | - Yuling Fang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | | | - Zongming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Xiao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
12
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Pei D, Song S, Kang J, Zhang C, Wang J, Dong T, Ge M, Pervaiz T, Zhang P, Fang J. Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes. Genes (Basel) 2023; 14:genes14030663. [PMID: 36980935 PMCID: PMC10048371 DOI: 10.3390/genes14030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
SSR (simple sequence repeat) DNA markers are widely used for genotype DNA identification, QTL mapping, and analyzing genetic biodiversity. However, SSRs in grapes are still in their early stages, with a few primer pairs accessible. With the whole-genome sequencing (WGS) of several grape varieties, characterization of grape SSR changed to be necessary not only to genomics but to also help SSR development and utility. Based on this, we identified the whole-genome SSR of nine grape cultivars (‘PN40024’, ‘Cabernet Sauvignon’, ‘Carménère’, ‘Chardonnay’, ‘Merlot’, ‘Riesling’, ‘Zinfandel’, ‘Shine Muscat’, and ‘Muscat Hamburg’) with whole-genome sequences released publicly and found that there are great differences in the distribution of SSR loci in different varieties. According to the difference in genome size, the number of SSRs ranged from 267,385 (Cabernet Sauvignon) to 627,429 (Carménère), the density of the SSR locus in the genome of nine cultivars was generally 1 per Kb. SSR motif distribution characteristic analysis of these grape cultivars showed that the distribution patterns among grape cultivars were conservative, mainly enriched in A/T. However, there are some differences in motif types (especially tetranucleotides, pentanucleotides, and hexanucleotides), quantity, total length, and average length in different varieties, which might be related to the size of the assembled genome or the specificity of variety domestication. The distribution characteristics of SSRs were revealed by whole-genome analysis of simple repeats of grape varieties. In this study, 32 pairs of primers with lower polymorphism have been screened, which provided an important research foundation for the development of molecular markers of grape variety identification and the construction of linkage maps of important agronomic traits for crop improvement.
Collapse
Affiliation(s)
- Dan Pei
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyan Song
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, Zhenjiang 212400, China
| | - Jun Kang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqing Ge
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 22963, USA
| | - Peian Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
14
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
15
|
Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, Musayev M, Goryslavets S, Zdunić G, Bert PF, Lacombe T, Maul E, Nick P, Bitskinashvili K, Bisztray GD, Drori E, De Lorenzis G, Cunha J, Popescu CF, Arroyo-Garcia R, Arnold C, Ergül A, Zhu Y, Ma C, Wang S, Liu S, Tang L, Wang C, Li D, Pan Y, Li J, Yang L, Li X, Xiang G, Yang Z, Chen B, Dai Z, Wang Y, Arakelyan A, Kuliyev V, Spotar G, Girollet N, Delrot S, Ollat N, This P, Marchal C, Sarah G, Laucou V, Bacilieri R, Röckel F, Guan P, Jung A, Riemann M, Ujmajuridze L, Zakalashvili T, Maghradze D, Höhn M, Jahnke G, Kiss E, Deák T, Rahimi O, Hübner S, Grassi F, Mercati F, Sunseri F, Eiras-Dias J, Dumitru AM, Carrasco D, Rodriguez-Izquierdo A, Muñoz G, Uysal T, Özer C, Kazan K, Xu M, Wang Y, Zhu S, Lu J, Zhao M, Wang L, Jiu S, Zhang Y, Sun L, Yang H, Weiss E, Wang S, Zhu Y, Li S, Sheng J, Chen W. Dual domestications and origin of traits in grapevine evolution. Science 2023; 379:892-901. [PMID: 36862793 DOI: 10.1126/science.add8655] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Qiuju Xia
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Kristine Margaryan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Yerevan State University, 0014 Yerevan, Armenia
| | - Mirza Musayev
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, AZ1106 Baku, Azerbaijan
| | | | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Pierre-François Bert
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Thierry Lacombe
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - György Dénes Bisztray
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel.,Eastern Regional R&D Center, 40700 Ariel, Israel
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milano, Italy
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carmen Florentina Popescu
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - Rosa Arroyo-Garcia
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, 06135 Ankara, Turkey
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Shufen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Liu Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Chunping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Dawei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Yunbing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Jingxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Guisheng Xiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zijiang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Baozheng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Arsen Arakelyan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Armenian Bioinformatics Institute, 0014 Yerevan, Armenia.,Biomedicine and Pharmacy, RAU, 0051 Yerevan, Armenia
| | - Varis Kuliyev
- Institute of Bioresources, Nakhchivan Branch of the Azerbaijan National Academy of Sciences, AZ7000 Nakhchivan, Azerbaijan
| | - Gennady Spotar
- National Institute of Viticulture and Winemaking Magarach, Yalta 298600, Crimea
| | - Nabil Girollet
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Nathalie Ollat
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Patrice This
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Cécile Marchal
- Vassal-Montpellier Grapevine Biological Resources Center, INRAE, 34340 Marseillan-Plage, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Roberto Bacilieri
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Pingyin Guan
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Jung
- Historische Rebsorten-Sammlung, Rebschule (K39), 67599 Gundheim, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Levan Ujmajuridze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | | | - David Maghradze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | - Maria Höhn
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Gizella Jahnke
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Erzsébet Kiss
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Tamás Deák
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Oshrit Rahimi
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel
| | - Sariel Hübner
- Galilee Research Institute (Migal), Tel-Hai Academic College, 12210 Upper Galilee, Israel
| | - Fabrizio Grassi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources, National Research Council, 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, Reggio 89122 Calabria, Italy
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Anamaria Mirabela Dumitru
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - David Carrasco
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | | | - Tamer Uysal
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Cengiz Özer
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Meilong Xu
- Institute of Horticulture, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang Lu
- Center for Viticulture and Oenology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | | | - Ehud Weiss
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| |
Collapse
|
16
|
Guzmán-Ardiles RE, Pegoraro C, da Maia LC, Costa de Oliveira A. Genetic changes in the genus Vitis and the domestication of vine. FRONTIERS IN PLANT SCIENCE 2023; 13:1019311. [PMID: 36926258 PMCID: PMC10011507 DOI: 10.3389/fpls.2022.1019311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
The genus Vitis belongs to the Vitaceae family and is divided into two subgenera: Muscadinia and Vitis, the main difference between these subgenera being the number of chromosomes. There are many hypotheses about the origin of the genus, which have been formed with archaeological studies and lately with molecular analyses. Even though there is no consensus on the place of origin, these studies have shown that grapes have been used by man since ancient times, starting later on its domestication. Most studies point to the Near East and Greece as the beginning of domestication, current research suggests it took place in parallel in different sites, but in all cases Vitis vinifera (L.) subsp. sylvestris [Vitis vinifera (L.) subsp. sylvestris (Gmelin) Hagi] seems to be the species chosen by our ancestors to give rise to the now known Vitis vinifera (L.) subsp. vinifera [=sativa (Hegi)= caucasica (Vavilov)]. Its evolution and expansion into other territories followed the formation of new empires and their expansion, and this is where the historical importance of this crop lies. In this process, plants with hermaphrodite flowers were preferentially selected, with firmer, sweeter, larger fruits of different colors, thus favoring the selection of genes associated with these traits, also resulting in a change in seed morphology. Currently, genetic improvement programs have made use of wild species for the introgression of disease resistance genes and tolerance to diverse soil and climate environments. In addition, the mapping of genes of interest, both linked to agronomic and fruit quality traits, has allowed the use of molecular markers for assisted selection. Information on the domestication process and genetic resources help to understand the gene pool available for the development of cultivars that respond to producer and consumer requirements.
Collapse
|
17
|
Bosman RN, Lashbrooke JG. Grapevine mono- and sesquiterpenes: Genetics, metabolism, and ecophysiology. FRONTIERS IN PLANT SCIENCE 2023; 14:1111392. [PMID: 36818850 PMCID: PMC9936147 DOI: 10.3389/fpls.2023.1111392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mono- and sesquiterpenes are volatile organic compounds which play crucial roles in human perception of table grape and wine flavour and aroma, and as such their biosynthesis has received significant attention. Here, the biosynthesis of mono- and sesquiterpenes in grapevine is reviewed, with a specific focus on the metabolic pathways which lead to formation of these compounds, and the characterised genetic variation underlying modulation of this metabolism. The bottlenecks for terpene precursor formation in the cytosol and plastid are understood to be the HMG-CoA reductase (HMGR) and 1-deoxy-D-xylylose-5-phosphate synthase (DXS) enzymes, respectively, and lead to the formation of prenyldiphosphate precursors. The functional plasticity of the terpene synthase enzymes which act on the prenyldiphosphate precursors allows for the massive variation in observed terpene product accumulation. This diversity is further enhanced in grapevine by significant duplication of genes coding for structurally diverse terpene synthases. Relatively minor nucleotide variations are sufficient to influence both product and substrate specificity of terpene synthase genes, with these variations impacting cultivar-specific aroma profiles. While the importance of these compounds in terms of grape quality is well documented, they also play several interesting roles in the grapevine's ecophysiological interaction with its environment. Mono- and sesquiterpenes are involved in attraction of pollinators, agents of seed dispersal and herbivores, defence against fungal infection, promotion of mutualistic rhizobacteria interaction, and are elevated in conditions of high light radiation. The ever-increasing grapevine genome sequence data will potentially allow for future breeders and biotechnologists to tailor the aroma profiles of novel grapevine cultivars through exploitation of the significant genetic variation observed in terpene synthase genes.
Collapse
|
18
|
Zhang X, Pan L, Guo W, Li Y, Wang W. A convergent mechanism of sex determination in dioecious plants: Distinct sex-determining genes display converged regulation on floral B-class genes. FRONTIERS IN PLANT SCIENCE 2022; 13:953445. [PMID: 36092432 PMCID: PMC9459113 DOI: 10.3389/fpls.2022.953445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/12/2023]
Abstract
Sex determination in dioecious plants has been broadly and progressively studied with the blooming of genome sequencing and editing techniques. This provides us with a great opportunity to explore the evolution and genetic mechanisms underlining the sex-determining system in dioecious plants. In this study, comprehensively reviewing advances in sex-chromosomes, sex-determining genes, and floral MADS-box genes in dioecious plants, we proposed a convergent model that governs plant dioecy across divergent species using a cascade regulation pathway connecting sex-determining genes and MADS-box genes e.g., B-class genes. We believe that this convergent mechanism of sex determination in dioecious plants will shed light on our understanding of gene regulation and evolution of plant dioecy. Perspectives concerning the evolutionary pathway of plant dioecy are also suggested.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Linsi Pan
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wencai Wang
- Department of Molecular of Biology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Pei MS, Liu HN, Wei TL, Yu YH, Guo DL. Large-scale discovery of non-conventional peptides in grape ( Vitis vinifera L.) through peptidogenomics. HORTICULTURE RESEARCH 2022; 9:uhac023. [PMID: 35531313 PMCID: PMC9070638 DOI: 10.1093/hr/uhac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Non-conventional peptides (NCPs), which are peptides derived from previously unannotated coding sequences, play important biological roles in plants. In this study, we used peptidogenomic methods that integrated mass spectrometry (MS) peptidomics and a six-frame translation database to extensively identify NCPs in grape. In total, 188 and 2021 non-redundant peptides from the Arabidopsis thaliana and Vitis vinifera L. protein database at Ensembl/URGI and an individualized peptidogenomic database were identified. Unlike conventional peptides, these NCPs derived mainly from intergenic, intronic, upstream ORF, 5'UTR, 3'UTR, and downstream ORF regions. These results show that unannotated regions are translated more broadly than we thought. We also found that most NCPs were derived from regions related to phenotypic variations, LTR retrotransposons, and domestication selection, indicating that the NCPs have an important function in complex biological processes. We also found that the NCPs were developmentally specific and had transient and specific functions in grape berry development. In summary, our study is the first to extensively identify NCPs in grape. It demonstrated that there was a large amount of translation in the genome. These results lay a foundation for studying the functions of NCPs and also provide a reference for the discovery of new functional genes in grape.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | | |
Collapse
|
20
|
Alahakoon D, Fennell A, Helget Z, Bates T, Karn A, Manns D, Mansfield AK, Reisch BI, Sacks G, Sun Q, Zou C, Cadle-Davidson L, Londo JP. Berry Anthocyanin, Acid, and Volatile Trait Analyses in a Grapevine-Interspecific F2 Population Using an Integrated GBS and rhAmpSeq Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:696. [PMID: 35270166 PMCID: PMC8912348 DOI: 10.3390/plants11050696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.
Collapse
Affiliation(s)
- Dilmini Alahakoon
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Anne Fennell
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Zachary Helget
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Terry Bates
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - David Manns
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | - Cheng Zou
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | | | - Jason P. Londo
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| |
Collapse
|
21
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
22
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
23
|
VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine. Nat Commun 2021; 12:6995. [PMID: 34848714 PMCID: PMC8632994 DOI: 10.1038/s41467-021-27259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Plant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 gene-edited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis. Unlike wild Vitis species, which produce either female or male flowers, modern grapevine cultivars form hermaphrodite flowers for self-pollination. Here, the authors report that the VviPLATZ1 (plant AT-rich sequence-and zinc-binding protein1) transcription factor functions in controlling female flower morphology determination.
Collapse
|
24
|
Zhao H, Hu R, Li F, Yue X. Five SNPs Within the FGF5 Gene Significantly Affect Both Wool Traits and Growth Performance in Fine-Wool Sheep ( Ovis aries). Front Genet 2021; 12:732097. [PMID: 34659356 PMCID: PMC8511484 DOI: 10.3389/fgene.2021.732097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) gene, a member of fibroblast growth factor superfamily, plays significant roles in the regulation of the hair growth cycle during the development of mammalian hair follicles as well as the skeletal muscle development. In this study, DNA sequencing was used to scan the putative SNPs within the full-length of FGF5 gene, and SNPscan high-throughput technique was applied in the individual genotyping of 604 crossbred sheep. 10 SNPs were identified within FGF5 gene while five of them located in intron 1 could be genotyped, namely SNP1 (g. 105914953 G > A), SNP2 (g. 105922232 T > C), SNP3 (g. 105922244 A > G), SNP4 (g. 105922334 A > T) and SNP5 (g. 105922340 G > T). All these SNPs were in accord with the Hardy-Weinberg equilibrium (P > 0.05), and displayed the moderate polymorphism with PIC values ranging from 0.302 to 0.374. Thereafter, the correlation analysis between each SNP locus and economic traits including wool length, greasy wool weight and growth performance of sheep was systematically implemented. In our results, SNP1, SNP3, SNP4 and SNP5 were significantly associated with wool length, greasy wool weight and growth traits of SG sheep (P < 0.05); SNP1, SNP2, SNP3, and SNP4 were significantly correlated with wool length and growth traits of SSG sheep (P < 0.05). Meanwhile, our study revealed a strong linkage disequilibrium (LD) relationship among these SNPs (r2 > 0.33), except for SNP3 and SNP4 sites (r2 = 0.30). Combination genotype analysis showed that combination genotypes were significantly associated with mean fiber diameter of SG (P < 0.05), and body weight trait of SSG (P < 0.01). The above findings suggested that these SNP loci might affect economic traits synergistically and could be regarded as potential molecular markers for improving both wool production and growth performance of fine-wool sheep, which lay a molecular foundation for the breeding of fine dual-purpose sheep thereby accelerating the pace of sheep breeding.
Collapse
Affiliation(s)
- Haiyu Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ruixue Hu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|