1
|
Majewski S, Klein P, Boillée S, Clarke BE, Patani R. Towards an integrated approach for understanding glia in Amyotrophic Lateral Sclerosis. Glia 2025; 73:591-607. [PMID: 39318236 PMCID: PMC11784848 DOI: 10.1002/glia.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Substantial advances in technology are permitting a high resolution understanding of the salience of glia, and have helped us to transcend decades of predominantly neuron-centric research. In particular, recent advances in 'omic' technologies have enabled unique insights into glial biology, shedding light on the cellular and molecular aspects of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we review studies using omic techniques to attempt to understand the role of glia in ALS across different model systems and post mortem tissue. We also address caveats that should be considered when interpreting such studies, and how some of these may be mitigated through either using a multi-omic approach and/or careful low throughput, high fidelity orthogonal validation with particular emphasis on functional validation. Finally, we consider emerging technologies and their potential relevance in deepening our understanding of glia in ALS.
Collapse
Affiliation(s)
- Stanislaw Majewski
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHPHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
2
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette U, Kim RD, Ma TC, Groh AMR, Hill EJ, Lewis EM, Januszewski M, Light SEW, Smith CJ, Stratton JA, Sloan SA, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in vertebrates. Cell Rep 2025; 44:115344. [PMID: 39982817 DOI: 10.1016/j.celrep.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2024] [Accepted: 02/01/2025] [Indexed: 02/23/2025] Open
Abstract
Astrocytes are a highly abundant glial cell type and perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogeneous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of the brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: myocilin (Myoc). We show that glia limitans superficialis astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from zebrafish, rodents, and non-human primates to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Melissa L Cooper
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne E Marchildon
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Uriel Rufen-Blanchette
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel D Kim
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Thong C Ma
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M Lewis
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Sarah E W Light
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Un Jung Kang
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Moses V Chao
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Faller KME, Chaytow H, Gillingwater TH. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 2025; 21:86-102. [PMID: 39743546 DOI: 10.1038/s41582-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Kim BK, Goncharov T, Archaimbault SA, Roudnicky F, Webster JD, Westenskow PD, Vucic D. RIP1 inhibition protects retinal ganglion cells in glaucoma models of ocular injury. Cell Death Differ 2025; 32:353-368. [PMID: 39448868 PMCID: PMC11802773 DOI: 10.1038/s41418-024-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Receptor-interacting protein 1 (RIP1, RIPK1) is a critical mediator of multiple signaling pathways that promote inflammatory responses and cell death. The kinase activity of RIP1 contributes to the pathogenesis of a number of inflammatory and neurodegenerative diseases. However, the role of RIP1 in retinopathies remains unclear. This study demonstrates that RIP1 inhibition protects retinal ganglion cells (RGCs) in preclinical glaucoma models. Genetic inactivation of RIP1 improves RGC survival and preserves retinal function in the preclinical glaucoma models of optic nerve crush (ONC) and ischemia-reperfusion injury (IRI). In addition, the involvement of necroptosis in ONC and IRI glaucoma models was examined by utilizing RIP1 kinase-dead (RIP1-KD), RIP3 knockout (RIP3-KO), and MLKL knockout (MLKL-KO) mice. The number of RGCs, retinal thickness, and visual acuity were rescued in RIP1-kinase-dead (RIP1-KD) mice in both models, while wild-type (WT) mice experienced significant retinal thinning, RGC loss, and vision impairment. RIP3-KO and MLKL-KO mice showed moderate protective effects in the IRI model and limited in the ONC model. Furthermore, we confirmed that a glaucoma causative mutation in optineurin, OPTN-E50K, sensitizes cells to RIP1-mediated inflammatory cell death. RIP1 inhibition reduces RGC death and axonal degeneration following IRI in mice expressing OPTN-WT and OPTN-E50K variant mice. We demonstrate that RIP1 inactivation suppressed microglial infiltration in the RGC layer following glaucomatous damage. Finally, this study highlights that human glaucomatous retinas exhibit elevated levels of TNF and RIP3 mRNA and microglia infiltration, thus demonstrating the role of neuroinflammation in glaucoma pathogenesis. Altogether, these data indicate that RIP1 plays an important role in modulating neuroinflammation and that inhibiting RIP1 activity may provide a neuroprotective therapy for glaucoma.
Collapse
Affiliation(s)
- Bo Kyoung Kim
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tatiana Goncharov
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sébastien A Archaimbault
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Filip Roudnicky
- Therapeutic Modalities, Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Peter D Westenskow
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Domagoj Vucic
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Chen LX, Zhang MD, Xu HF, Ye HQ, Chen DF, Wang PS, Bao ZW, Zou SM, Lv YT, Wu ZY, Li HF. Single-Nucleus RNA Sequencing Reveals the Spatiotemporal Dynamics of Disease-Associated Microglia in Amyotrophic Lateral Sclerosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0548. [PMID: 39664295 PMCID: PMC11632836 DOI: 10.34133/research.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Disease-associated microglia (DAM) are observed in neurodegenerative diseases, demyelinating disorders, and aging. However, the spatiotemporal dynamics and evolutionary trajectory of DAM during the progression of amyotrophic lateral sclerosis (ALS) remain unclear. Using a mouse model of ALS that expresses a human SOD1 gene mutation, we found that the microglia subtype DAM begins to appear following motor neuron degeneration, primarily in the brain stem and spinal cord. Using reverse transcription quantitative polymerase chain reaction, RNAscope in situ hybridization, and flow cytometry, we found that DAM increased in number as the disease progressed, reaching their peak in the late disease stage. DAM responded to disease progression in both SOD1G93A mice and sporadic ALS and C9orf72-mutated patients. Motor neuron loss in SOD1G93A mice exhibited 2 accelerated phases: P90 to P110 (early stage) and P130 to P150 (late stage). Some markers were synchronized with the accelerated phase of motor neuron loss, suggesting that these proteins may be particularly responsive to disease progression. Through pseudotime trajectory analysis, we tracked the dynamic transition of homeostatic microglia into DAM and cluster 6 microglia. Interestingly, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia in SOD1G93A mice and observed that DAM survival is independent of CSF1R. An in vitro phagocytosis assay directly confirmed that DAM could phagocytose more beads than other microglia subtypes. These findings reveal that the induction of the DAM phenotype is a shared cross-species and cross-subtype characteristic in ALS. Inducing the DAM phenotype and enhancing its function during the early phase of disease progression, or the time window between P130 and P150 where motor neuron loss slows, could serve as a neuroprotective strategy for ALS.
Collapse
Affiliation(s)
- Lu-Xi Chen
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
- Department of Neurology, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Di Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Feng Xu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
| | - Hai-Qin Ye
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences,
Hangzhou Normal University, Hangzhou, China
| | - Dian-Fu Chen
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
| | - Pei-Shan Wang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
- Department of Neurology, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Wei Bao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Mei Zou
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
| | - Yong-Ting Lv
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
- Department of Neurology, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
- Department of Neurology, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine,
Zhejiang University, Hangzhou, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, China
- Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Wang J, Wang S, Li Q, Liu F, Wan Y, Liang H. Bibliometric and visual analysis of single-cell multiomics in neurodegenerative disease arrest studies. Front Neurol 2024; 15:1450663. [PMID: 39440247 PMCID: PMC11493674 DOI: 10.3389/fneur.2024.1450663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background Neurodegenerative diseases are progressive disorders that severely diminish the quality of life of patients. However, research on neurodegenerative diseases needs to be refined and deepened. Single-cell polyomics is a technique for obtaining transcriptomic, proteomic, and other information from a single cell. In recent years, the heat of single-cell multiomics as an emerging research tool for brain science has gradually increased. Therefore, the aim of this study was to analyze the current status and trends of studies related to the application of single-cell multiomics in neurodegenerative diseases through bibliometrics. Result A total of 596 publications were included in the bibliometric analysis. Between 2015 and 2022, the number of publications increased annually, with the total number of citations increasing significantly, exhibiting the fastest rate of growth between 2019 and 2022. The country/region collaboration map shows that the United States has the most publications and cumulative citations, and that China and the United States have the most collaborations. The institutions that produced the greatest number of articles were Harvard Medical School, Skupin, Alexander, and Wiendl. Among the authors, Heinz had the highest output. Mathys, H accumulated the most citations and was the authoritative author in the field. The journal Nature Communications has published the most literature in this field. A keyword analysis reveals that neurodegenerative diseases and lesions (e.g., Alzheimer's disease, amyloid beta) are the core and foundation of the field. Conversely, single-cell multiomics related research (e.g., single-cell RNA sequencing, bioinformatics) and brain nerve cells (e.g., microglia, astrocytes, neural stem cells) are the hot frontiers of this specialty. Among the references, the article "Single-cell transcriptomic analysis of Alzheimer's disease" is the most frequently cited (1,146 citations), and the article "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq" was the most cited article in the field. Conclusion The objective of this study is to employ bibliometric methods to visualize studies related to single-cell multiomics in neurodegenerative diseases. This will enable us to summarize the current state of research and to reveal key trends and emerging hotspots in the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Shuqing Wang
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Qingyu Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Fei Liu
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
8
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Mao M, Zeng W, Zheng Y, Fan W, Yao Y. Fasudil attenuates syncytin-1-mediated activation of microglia and impairments of motor neurons and motor function in mice. Drug Dev Res 2024; 85:e22254. [PMID: 39234934 DOI: 10.1002/ddr.22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Syncytin-1 (Syn), an envelope glycoprotein encoded by the env gene of the human endogenous retrovirus-W family, has been resorted to be highly expressed in biopsies from the muscles from ALS patients; however, the specific regulatory role of Syn during ALS progression remains uncovered. In this study, C57BL/6 mice were injected with adeno-associated virus-overexpressing Syn, with or without Fasudil administration. The Syn expression was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry analysis. The histological change of anterior tibial muscles was determined by hematoxylin-eosin staining. Qualitative ultrastructural analysis of electron micrographs obtained from lumbar spinal cords was carried out. Serum inflammatory cytokines were assessed by enzyme linked immunosorbent assay (ELISA) assay and motor function was recorded using Basso, Beattie, and Bresnahan (BBB) scoring, climbing test and treadmill running test. Immunofluorescence and western blot assays were conducted to examine microglial- and motor neurons-related proteins. Syn overexpression significantly caused systemic inflammatory response, muscle tissue lesions, and motor dysfunction in mice. Meanwhile, Syn overexpression promoted the impairment of motor neuron, evidenced by the damaged structure of the neurons and reduced expression of microtubule-associated protein 2, HB9, neuronal nuclei and neuron-specific enolase in Syn-induced mice. In addition, Syn overexpression greatly promoted the expression of CD16/CD32 and inducible nitric oxide synthase (M1 phenotype markers), and reduced the expression of CD206 and arginase 1 (M2 phenotype markers). Importantly, the above changes caused by Syn overexpression were partly abolished by Fasudil administration. This study provides evidence that Syn-activated microglia plays a pivotal role during the progression of ALS.
Collapse
Affiliation(s)
- Mei Mao
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yan Zheng
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Wen Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yuanrong Yao
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Raffaele S, Nguyen N, Milanese M, Mannella FC, Boccazzi M, Frumento G, Bonanno G, Abbracchio MP, Bonifacino T, Fumagalli M. Montelukast improves disease outcome in SOD1 G93A female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br J Pharmacol 2024; 181:3303-3326. [PMID: 38751168 DOI: 10.1111/bph.16408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron (MN) loss and consequent muscle atrophy, for which no effective therapies are available. Recent findings reveal that disease progression is fuelled by early aberrant neuroinflammation and the loss of oligodendrocytes with neuroprotective and remyelinating properties. On this basis, pharmacological interventions capable of restoring a pro-regenerative local milieu and re-establish proper oligodendrocyte functions may be beneficial. EXPERIMENTAL APPROACH Here, we evaluated the in vivo therapeutic effects of montelukast (MTK), an antagonist of the oligodendroglial G protein-coupled receptor 17 (GPR17) and of cysteinyl-leukotriene receptor 1 (CysLT1R) receptors on microglia and astrocytes, in the SOD1G93A ALS mouse model. We chronically treated SOD1G93A mice with MTK, starting from the early symptomatic disease stage. Disease progression was assessed by behavioural and immunohistochemical approaches. KEY RESULTS Oral MTK treatment significantly extended survival probability, delayed body weight loss and ameliorated motor functionalityonly in female SOD1G93A mice. Noteworthy, MTK significantly restored oligodendrocyte maturation and induced significant changes in the reactive phenotype and morphological features of microglia/macrophages and astrocytes in the spinal cord of female SOD1G93A mice, suggesting enhanced pro-regenerative functions. Importantly, concomitant MN preservation has been detected after MTK administration. No beneficial effects were observed in male mice, highlighting a sex-based difference in the protective activity of MTK. CONCLUSIONS AND IMPLICATIONS Our results provide the first preclinical evidence indicating that repurposing of MTK, a safe and marketed anti-asthmatic drug, may be a promising sex-specific strategy for personalized ALS treatment.
Collapse
Affiliation(s)
- Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca C Mannella
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- Inter-University Center for the Promotion of the 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Ma Y, Zheng K, Zhao C, Chen J, Chen L, Zhang Y, Chen T, Yao X, Cai Y, Wu J. Microglia LILRB4 upregulation reduces brain damage after acute ischemic stroke by limiting CD8 + T cell recruitment. J Neuroinflammation 2024; 21:214. [PMID: 39217343 PMCID: PMC11366150 DOI: 10.1186/s12974-024-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor B4 (LILRB4) plays a significant role in regulating immune responses. LILRB4 in microglia might influence the infiltration of peripheral T cells. However, whether and how LILRB4 expression aggravates brain damage after acute ischemic stroke remains unclear. This study investigates the role of LILRB4 in modulating the immune response and its potential protective effects against ischemic brain injury in mice. METHODS AND RESULTS Microglia-specific LILRB4 conditional knockout (LILRB4-KO) and overexpression transgenic (LILRB4-TG) mice were constructed by a Cre-loxP system. Then, they were used to investigate the role of LILRB4 after ischemic stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Spatial transcriptomics analysis revealed increased LILRB4 expression in the ischemic hemisphere. Single-cell RNA sequencing (scRNA-seq) identified microglia-cluster3, an ischemia-associated microglia subcluster with elevated LILRB4 expression in the ischemic brain. Flow cytometry and immunofluorescence staining showed increased CD8+ T cell infiltration into the brain in LILRB4-KO-tMCAO mice. Behavioral tests, cortical perfusion maps, and infarct size measurements indicated that LILRB4-KO-tMCAO mice had more severe functional deficits and larger infarct sizes compared to Control-tMCAO and LILRB4-TG-tMCAO mice. T cell migration assays demonstrated that LILRB4-KD microglia promoted CD8+ T cell recruitment and activation in vitro, which was mitigated by CCL2 inhibition and recombinant arginase-1 addition. The scRNA-seq and spatial transcriptomics identified CCL2 was predominantly secreted from activated microglia/macrophage and increased CCL2 expression in LILRB4-KD microglia, suggesting a chemokine-mediated mechanism of LILRB4. CONCLUSION LILRB4 in microglia plays a crucial role in modulating the post-stroke immune response by regulating CD8+ T cell infiltration and activation. Knockout of LILRB4 exacerbates ischemic brain injury by promoting CD8+ T cell recruitment. Overexpression of LILRB4, conversely, offers neuroprotection. These findings highlight the therapeutic potential of targeting LILRB4 and its downstream pathways to mitigate immune-mediated damage in ischemic stroke.
Collapse
Affiliation(s)
- Yilin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Kai Zheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chengcheng Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jieli Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Lin Chen
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Tao Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiuhua Yao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
12
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Oh SJ, Kumari P, Auroni TT, Stone S, Pathak H, Elsharkawy A, Natekar JP, Shin OS, Kumar M. Upregulation of Neuroinflammation-Associated Genes in the Brain of SARS-CoV-2-Infected Mice. Pathogens 2024; 13:528. [PMID: 39057755 PMCID: PMC11280415 DOI: 10.3390/pathogens13070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Neurological manifestations are a significant complication of coronavirus disease 2019 (COVID-19), but the underlying mechanisms are yet to be understood. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced neuroinvasion and encephalitis were observed in K18-hACE2 mice, leading to mortality. Our goal in this study was to gain insights into the molecular pathogenesis of neurological manifestations in this mouse model. To analyze differentially expressed genes (DEGs) in the brains of mice following SARS-CoV-2 infection, we performed NanoString gene expression analysis using three individual animal samples at 1, 3, and 6 days post-infection. We identified the DEGs by comparing them to animals that were not infected with the virus. We found that genes upregulated at day 6 post-infection were mainly associated with Toll-like receptor (TLR) signaling, RIG-I-like receptor (RLR) signaling, and cell death pathways. However, downregulated genes were associated with neurodegeneration and synaptic signaling pathways. In correlation with gene expression profiles, a multiplexed immunoassay showed the upregulation of multiple cytokines and chemokines involved in inflammation and cell death in SARS-CoV-2-infected brains. Furthermore, the pathway analysis of DEGs indicated a possible link between TLR2-mediated signaling pathways and neuroinflammation, as well as pyroptosis and necroptosis in the brain. In conclusion, our work demonstrates neuroinflammation-associated gene expression profiles, which can provide key insight into the severe disease observed in COVID-19 patients.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Pratima Kumari
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Tabassum Tasnim Auroni
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Heather Pathak
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Amany Elsharkawy
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Janhavi Prasad Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (P.K.); (T.T.A.); (S.S.); (H.P.); (A.E.); (J.P.N.)
| |
Collapse
|
14
|
Thompson LJP, Genovese J, Hong Z, Singh MV, Singh VB. HIV-Associated Neurocognitive Disorder: A Look into Cellular and Molecular Pathology. Int J Mol Sci 2024; 25:4697. [PMID: 38731913 PMCID: PMC11083163 DOI: 10.3390/ijms25094697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.
Collapse
Affiliation(s)
| | - Jessica Genovese
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Zhenzi Hong
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Meera Vir Singh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Vir Bahadur Singh
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| |
Collapse
|
15
|
Wu Y, Xu Y, Sun J, Dai K, Wang Z, Zhang J. Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage. Exp Neurol 2024; 374:114705. [PMID: 38290652 DOI: 10.1016/j.expneurol.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Cao Z, Min X, Xie X, Huang M, Liu Y, Sun W, Xu G, He M, He K, Li Y, Yuan J. RIPK1 activation in Mecp2-deficient microglia promotes inflammation and glutamate release in RTT. Proc Natl Acad Sci U S A 2024; 121:e2320383121. [PMID: 38289948 PMCID: PMC10861890 DOI: 10.1073/pnas.2320383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (Mecp2) gene. Here, we found that inhibition of Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) kinase ameliorated progression of motor dysfunction after onset and prolonged the survival of Mecp2-null mice. Microglia were activated early in myeloid Mecp2-deficient mice, which was inhibited upon inactivation of RIPK1 kinase. RIPK1 inhibition in Mecp2-deficient microglia reduced oxidative stress, cytokines production and induction of SLC7A11, SLC38A1, and GLS, which mediate the release of glutamate. Mecp2-deficient microglia release high levels of glutamate to impair glutamate-mediated excitatory neurotransmission and promote increased levels of GluA1 and GluA2/3 proteins in vivo, which was reduced upon RIPK1 inhibition. Thus, activation of RIPK1 kinase in Mecp2-deficient microglia may be involved both in the onset and progression of RTT.
Collapse
Affiliation(s)
- Ze Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Maoqing Huang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yingying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
| | - Miao He
- Institutes of Brain Science, Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
17
|
He Z, Chen Q, Wang K, Lin J, Peng Y, Zhang J, Yan X, Jie Y. Single-cell transcriptomics analysis of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. Eur J Neurosci 2024; 59:333-357. [PMID: 38221677 DOI: 10.1111/ejn.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.
Collapse
Affiliation(s)
- Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Kaiyue Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Yan Jie
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
18
|
Bui DT, Ton ANV, Nguyen CTD, Nguyen SH, Tran HK, Nguyen XT, Nguyen HT, Pham GLT, Tran DS, Harrington J, Pham HN, Pham TNV, Cao TA. Pathogenic/likely pathogenic mutations identified in Vietnamese children diagnosed with autism spectrum disorder using high-resolution SNP genotyping platform. Sci Rep 2024; 14:2360. [PMID: 38287090 PMCID: PMC10825208 DOI: 10.1038/s41598-024-52777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Among the most prevalent neurodevelopmental disorders, Autism Spectrum Disorder (ASD) is highly diverse showing a broad phenotypic spectrum. ASD also couples with a broad range of mutations, both de novo and inherited. In this study, we used a proprietary SNP genotyping chip to analyze the genomic DNA of 250 Vietnamese children diagnosed with ASD. Our Single Nucleotide Polymorphism (SNP) genotyping chip directly targets more than 800 thousand SNPs in the genome. Our primary focus was to identify pathogenic/likely pathogenic mutations that are potentially linked to more severe symptoms of autism. We identified and validated 23 pathogenic/likely pathogenic mutations in this initial study. The data shows that these mutations were detected in several cases spanning multiple biological pathways. Among the confirmed SNPs, mutations were identified in genes previously known to be strongly associated with ASD such as SLCO1B1, ACADSB, TCF4, HCP5, MOCOS, SRD5A2, MCCC2, DCC, and PRKN while several other mutations are known to associate with autistic traits or other neurodevelopmental disorders. Some mutations were found in multiple patients and some patients carried multiple pathogenic/likely pathogenic mutations. These findings contribute to the identification of potential targets for therapeutic solutions in what is considered a genetically heterogeneous neurodevelopmental disorder.
Collapse
Affiliation(s)
- Duyen T Bui
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam.
- Gene Friend Way Inc, San Francisco, USA.
| | - Anh N V Ton
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
- Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Chi T D Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Son H Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hao K Tran
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Xuan T Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hang T Nguyen
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Giang L T Pham
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Dong S Tran
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Jillian Harrington
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Hiep N Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuyen N V Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuan A Cao
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| |
Collapse
|
19
|
Hincelin‐Mery A, Nicolas X, Cantalloube C, Pomponio R, Lewanczyk P, Benamor M, Ofengeim D, Krupka E, Hsiao‐Nakamoto J, Eastenson A, Atassi N. Safety, pharmacokinetics, and target engagement of a brain penetrant RIPK1 inhibitor, SAR443820 (DNL788), in healthy adult participants. Clin Transl Sci 2024; 17:e13690. [PMID: 38010108 PMCID: PMC10772668 DOI: 10.1111/cts.13690] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
SAR443820 (DNL788) is a selective, orally bioavailable, brain penetrant inhibitor of receptor-interacting serine/threonine protein kinase 1 (RIPK1). This phase I first-in-human healthy participant study (NCT05795907) was comprised of three parts: randomized, double-blind, placebo-controlled single ascending dose (SAD; part 1a); 14-day multiple ascending dose (MAD; part 2) parts that evaluated safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of SAR443820; and a separate open-label, single-dose part 1b (PK-cerebrospinal fluid [CSF]) to assess SAR443820 levels in CSF. SAR443820 was well-tolerated in healthy participants, and no treatment discontinuation related to an adverse event (AE) occurred. Most common AEs were dizziness and headache. No clinically meaningful changes were noted in laboratory values, vital signs, or electrocardiogram parameters. SAR443820 had a favorable PK profile, with plasma half-lives (geometric mean) ranged between 5.7-8.0 h and 7.2-8.9 h after single and repeated doses, respectively. There were no major deviations from dose proportionality for maximum concentration and area under the curve across SAR443820 doses. Mean CSF-to-unbound plasma concentration ratio ranged from 0.8 to 1.3 over time (assessed up to 10 h postdose), indicating high brain penetrance. High levels of inhibition of activated RIPK1, as measured by decrease in pS166-RIPK1, were achieved in both SAD and MAD parts, with a maximum median inhibition from baseline close to 90% at predose (Ctrough ) after multiple dosing in MAD, reflecting a marked RIPK1 target engagement at the peripheral level. These results support further development of SAR443820 in phase II trials in amyotrophic lateral sclerosis (NCT05237284) and multiple sclerosis (NCT05630547).
Collapse
|
20
|
Prado-Acosta M, Jeong S, Utrero-Rico A, Goncharov T, Webster JD, Holler E, Morales G, Dellepiane S, Levine JE, Rothenberg ME, Vucic D, Ferrara JLM. Inhibition of RIP1 improves immune reconstitution and reduces GVHD mortality while preserving graft-versus-leukemia effects. Sci Transl Med 2023; 15:eadf8366. [PMID: 38117900 PMCID: PMC11157567 DOI: 10.1126/scitranslmed.adf8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Graft-versus-host disease (GVHD) remains the major cause of morbidity and nonrelapse mortality (NRM) after hematopoietic cell transplantation (HCT). Inflammatory cytokines mediate damage to key GVHD targets such as intestinal stem cells (ISCs) and also activate receptor interacting protein kinase 1 (RIP1; RIPK1), a critical regulator of apoptosis and necroptosis. We therefore investigated the role of RIP1 in acute GVHD using samples from HCT patients, modeling GVHD damage in vitro with both human and mouse gastrointestinal (GI) organoids, and blocking RIP1 activation in vivo using several well-characterized mouse HCT models. Increased phospho-RIP1 expression in GI biopsies from patients with acute GVHD correlated with tissue damage and predicted NRM. Both the genetic inactivation of RIP1 and the RIP1 inhibitor GNE684 prevented GVHD-induced apoptosis of ISCs in vivo and in vitro. Daily administration of GNE684 for 14 days reduced inflammatory infiltrates in three GVHD target organs (intestine, liver, and spleen) in mice. Unexpectedly, GNE684 administration also reversed the marked loss of regulatory T cells in the intestines and liver during GVHD and reduced splenic T cell exhaustion, thus improving immune reconstitution. Pharmacological and genetic inhibition of RIP1 improved long-term survival without compromising the graft-versus-leukemia (GVL) effect in lymphocytic and myeloid leukemia mouse models. Thus, RIP1inhibition may represent a nonimmunosuppressive treatment for GVHD.
Collapse
Affiliation(s)
- Mariano Prado-Acosta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seihwan Jeong
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Utrero-Rico
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Joshua D. Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg 93042, Germany
| | - George Morales
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Dellepiane
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - James L. M. Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Sun S, Li J, Wang S, Li J, Ren J, Bao Z, Sun L, Ma X, Zheng F, Ma S, Sun L, Wang M, Yu Y, Ma M, Wang Q, Chen Z, Ma H, Wang X, Wu Z, Zhang H, Yan K, Yang Y, Zhang Y, Zhang S, Lei J, Teng ZQ, Liu CM, Bai G, Wang YJ, Li J, Wang X, Zhao G, Jiang T, Belmonte JCI, Qu J, Zhang W, Liu GH. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord. Nature 2023; 624:611-620. [PMID: 37907096 DOI: 10.1038/s41586-023-06783-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The Chinese Glioma Genome Atlas, Beijing, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xibo Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- College of Medicine and Biomedical Information Engineering, Northeastern University, Shenyang, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Liang Sun
- Aging Biomarker Consortium, Beijing, China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Yan Yu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Chen
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - He Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- College of Medicine and Biomedical Information Engineering, Northeastern University, Shenyang, China
| | - Xuebao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuanhan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ge Bai
- The MOE Frontier Research Center of Brain & Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan-Jiang Wang
- Aging Biomarker Consortium, Beijing, China
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jian Li
- Aging Biomarker Consortium, Beijing, China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiaoqun Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The Chinese Glioma Genome Atlas, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
22
|
Maragakis NJ, de Carvalho M, Weiss MD. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture. Ann Clin Transl Neurol 2023; 10:1948-1971. [PMID: 37641443 PMCID: PMC10647018 DOI: 10.1002/acn3.51887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Numerous potential amyotrophic lateral sclerosis (ALS)-relevant pathways have been hypothesized and studied preclinically, with subsequent translation to clinical trial. However, few successes have been observed with only modest effects. Along with an improved but incomplete understanding of ALS as a neurodegenerative disease is the evolution of more sophisticated and diverse in vitro and in vivo preclinical modeling platforms, as well as clinical trial designs. We highlight proposed pathological pathways that have been major therapeutic targets for investigational compounds. It is likely that the failures of so many of these therapeutic compounds may not have occurred because of lack of efficacy but rather because of a lack of preclinical modeling that would help define an appropriate disease pathway, as well as a failure to establish target engagement. These challenges are compounded by shortcomings in clinical trial design, including lack of biomarkers that could predict clinical success and studies that are underpowered. Although research investments have provided abundant insights into new ALS-relevant pathways, most have not yet been developed more fully to result in clinical study. In this review, we detail some of the important, well-established pathways, the therapeutics targeting them, and the subsequent clinical design. With an understanding of some of the shortcomings in translational efforts over the last three decades of ALS investigation, we propose that scientists and clinicians may choose to revisit some of these therapeutic pathways reviewed here with an eye toward improving preclinical modeling, biomarker development, and the investment in more sophisticated clinical trial designs.
Collapse
Affiliation(s)
| | - Mamede de Carvalho
- Faculdade de MedicinaInsqatituto de Medicina Molecular João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de LisboaLisbonPortugal
| | - Michael D. Weiss
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
23
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
24
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
25
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
26
|
Pan L, Cho KS, Wei X, Xu F, Lennikov A, Hu G, Tang J, Guo S, Chen J, Kriukov E, Kyle R, Elzaridi F, Jiang S, Dromel PA, Young M, Baranov P, Do CW, Williams RW, Chen J, Lu L, Chen DF. IGFBPL1 is a master driver of microglia homeostasis and resolution of neuroinflammation in glaucoma and brain tauopathy. Cell Rep 2023; 42:112889. [PMID: 37527036 PMCID: PMC10528709 DOI: 10.1016/j.celrep.2023.112889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.
Collapse
Affiliation(s)
- Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Xin Wei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kyle
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre A Dromel
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
27
|
Ho NJ, Chen X, Lei Y, Gu S. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zool Res 2023; 44:650-662. [PMID: 37161652 PMCID: PMC10236304 DOI: 10.24272/j.issn.2095-8137.2022.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 05/11/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of genetic motor neuron diseases resulting from length-dependent axonal degeneration of the corticospinal upper motor neurons. Due to the advancement of next-generation sequencing, more than 70 novel HSP disease-causing genes have been identified in the past decade. Despite this, our understanding of HSP physiopathology and the development of efficient management and treatment strategies remain poor. One major challenge in studying HSP pathogenicity is selective neuronal vulnerability, characterized by the manifestation of clinical symptoms that are restricted to specific neuronal populations, despite the presence of germline disease-causing variants in every cell of the patient. Furthermore, disease genes may exhibit ubiquitous expression patterns and involve a myriad of different pathways to cause motor neuron degeneration. In the current review, we explore the correlation between transcriptomic data and clinical manifestations, as well as the importance of interspecies models by comparing tissue-specific transcriptomic profiles of humans and mice, expression patterns of different genes in the brain during development, and single-cell transcriptomic data from related tissues. Furthermore, we discuss the potential of emerging single-cell RNA sequencing technologies to resolve unanswered questions related to HSP pathogenicity.
Collapse
Affiliation(s)
- Nicolas James Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| | - Yong Lei
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
- The Chinese University of Hong Kong (Shenzhen), Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518172, China. E-mail:
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China. E-mail:
| |
Collapse
|
28
|
Melatonin protects against NMDA-induced retinal ganglion cell injury by regulating the microglia-TNFα-RGC p38 MAPK pathway. Int Immunopharmacol 2023; 118:109976. [PMID: 37098655 DOI: 10.1016/j.intimp.2023.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.
Collapse
|
29
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette UA, Kim RD, Ma TC, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in mouse and human. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535893. [PMID: 37066303 PMCID: PMC10104130 DOI: 10.1101/2023.04.06.535893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Astrocytes are a highly abundant glial cell type that perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogenous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: Myocilin (Myoc). We show that Myoc+ astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from rodents to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
| | - Melissa L Cooper
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
| | - Anne E Marchildon
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
| | | | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
| | - Thong C Ma
- Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY., USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY., USA
| | - Un Jung Kang
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
- Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY., USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY., USA
| | - Moses V Chao
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY., USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY., USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY., USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY., USA
| |
Collapse
|
30
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
31
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Myeloid-derived MIF drives RIPK1-mediated cerebromicrovascular endothelial cell death to exacerbate ischemic brain injury. Proc Natl Acad Sci U S A 2023; 120:e2219091120. [PMID: 36693098 PMCID: PMC9945963 DOI: 10.1073/pnas.2219091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifaced protein that plays important roles in multiple inflammatory conditions. However, the role of MIF in endothelial cell (EC) death under inflammatory condition remains largely unknown. Here we show that MIF actively promotes receptor-interacting protein kinase 1 (RIPK1)-mediated cell death under oxygen-glucose deprivation condition. MIF expression is induced by surgical trauma in peripheral myeloid cells both in perioperative humans and mice. We demonstrate that MIF-loaded myeloid cells induced by peripheral surgery adhere to the brain ECs after distal middle cerebral artery occlusion (dMCAO) and exacerbate the blood-brain barrier (BBB) disruption. Genetic depletion of myeloid-derived MIF in perioperative ischemic stroke (PIS) mice with MCAO following a surgical insult leads to significant reduction in ECs apoptosis and necroptosis and the associated BBB disruption. The adoptive transfer of peripheral blood mononuclear cells (PBMC) from surgical MIFΔLyz2 mice to wild-type (WT) MCAO mice also shows reduced ECs apoptosis and necroptosis compared to the transfer of PBMC from surgical MIFf l/f l mice to MCAO recipients. The genetic inhibition of RIPK1 also attenuates BBB disruption and ECs death compared to that of WT mice in PIS. The administration of MIF inhibitor (ISO-1) and RIPK1 inhibitor (Nec-1s) can both reduce the brain EC death and neurological deficits following PIS. We conclude that myeloid-derived MIF promotes ECs apoptosis and necroptosis through RIPK1 kinase-dependent pathway. The above findings may provide insights into the mechanism as how peripheral inflammation promotes the pathology in central nervous system.
Collapse
|
33
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
34
|
Wu Q, Zou C. Microglial Dysfunction in Neurodegenerative Diseases via RIPK1 and ROS. Antioxidants (Basel) 2022; 11:antiox11112201. [PMID: 36358573 PMCID: PMC9686917 DOI: 10.3390/antiox11112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microglial dysfunction is a major contributor to the pathogenesis of multiple neurodegenerative diseases. The neurotoxicity of microglia associated with oxidative stress largely depends on NF-κB pathway activation, which promotes the production and release of microglial proinflammatory cytokines and chemokines. In this review, we discuss the current literature on the essential role of the NF-κB pathway on microglial activation that exacerbates neurodegeneration, with a particular focus on RIPK1 kinase activity-dependent microglial dysfunction. As upregulated RIPK1 kinase activity is associated with reactive oxygen species (ROS) accumulation in neurodegenerative diseases, we also discuss the current knowledge about the mechanistic links between RIPK1 activation and ROS generation. Given RIPK1 kinase activity and oxidative stress are closely regulated with each other in a vicious cycle, future studies are required to be conducted to fully understand how RIPK1 and ROS collude together to disturb microglial homeostasis that drives neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Qiaoyan Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
35
|
Moreno-Martinez L, Santiago L, de la Torre M, Calvo AC, Pardo J, Osta R. Hemizygous Granzyme A Mice Expressing the hSOD1G93A Transgene Show Slightly Extended Lifespan. Int J Mol Sci 2022; 23:13554. [PMID: 36362341 PMCID: PMC9655466 DOI: 10.3390/ijms232113554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Granzyme A (gzmA), a serine protease involved in the modulation of the inflammatory immune response, is found at an elevated level in the serum from ALS patients. However, the influence of gzmA on the progression of ALS remains unclear. The aim of our work was to assess whether the absence of gzmA in an ALS murine model could help slow down the progression of the disease. Homozygous and hemizygous gzmA-deficient mice expressing the hSOD1G93A transgene were generated, and survival of these mice was monitored. Subsequently, gene and protein expression of inflammatory and oxidative stress markers was measured in the spinal cord and quadriceps of these mice. We observed the longest lifespan in gzmA+/- mice. GzmA gene and protein expression was downregulated in the spinal cord and serum from gmzA+/- mice, confirming that the increased survival of hemizygous mice is correlated with lower levels of gzmA. In addition, mRNA and protein levels of glutathione reductase (GSR), involved in oxidative stress, were found downregulated in the spinal cord and quadriceps of gmzA+/- mice, together with lower IL-1β and IL-6 mRNA levels in hemyzigous mice. In summary, our findings indicate for the first time that reduced levels, but not the absence, of gzmA could slightly ameliorate the disease progression in this animal model.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam de la Torre
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Ana Cristina Calvo
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Julián Pardo
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
36
|
Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunol Rev 2022; 311:130-150. [PMID: 35524757 PMCID: PMC9489610 DOI: 10.1111/imr.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
In the central nervous system (CNS), execution of programmed cell death (PCD) is crucial for proper neurodevelopment. However, aberrant activation of these pathways in adult CNS leads to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). How a cell dies is critical, as it can drive local immune activation and tissue damage. Classical apoptosis engages several mechanisms to evoke "immunologically silent" responses, whereas other forms of programmed death such as pyroptosis, necroptosis, and ferroptosis release molecules that can potentiate immune responses and inflammation. In ALS, a fatal neuromuscular disorder marked by progressive death of lower and upper motor neurons, several cell types in the CNS express machinery for multiple PCD pathways. The specific cell types engaging PCD, and ultimate mechanisms by which neuronal death occurs in ALS are not well defined. Here, we provide an overview of different PCD pathways implicated in ALS. We also examine immune activation in ALS and differentiate apoptosis from necrotic mechanisms based on downstream immunological consequences. Lastly, we highlight therapeutic strategies that target cell death pathways in the treatment of neurodegeneration and inflammation in ALS.
Collapse
Affiliation(s)
- Dylan V Neel
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Himanish Basu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Georgia Gunner
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Isaac M Chiu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
- Lead contact
| |
Collapse
|
37
|
Johnson SA, Fang T, De Marchi F, Neel D, Van Weehaeghe D, Berry JD, Paganoni S. Pharmacotherapy for Amyotrophic Lateral Sclerosis: A Review of Approved and Upcoming Agents. Drugs 2022; 82:1367-1388. [PMID: 36121612 DOI: 10.1007/s40265-022-01769-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder involving loss of upper and lower motor neurons, with most cases ending in death within 3-5 years of onset. Several molecular and cellular pathways have been identified to cause ALS; however, treatments to stop or reverse disease progression are yet to be found. Riluzole, a neuroprotective agent offering only a modest survival benefit, has long been the sole disease-modifying therapy for ALS. Edaravone, which demonstrated statistically significant slowing of ALS disease progression, is gaining approval in an increasing number of countries since its first approval in 2015. Sodium phenylbutyrate and taurursodiol (PB-TURSO) was conditionally approved in Canada in 2022, having shown significant slowing of disease progression and prolonged survival. Most clinical trials have focused on testing small molecules affecting common cellular pathways in ALS: targeting glutamatergic, apoptotic, inflammatory, and oxidative stress mechanisms among others. More recently, clinical trials utilizing stem cell transplantation and other biologics have emerged. This rich and ever-growing pipeline of investigational products, along with innovative clinical trial designs, collaborative trial networks, and an engaged ALS community', provide renewed hope to finding a cure for ALS. This article reviews existing ALS therapies and the current clinical drug development pipeline.
Collapse
Affiliation(s)
- Stephen A Johnson
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Ton Fang
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, Maggiore della Carità Hospital, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Donatienne Van Weehaeghe
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - James D Berry
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Bacteria reduce flagellin synthesis to evade microglia-astrocyte-driven immunity in the brain. Cell Rep 2022; 40:111033. [PMID: 35793624 DOI: 10.1016/j.celrep.2022.111033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response of brain cells to invading bacteria in vivo and the mechanism used by pathogenic bacteria to escape brain immune surveillance remain largely unknown. It is believed that microglia eliminate bacteria by phagocytosis based on in vitro data. Here we find that a small percentage of microglia in the brain engulf neonatal meningitis-causing Escherichia coli (NMEC), but more microglia are activated to produce tumor necrosis factor alpha (TNFα), which activates astrocytes to secrete complement component 3 (C3) involved in anti-bacterial activity. To evade anti-bacterial activity of the immune system, NMEC senses low concentration of threonine in cerebrospinal fluid (CSF) to down-modulate the expression of flagellin and reduce microglial TNFα and astrocyte C3 production. Our findings may help develop strategies for bacterial meningitis treatment.
Collapse
|
39
|
Vasquez-Vivar J, Shi Z, Tan S. Tetrahydrobiopterin in Cell Function and Death Mechanisms. Antioxid Redox Signal 2022; 37:171-183. [PMID: 34806400 PMCID: PMC9293684 DOI: 10.1089/ars.2021.0136] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023]
Abstract
Significance: Tetrahydrobiopterin (BH4) is most well known as a required cofactor for enzymes regulating cellular redox homeostasis, aromatic amino acid metabolism, and neurotransmitter synthesis. Less well known are the effects dependent on the cofactor's availability, factors governing its synthesis and recycling, redox implications of the cofactor itself, and protein-protein interactions that underlie cell death. This review provides an understanding of the recent advances implicating BH4 in the mechanisms of cell death and suggestions of possible therapeutic interventions. Recent Advances: The levels of BH4 often reflect the sum of synthetic and recycling enzyme activities. Enhanced expression of GTP cyclohydrolase, the rate-limiting enzyme in biosynthesis, increases BH4, leading to improved cell function and survival. Pharmacologically increasing BH4 levels has similar beneficial effects, leading to enhanced production of neurotransmitters and nitric oxide or reducing oxidant levels. The GTP cyclohydrolase-BH4 pairing has been implicated in a type of cell death, ferroptosis. At the cellular level, BH4 counteracts anticancer therapies directed to enhance ferroptosis via glutathione peroxidase 4 (GPX4) activity inhibition. Critical Issues: Because of the multitude of intertwined mechanisms, a clear relationship between BH4 and cell death is not well understood yet. The possibility that the cofactor directly influences cell viability has not been excluded in previous studies when modulating BH4-producing enzymes. Future Directions: The importance of cellular BH4 variations and BH4 biosynthetic enzymes to cell function and viability makes it essential to better characterize temporal changes, cofactor activity, and the influence on redox status, which in turn would help develop novel therapies. Antioxid. Redox Signal. 37, 171-183.
Collapse
Affiliation(s)
- Jeannette Vasquez-Vivar
- Redox Biology Program, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
- Division of Neonatology, Children's Hospital of Michigan, Wayne State University and Central Michigan University, Detroit, Michigan, USA
| |
Collapse
|
40
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ, Oude Nijhuis J, De Deyn PP, Hadi S, Harris J, Tsai RM, Cruz-Herranz A, Huang F, Tong V, Erickson R, Zhu Y, Scearce-Levie K, Hsiao-Nakamoto J, Tang X, Chang M, Fox BM, Pomponio RJ, Alonso-Alonso M, Zilberstein M, Atassi N, Troyer MD, Ho C. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: Randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin Transl Sci 2022; 15:2010-2023. [PMID: 35649245 PMCID: PMC9372423 DOI: 10.1111/cts.13317] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)–penetrant, small‐molecule, reversible inhibitor of RIPK1. In three early‐stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well‐tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof‐of‐mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long‐term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early‐stage clinical trials. The dose‐limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1‐inhibitors, suggesting that these toxicities are compound‐specific (related to SAR443060) rather than RIPK1 pathway‐specific.
Collapse
Affiliation(s)
- Maurits F J M Vissers
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome Oude Nijhuis
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Salah Hadi
- PRA Health Sciences, Groningen, The Netherlands
| | - Jeffrey Harris
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Richard M Tsai
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Fen Huang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Vincent Tong
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Yuda Zhu
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | - Xinyan Tang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Megan Chang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Brian M Fox
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | | | | | | | - Carole Ho
- Denali Therapeutics Inc., South San Francisco, California, USA
| |
Collapse
|
41
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
42
|
Grinage E, Shukla D. Optineurin in ocular herpes infection. Exp Eye Res 2022; 219:109059. [PMID: 35390332 DOI: 10.1016/j.exer.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Herpes Simplex Virus-1 (HSV-1) is a neurotropic virus that can infect humans in the eye and travel to the trigeminal ganglion to establish latency. HSV-1 causes various disease states in both the primary and secondary sites of infection including the eye and the nervous system. This DNA virus exploits various adaptive measures to infect host cells, hijack host cell proteins, evade host immune response and spread from cell-to-cell to avoid immune detection. Recent data suggest that Optineurin (OPTN), a host protein, is a key restriction factor that prevents cell-to-cell spread of HSV-1 and guards against serious damage to the nervous system during infection. In recent years OPTN has gained increased attention because of its involvement in cellular mechanisms that promote homeostasis and prevent neurodegeneration. At the center of it all is the role OPTN plays as a receptor for selective autophagy. This review summarizes our latest understanding of the viral lifecycle, disease pathologies, and OPTN-mediated protective mechanisms during HSV-1 infection of the eye and the nervous system. We specifically highlight recent discoveries that implicate OPTN as crucial in the prevention of ocular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Earon Grinage
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
43
|
Immune Signaling Kinases in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2021; 22:ijms222413280. [PMID: 34948077 PMCID: PMC8707599 DOI: 10.3390/ijms222413280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3-5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.
Collapse
|
44
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
45
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
46
|
The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment. Neurosci Lett 2021; 764:136195. [PMID: 34450229 PMCID: PMC8572160 DOI: 10.1016/j.neulet.2021.136195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
|
47
|
Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Curr Opin Neurol 2021; 34:765-772. [PMID: 34402459 DOI: 10.1097/wco.0000000000000983] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neuroinflammation is an important mediator of the pathogenesis of disease in amyotrophic lateral sclerosis (ALS). Genetic mutations such as C9orf72 have begun to define the numerous cell autonomous pathways that initiate motor neuron injury. Yet, it is the signalling to surrounding glia and peripherally derived immune cells that initiates the noncell autonomous inflammatory process and promotes self-propagating motor neuron cell death. The purpose of this review is to explore the systemic immune/inflammatory contributions to the pathogenesis of ALS: what are the peripheral pro-inflammatory signatures, what initiates their presence and do they represent potential therapeutic targets. RECENT FINDINGS In ALS, motor neuron cell death is initiated by multiple cell autonomous pathways leading to misfolded proteins, oxidative stress, altered mitochondria, impaired autophagy and altered RNA metabolism, which collectively promote noncell autonomous inflammatory reactivity. The resulting disease is characterized by activated microglia and astrocytes as well as peripherally derived pro-inflammatory innate and adaptive immune cells. In this unrelenting disorder, circulating blood monocytes and natural killer cells are pro-inflammatory. Furthermore, regulatory T lymphocytes are dysfunctional, and pro-inflammatory cytokines and acute phase proteins are elevated. SUMMARY The collective dysregulation of cells and cytokines in patients with ALS accurately reflect increased disease burdens, more rapid progression rates and reduced survival times, reinforcing the concept of ALS as a disorder with extensive systemic pro-inflammatory responses. These increased systemic pro-inflammatory immune constituents provide potentially meaningful therapeutic targets.
Collapse
|
48
|
Rehman R, Tar L, Olamide AJ, Li Z, Kassubek J, Böckers T, Weishaupt J, Ludolph A, Wiesner D, Roselli F. Acute TBK1/IKK-ε Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Front Aging Neurosci 2021; 13:684171. [PMID: 34326766 PMCID: PMC8313992 DOI: 10.3389/fnagi.2021.684171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury has a poorer prognosis in elderly patients, possibly because of the enhanced inflammatory response characteristic of advanced age, known as “inflammaging.” Recently, reduced activation of the TANK-Binding-Kinase 1 (Tbk1) pathway has been linked to age-associated neurodegeneration and neuroinflammation. Here we investigated how the blockade of Tbk1 and of the closely related IKK-ε by the small molecule Amlexanox could modify the microglial and immune response to cortical stab-wound injury in mice. We demonstrated that Tbk1/IKK-ε inhibition resulted in a massive expansion of microglial cells characterized by the TMEM119+/CD11c+ phenotype, expressing high levels of CD68 and CD317, and with the upregulation of Cst7a, Prgn and Ccl4 and the decrease in the expression levels of Tmem119 itself and P2yr12, thus a profile close to Disease-Associated Microglia (DAM, a subset of reactive microglia abundant in Alzheimer’s Disease and other neurodegenerative conditions). Furthermore, Tbk1/IKK-ε inhibition increased the infiltration of CD3+ lymphocytes, CD169+ macrophages and CD11c+/CD169+ cells. The enhanced immune response was associated with increased expression of Il-33, Ifn-g, Il-17, and Il-19. This upsurge in the response to the stab wound was associated with the expanded astroglial scars and increased deposition of chondroitin-sulfate proteoglycans at 7 days post injury. Thus, Tbk1/IKK-ε blockade results in a massive expansion of microglial cells with a phenotype resembling DAM and with the substantial enhancement of neuroinflammatory responses. In this context, the induction of DAM is associated with a detrimental outcome such as larger injury-related glial scars. Thus, the Tbk1/IKK-ε pathway is critical to repress neuroinflammation upon stab-wound injury and Tbk1/IKK-ε inhibitors may provide an innovative approach to investigate the consequences of DAM induction.
Collapse
Affiliation(s)
- Rida Rehman
- Department of Neurology, Ulm University, Ulm, Germany
| | - Lilla Tar
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Adeyemi Jubril Olamide
- Department of Neurology, Ulm University, Ulm, Germany.,Master in Translational and Molecular Neuroscience, Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias Böckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Jochen Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| |
Collapse
|