1
|
Matsell E, Mazaheri M, Andersen JP, Molday RS. Structural and functional properties of the N and C terminal segments of the P4-ATPase phospholipid flippase ATP8A2. J Biol Chem 2024:108065. [PMID: 39662833 DOI: 10.1016/j.jbc.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
ATP8A2 is a P4-ATPase that actively flips phosphatidylserine and to a lesser extent phosphatidylethanolamine across cell membranes to generate and maintain transmembrane phospholipid asymmetry. The importance of this flippase is evident in the finding that loss-of- function mutations in ATP8A2 are known to cause the neurodevelopmental disease known as cerebellar ataxia, intellectual disability, and dysequilibrium syndrome 4 (CAMRQ4) in humans and related neurodegenerative disorders in mice. Although significant progress has been made in understanding mechanisms underlying phospholipid binding and transport across the membrane domain, little is known about the structural and functional properties of the cytosolic N- and C-terminal segments of this flippase. In addition, there has been uncertainty regarding the methionine start site of ATP8A2 and accordingly the size of the N-terminal segment. Here, we have used mass spectrometry to show that bovine ATP8A2 like its human counterpart has an extended N-terminal segment not apparent in the mouse ortholog. This segment greatly enhances the expression of ATP8A2 without affecting its cellular localization or phosphatidylserine-activated ATPase activity. Using a cleavable C-terminal protein and site-directed mutagenesis, we further show that the conserved GYAFS motif in the C-terminal segment plays a role in autoinhibition as well as efficient folding of ATP8A2 into a functional protein.
Collapse
Affiliation(s)
- Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Moloud Mazaheri
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | | | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada.
| |
Collapse
|
2
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
4
|
Hao Z, Wang H, Zhou Z, Yang Q, Zhang B, Ma J, Li W. HPS6 Deficiency Leads to Reduced Vacuolar-Type H +-ATPase and Impaired Biogenesis of Lamellar Bodies in Alveolar Type II Cells. Am J Respir Cell Mol Biol 2024; 71:442-452. [PMID: 38864759 DOI: 10.1165/rcmb.2022-0492oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/12/2024] [Indexed: 06/13/2024] Open
Abstract
Lamellar bodies (LBs) are tissue-specific lysosome-related organelles in type II alveolar cells that are the main site for the synthesis, storage, and secretion of pulmonary surfactants. Defects in pulmonary surfactants lead to a variety of respiratory and immune-related disorders. LB biogenesis is closely related to their function, but the underlying regulatory mechanism is largely unclear. Here, we found that deficiency of HPS6, a subunit of BLOC-2 (biogenesis of lysosome-related organelles complex-2), led to a reduction of the steady-state concentration of vacuolar-type H+-ATPase and an increase in the luminal pH of LBs. Furthermore, we observed increased LB size, accumulated surfactant proteins, and altered lipid profiling of lung tissue and BAL fluid due to HPS6 deficiency. These findings suggest that HPS6 regulates the distribution of vacuolar-type H+-ATPase on LBs to maintain its luminal acidity and LB homeostasis. This may provide new insights into the LB pathology.
Collapse
Affiliation(s)
- Zhenhua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huipeng Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zixuan Zhou
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qingsong Yang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Beibei Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China; and
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
5
|
Sai KV, Lee JYE. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. J Biol Chem 2024; 300:107738. [PMID: 39233230 PMCID: PMC11460456 DOI: 10.1016/j.jbc.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.
Collapse
Affiliation(s)
- Kadambari Vijay Sai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jyh-Yeuan Eric Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Subramanian G, Hage A, Feldmann F, Chiramel AI, McNally KL, Sturdevant GL, Beare PA, Best SM. AP3B1 Has Type I Interferon-Independent Antiviral Function against SARS-CoV-2. Viruses 2024; 16:1377. [PMID: 39339853 PMCID: PMC11437497 DOI: 10.3390/v16091377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The unprecedented research effort associated with the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) included several extensive proteomic studies that identified host proteins that interact with individual viral gene products. However, in most cases, the consequences of those virus-host interactions for virus replication were not experimentally pursued, which is a necessary step in determining whether the interactions represent pro- or anti-viral events. One putative interaction commonly identified in multiple studies was between the host adaptor protein complex 3 (AP-3) subunit B1 (AP3B1) and the SARS-CoV-2 envelope protein (E). AP3B1 is one subunit of AP-3 required for the biogenesis of lysosomal-related organelles (LROs), and its function impacts important disease processes including inflammation and vascular health. Thus, interactions between AP3B1 and SARS-CoV-2 might influence the clinical outcomes of infection. To determine if AP3B1 has a role in the SARS-CoV-2 replication cycle, we first confirmed the interaction in virus-infected cells using immunoprecipitation (IP) and immunofluorescence assays (IFA). AP3B1 is required by multiple viruses to aid in the replication cycle and therefore may be a therapeutic target. However, we found that the overexpression of AP3B1 suppressed SARS-CoV-2 replication, whereas the siRNA-mediated depletion of AP3B1 increased the release of infectious virus, suggesting an antiviral role for AP3B1. Together, our findings suggest that AP3B1 is an intrinsic barrier to SARS-CoV-2 replication through interactions with the viral E protein. Our work justifies further investigations of LRO trafficking in SARS-CoV-2 target cells and their role in viral pathogenesis.
Collapse
Affiliation(s)
- Gayatri Subramanian
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Adam Hage
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Paul A Beare
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
7
|
Pocognoni CA, Nawara T, Bhatt JM, Lee E, Jian X, Randazzo P, Sztul E. The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network. Arch Biochem Biophys 2024; 758:110049. [PMID: 38879142 PMCID: PMC11264237 DOI: 10.1016/j.abb.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.
Collapse
Affiliation(s)
- Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina.
| | - Tomasz Nawara
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| |
Collapse
|
8
|
Bauer AN, Williams JF, Pokhrel LR, Garcia S, Majumdar N, Eells JB, Cook PP, Akula SM. Evaluating Molecular Mechanism of Viral Inhibition of Aerosolized Smart Nano-Enabled Antiviral Therapeutic (SNAT) on SARS-CoV-2-Infected Hamsters. TOXICS 2024; 12:495. [PMID: 39058147 PMCID: PMC11280845 DOI: 10.3390/toxics12070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Smart Nano-enabled Antiviral Therapeutic (SNAT) is a promising nanodrug that previously demonstrated efficacy in preclinical studies to alleviate SARS-CoV-2 pathology in hamsters. SNAT comprises taxoid (Tx)-decorated amino (NH2)-functionalized near-atomic size positively charged silver nanoparticles (Tx-[NH2-AgNPs]). Herein, we aimed to elucidate the molecular mechanism of the viral inhibition and safety of aerosolized SNAT treatment in SARS-CoV-2-infected golden Syrian hamsters. High-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive spectroscopy (EDS) and ELISAs showed SNAT binds directly to the SARS-CoV-2 virus by interacting with intact spike (S) protein, specifically to S2 subunit. SNAT (≥1 µg/mL) treatment significantly lowered SARS-CoV-2 infections of Calu-3 cells. Extraction-free whole transcriptome assay was used to detect changes in circulatory micronome in hamsters treated intranasally with SNAT (two doses of 10 µg/mL of 2 mL each administered 24 h apart). Uninfected hamsters treated with SNAT had altered circulatory concentrations of 18 microRNAs (8 miRNAs upregulated, 10 downregulated) on day 3 post-treatment compared to uninfected controls. SNAT-induced downregulation of miR-141-3p and miR-200b-3p may reduce viral replication and inflammation by targeting Ythdf2 and Slit2, respectively. Further, SNAT treatment significantly lowered IL-6 expression in infected hamster lungs compared to untreated infected hamsters. Taken together, we demonstrate that SNAT binds directly to SARS-CoV-2 via the S protein to prevent viral entry and propose a model by which SNAT alters the cellular miRNA-directed milieu to promote antiviral cellular processes and neutralize infection. Our results provide insights into the use of low-dose intranasally delivered SNAT in treating SARS-CoV-2 infections in a hamster model.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - John F. Williams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Selena Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Niska Majumdar
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
9
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Dobson L, Gerdán C, Tusnády S, Szekeres L, Kuffa K, Langó T, Zeke A, Tusnády GE. UniTmp: unified resources for transmembrane proteins. Nucleic Acids Res 2024; 52:D572-D578. [PMID: 37870462 PMCID: PMC10767979 DOI: 10.1093/nar/gkad897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The UNIfied database of TransMembrane Proteins (UniTmp) is a comprehensive and freely accessible resource of transmembrane protein structural information at different levels, from localization of protein segments, through the topology of the protein to the membrane-embedded 3D structure. We not only annotated tens of thousands of new structures and experiments, but we also developed a new system that can serve these resources in parallel. UniTmp is a unified platform that merges TOPDB (Topology Data Bank of Transmembrane Proteins), TOPDOM (database of conservatively located domains and motifs in proteins), PDBTM (Protein Data Bank of Transmembrane Proteins) and HTP (Human Transmembrane Proteome) databases and provides interoperability between the incorporated resources and an easy way to keep them regularly updated. The current update contains 9235 membrane-embedded structures, 9088 sequences with 536 035 topology-annotated segments and 8692 conservatively localized protein domains or motifs as well as 5466 annotated human transmembrane proteins. The UniTmp database can be accessed at https://www.unitmp.org.
Collapse
Affiliation(s)
- László Dobson
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| | - Csongor Gerdán
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Simon Tusnády
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| | - Levente Szekeres
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Katalin Kuffa
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Pázmány P. stny. 1/C, H-1117, Hungary
| | - Tamás Langó
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - András Zeke
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Gábor E Tusnády
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| |
Collapse
|
12
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. Sci Rep 2024; 14:343. [PMID: 38172157 PMCID: PMC10764864 DOI: 10.1038/s41598-023-50360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Eugenia M Yazlovitskaya
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey S Rose
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John M Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA.
| |
Collapse
|
13
|
Inoue C, Mukai K, Matsudaira T, Nakayama J, Kono N, Aoki J, Arai H, Uchida Y, Taguchi T. PPP1R12A is a recycling endosomal phosphatase that facilitates YAP activation. Sci Rep 2023; 13:19740. [PMID: 37957190 PMCID: PMC10643656 DOI: 10.1038/s41598-023-47138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Yes-associated protein (YAP) is a transcriptional coactivator that is essential for the malignancy of various cancers. We have previously shown that YAP activity is positively regulated by phosphatidylserine (PS) in recycling endosomes (REs). However, the mechanism by which YAP is activated by PS in REs remains unknown. In the present study, we examined a group of protein phosphatases (11 phosphatases) that we had identified previously as PS-proximity protein candidates. Knockdown experiments of these phosphatases suggested that PPP1R12A, a regulatory subunit of the myosin phosphatase complex, was essential for YAP-dependent proliferation of triple-negative breast cancer MDA-MB-231 cells. Knockdown of PPP1R12A increased the level of phosphorylated YAP, reduced that of YAP in the nucleus, and suppressed the transcription of CTGF (a YAP-regulated gene), reinforcing the role of PPP1R12A in YAP activation. ATP8A1 is a PS-flippase that concentrates PS in the cytosolic leaflet of the RE membrane and positively regulates YAP signalling. In subcellular fractionation experiments using cell lysates, PPP1R12A in control cells was recovered exclusively in the microsomal fraction. In contrast, a fraction of PPP1R12A in ATP8A1-depleted cells was recovered in the cytosolic fraction. Cohort data available from the Cancer Genome Atlas showed that high expression of PPP1R12A, PP1B encoding the catalytic subunit of the myosin phosphatase complex, or ATP8A1 correlated with poor prognosis in breast cancer patients. These results suggest that the "ATP8A1-PS-YAP phosphatase" axis in REs facilitates YAP activation and thus cell proliferation.
Collapse
Affiliation(s)
- Chiaki Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
14
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
15
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545392. [PMID: 37398141 PMCID: PMC10312798 DOI: 10.1101/2023.06.16.545392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C. Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
| | - Bailey S. Rose
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - John M. Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Tennessee, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Shin HW, Takatsu H. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases. Chem Pharm Bull (Tokyo) 2022; 70:524-532. [DOI: 10.1248/cpb.c22-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | |
Collapse
|
17
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Li W, Hao CJ, Hao ZH, Ma J, Wang QC, Yuan YF, Gong JJ, Chen YY, Yu JY, Wei AH. New insights into the pathogenesis of Hermansky-Pudlak syndrome. Pigment Cell Melanoma Res 2022; 35:290-302. [PMID: 35129281 DOI: 10.1111/pcmr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by defects of multiple tissue-specific lysosome-related organelles (LROs), typically manifesting with oculocutaneous albinism or ocular albinism, bleeding tendency, and in some cases with pulmonary fibrosis, inflammatory bowel disease or immunodeficiency, neuropsychological disorders. Eleven HPS subtypes in humans and at least 15 subtypes in mice have been molecularly identified. Current understanding of the underlying mechanisms of HPS is focusing on the defective biogenesis of LROs. Compelling evidences have shown that HPS protein-associated complexes (HPACs) function in cargo transport, cargo recycling, and cargo removal to maintain LRO homeostasis. Further investigation on the molecular and cellular mechanism of LRO biogenesis and secretion will be helpful for better understanding of its pathogenesis and for the precise intervention of HPS.
Collapse
Affiliation(s)
- Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Chan-Juan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Zhen-Hua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Qiao-Chu Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ye-Feng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Juan-Juan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Yuan-Ying Chen
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jia-Ying Yu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ai-Hua Wei
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Mulugeta S, Weaver TE, Beers MF. Methodologic Caveats Regarding Dickens et al. "Novel insights into surfactant protein C trafficking revealed through the study of a pathogenic mutant". Eur Respir J 2022; 59:13993003.02974-2021. [PMID: 35115343 DOI: 10.1183/13993003.02974-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania .,PENN-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy E Weaver
- Cincinnati Children"s Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio.,Emeritus
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania .,PENN-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Hasegawa J, Uchida Y, Mukai K, Lee S, Matsudaira T, Taguchi T. A Role of Phosphatidylserine in the Function of Recycling Endosomes. Front Cell Dev Biol 2022; 9:783857. [PMID: 35004683 PMCID: PMC8740049 DOI: 10.3389/fcell.2021.783857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cells internalize proteins and lipids in the plasma membrane (PM) and solutes in the extracellular space by endocytosis. The removal of PM by endocytosis is constantly balanced by the replenishment of proteins and lipids to PM through recycling pathway. Recycling endosomes (REs) are specific subsets of endosomes. Besides the established role of REs in recycling pathway, recent studies have revealed unanticipated roles of REs in membrane traffic and cell signalling. In this review, we highlight these emerging issues, with a particular focus on phosphatidylserine (PS), a phospholipid that is highly enriched in the cytosolic leaflet of RE membranes. We also discuss the pathogenesis of Hermansky Pudlak syndrome type 2 (HPS2) that arises from mutations in the AP3B1 gene, from the point of view of dysregulated RE functions.
Collapse
Affiliation(s)
- Junya Hasegawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kojiro Mukai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shoken Lee
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
22
|
Gokey JJ, Patel SD, Kropski JA. The Role of Hippo/YAP Signaling in Alveolar Repair and Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:752316. [PMID: 34671628 PMCID: PMC8520933 DOI: 10.3389/fmed.2021.752316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
Pulmonary fibrosis is characterized by loss of normal alveoli, accumulation of pathologic activated fibroblasts, and exuberant extracellular matrix deposition that over time can lead to progressive loss of respiratory function and death. This loss of respiratory function is associated with the loss of alveolar type 1 cells (AT1) that play a crucial role in gas exchange and the depletion of the alveolar type 2 cells (AT2) that act as progenitor cells to regenerate the AT1 and AT2 cell populations during repair. Understanding the mechanisms that regulate normal alveolar repair and those associated with pathologic repair is essential to identify potential therapeutic targets to treat or delay progression of fibrotic diseases. The Hippo/YAP developmental signaling pathway has been implicated as a regulator of normal alveolar development and repair. In idiopathic pulmonary fibrosis, aberrant activation of YAP/TAZ has been demonstrated in both the alveolar epithelium and activated fibroblasts associated with increased fibrotic remodeling, and there is emerging interest in this pathway as a target for antifibrotic therapies. In this review, we summarize current evidence as to the role of the Hippo-YAP/TAZ pathway in alveolar development, homeostasis, and repair, and highlight key questions that must be resolved to determine effective strategies to modulate YAP/TAZ signaling to prevent progressive pulmonary fibrosis and enhance adaptive alveolar repair.
Collapse
Affiliation(s)
- Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Saawan D Patel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Ristovski M, Farhat D, Bancud SEM, Lee JY. Lipid Transporters Beam Signals from Cell Membranes. MEMBRANES 2021; 11:562. [PMID: 34436325 PMCID: PMC8399137 DOI: 10.3390/membranes11080562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.
Collapse
Affiliation(s)
- Miliça Ristovski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Biomedical Sciences Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Shelly Ellaine M. Bancud
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
| |
Collapse
|