1
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
2
|
Yang J, Yu H, Ye L. Evolution of Vitamin E Production: From Chemical Synthesis and Plant Extraction to Microbial Cell Factories. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27701-27714. [PMID: 39644244 DOI: 10.1021/acs.jafc.4c08813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is an essential antioxidant known for its numerous health benefits. This review traces the evolution of vitamin E production, from traditional chemical synthesis and plant extraction methods to cutting-edge microbial cell factories. Chemical synthesis, while well-established, fails to produce specific stereoisomers, and its application is limited to animal feed due to concerns about chemical residues and limited bioactivity. Plant extraction, although yielding natural vitamin E, is constrained by resource availability and high cultivation costs. Recent advancements in metabolic engineering and synthetic biology have revolutionized vitamin E bioproduction, particularly through the use of engineered microbial cell factories. This review highlights the progress of vitamin E biosynthesis in plants and microorganisms and the key metabolic engineering strategies adopted. We also discuss the existing challenges and future perspectives. When these challenges are overcome, microbial cell factories present a sustainable and effective method to fulfill the increasing demand for high-quality vitamin E.
Collapse
Affiliation(s)
- Jingyi Yang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zuo Y, Zhao M, Gou Y, Huang L, Xu Z, Lian J. Transportation engineering for enhanced production of plant natural products in microbial cell factories. Synth Syst Biotechnol 2024; 9:742-751. [PMID: 38974023 PMCID: PMC11224930 DOI: 10.1016/j.synbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.
Collapse
Affiliation(s)
- Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
4
|
Lin G, Li P, Li L, Wang R, Zhao W, Tian M, Wu J, Xu S, Chen Y, Feng X. Discovery of ElABCG39: a key player in ingenol transmembrane efflux identified through genome-wide analysis of ABC transporters in Euphorbia lathyris L. PLANT CELL REPORTS 2024; 43:274. [PMID: 39470817 DOI: 10.1007/s00299-024-03361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
KEY MESSAGE Based on transport inhibition and genome-wide analysis, 123 ABC transporters of Euphorbia lathyris were identified, and it was found that the PDR family members ElABCG39 mediated ingenol efflux. Identification of ingenol biosynthetic enzymes and transporters in plant is fundamental to realize its biosynthesis in chassis cells. At present, several key enzymes of the ingenol biosynthesis pathway have been identified, while the mechanisms governing the accumulation or transport of ingenol to distinct plant tissue compartments remain elusive. In this study, transport inhibition analyses were performed, along with genome-wide identification of 123 genes encoding ABC proteins in Euphorbia lathyris L., eventually discovering that a PDR transporter ElABCG39 mediates ingenol transmembrane transport and is localized on the plasma membrane. Expression of this protein in yeast AD1-8 promoted the transmembrane efflux of ingenol with strong substrate specificity. Furthermore, in ElABCG39 RNAi transgenic hairy roots, ingenol transmembrane efflux was significantly reduced and hairy root growth was inhibited. The discovery of the first Euphorbia macrocyclic diterpene transporter ElABCG39 has not only further improved the ingenane diterpenoid biosynthesis regulatory network, but also provided a new key element for ingenol production in chassis cells.
Collapse
Affiliation(s)
- Guyin Lin
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ruyuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Junzhi Wu
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yu Chen
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Xu Feng
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
5
|
Chavez BG, Leite Dias S, D'Auria JC. The evolution of tropane alkaloids: Coca does it differently. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102606. [PMID: 39067083 DOI: 10.1016/j.pbi.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods. However, this approach has largely failed for TA biosynthesis in angiosperms. In the recent decade, significant progress has been made in elucidating the TA synthesis pathway in Erythroxylum coca, highlighting the parallel development of TAs in both the Solanaceae and Erythroxylaceae families. This separate evolutionary path has uncovered substantial divergence in the TAs formed by E. coca and distinct enzymatic reactions that differ from the traditional TA biosynthetic pathway found in TA-producing nightshade plants.
Collapse
Affiliation(s)
- Benjamin Gabriel Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - John Charles D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany.
| |
Collapse
|
6
|
Yin MQ, Xu K, Luan T, Kang XL, Yang XY, Li HX, Hou YH, Zhao JZ, Bao XM. Metabolic engineering for compartmentalized biosynthesis of the valuable compounds in Saccharomyces cerevisiae. Microbiol Res 2024; 286:127815. [PMID: 38944943 DOI: 10.1016/j.micres.2024.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.
Collapse
Affiliation(s)
- Meng-Qi Yin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tao Luan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiu-Long Kang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao-Yu Yang
- Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hong-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yun-Hua Hou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian-Zhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; A State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China.
| | - Xiao-Ming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Swamidatta SH, Lichman BR. Beyond co-expression: pathway discovery for plant pharmaceuticals. Curr Opin Biotechnol 2024; 88:103147. [PMID: 38833915 DOI: 10.1016/j.copbio.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.
Collapse
Affiliation(s)
- Sandesh H Swamidatta
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
8
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
9
|
Durand M, Besseau S, Papon N, Courdavault V. Unlocking plant bioactive pathways: omics data harnessing and machine learning assisting. Curr Opin Biotechnol 2024; 87:103135. [PMID: 38728826 DOI: 10.1016/j.copbio.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.
Collapse
Affiliation(s)
- Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France.
| |
Collapse
|
10
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
11
|
Lorrai R, Cavaterra D, Giammaria S, Sbardella D, Tundo GR, Boccaccini A. Eye Diseases: When the Solution Comes from Plant Alkaloids. PLANTA MEDICA 2024; 90:426-439. [PMID: 38452806 DOI: 10.1055/a-2283-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Rome, Italy
| | | | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
12
|
Zeng J, Liu X, Dong Z, Zhang F, Qiu F, Zhong M, Zhao T, Yang C, Zeng L, Lan X, Zhang H, Zhou J, Chen M, Tang K, Liao Z. Discovering a mitochondrion-localized BAHD acyltransferase involved in calystegine biosynthesis and engineering the production of 3β-tigloyloxytropane. Nat Commun 2024; 15:3623. [PMID: 38684703 PMCID: PMC11058270 DOI: 10.1038/s41467-024-47968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3β-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3β-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3β-tigloyloxytropane synthase (TS), catalyzes 3β-tropanol and tigloyl-CoA to form 3β-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3β-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3β-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3β-tigloyloxytropane from tiglic acid and 3β-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3β-tigloyloxytropane.
Collapse
Affiliation(s)
- Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoqiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhaoyue Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mingyu Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi, 860000, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Kexuan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Resource Insects, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
15
|
Sokolova N, Peng B, Haslinger K. Design and engineering of artificial biosynthetic pathways-where do we stand and where do we go? FEBS Lett 2023; 597:2897-2907. [PMID: 37777818 DOI: 10.1002/1873-3468.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The production of commodity and specialty chemicals relies heavily on fossil fuels. The negative impact of this dependency on our environment and climate has spurred a rising demand for more sustainable methods to obtain such chemicals from renewable resources. Herein, biotransformations of these renewable resources facilitated by enzymes or (micro)organisms have gained significant attention, since they can occur under mild conditions and reduce waste. These biotransformations typically leverage natural metabolic processes, which limits the scope and production capacity of such processes. In this mini-review, we provide an overview of advancements made in the past 5 years to expand the repertoire of biotransformations in engineered microorganisms. This ranges from redesign of existing pathways driven by retrobiosynthesis and computational design to directed evolution of enzymes and de novo pathway design to unlock novel routes for the synthesis of desired chemicals. We highlight notable examples of pathway designs for the production of commodity and specialty chemicals, showcasing the potential of these approaches. Lastly, we provide an outlook on future pathway design approaches.
Collapse
Affiliation(s)
- Nika Sokolova
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Bo Peng
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| |
Collapse
|
16
|
Stander EA, Lehka B, Carqueijeiro I, Cuello C, Hansson FG, Jansen HJ, Dugé De Bernonville T, Birer Williams C, Vergès V, Lezin E, Lorensen MDBB, Dang TT, Oudin A, Lanoue A, Durand M, Giglioli-Guivarc'h N, Janfelt C, Papon N, Dirks RP, O'connor SE, Jensen MK, Besseau S, Courdavault V. The Rauvolfia tetraphylla genome suggests multiple distinct biosynthetic routes for yohimbane monoterpene indole alkaloids. Commun Biol 2023; 6:1197. [PMID: 38001233 PMCID: PMC10673892 DOI: 10.1038/s42003-023-05574-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Beata Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Inês Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Thomas Dugé De Bernonville
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Thu-Thuy Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Sarah Ellen O'connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
17
|
Watkins JL, Li Q, Yeaman S, Facchini PJ. Elucidation of the mescaline biosynthetic pathway in peyote (Lophophora williamsii). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:635-649. [PMID: 37675639 DOI: 10.1111/tpj.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Peyote (Lophophora williamsii) is an entheogenic and medicinal cactus native to the Chihuahuan desert. The psychoactive and hallucinogenic properties of peyote are principally attributed to the phenethylamine derivative mescaline. Despite the isolation of mescaline from peyote over 120 years ago, the biosynthetic pathway in the plant has remained undiscovered. Here, we use a transcriptomics and homology-guided gene discovery strategy to elucidate a near-complete biosynthetic pathway from l-tyrosine to mescaline. We identified a cytochrome P450 that catalyzes the 3-hydroxylation of l-tyrosine to l-DOPA, a tyrosine/DOPA decarboxylase yielding dopamine, and four substrate-specific and regiospecific substituted phenethylamine O-methyltransferases. Biochemical assays with recombinant enzymes or functional analyses performed by feeding putative precursors to engineered yeast (Saccharomyces cerevisiae) strains expressing candidate peyote biosynthetic genes were used to determine substrate specificity, which served as the basis for pathway elucidation. Additionally, an N-methyltransferase displaying broad substrate specificity and leading to the production of N-methylated phenethylamine derivatives was identified, which could also function as an early step in the biosynthesis of tetrahydroisoquinoline alkaloids in peyote.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Qiushi Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
18
|
Mao J, Mohedano MT, Fu J, Li X, Liu Q, Nielsen J, Siewers V, Chen Y. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast. Metab Eng 2023; 79:192-202. [PMID: 37611820 DOI: 10.1016/j.ymben.2023.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
(2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Marta Tous Mohedano
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Xiaowei Li
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Quanli Liu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, DK2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.
| |
Collapse
|
19
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
20
|
Zhang F, Qiu F, Zeng J, Xu Z, Tang Y, Zhao T, Gou Y, Su F, Wang S, Sun X, Xue Z, Wang W, Yang C, Zeng L, Lan X, Chen M, Zhou J, Liao Z. Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nat Commun 2023; 14:1446. [PMID: 36922496 PMCID: PMC10017790 DOI: 10.1038/s41467-023-37133-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.
Collapse
Affiliation(s)
- Fangyuan Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zhichao Xu
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Yueli Tang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Tengfei Zhao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Yuqin Gou
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Su
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Shiyi Wang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiuli Sun
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi, Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihua Liao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China. .,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Patra P, B R D, Kundu P, Das M, Ghosh A. Recent advances in machine learning applications in metabolic engineering. Biotechnol Adv 2023; 62:108069. [PMID: 36442697 DOI: 10.1016/j.biotechadv.2022.108069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Metabolic engineering encompasses several widely-used strategies, which currently hold a high seat in the field of biotechnology when its potential is manifesting through a plethora of research and commercial products with a strong societal impact. The genomic revolution that occurred almost three decades ago has initiated the generation of large omics-datasets which has helped in gaining a better understanding of cellular behavior. The itinerary of metabolic engineering that has occurred based on these large datasets has allowed researchers to gain detailed insights and a reasonable understanding of the intricacies of biosystems. However, the existing trail-and-error approaches for metabolic engineering are laborious and time-intensive when it comes to the production of target compounds with high yields through genetic manipulations in host organisms. Machine learning (ML) coupled with the available metabolic engineering test instances and omics data brings a comprehensive and multidisciplinary approach that enables scientists to evaluate various parameters for effective strain design. This vast amount of biological data should be standardized through knowledge engineering to train different ML models for providing accurate predictions in gene circuits designing, modification of proteins, optimization of bioprocess parameters for scaling up, and screening of hyper-producing robust cell factories. This review briefs on the premise of ML, followed by mentioning various ML methods and algorithms alongside the numerous omics datasets available to train ML models for predicting metabolic outcomes with high-accuracy. The combinative interplay between the ML algorithms and biological datasets through knowledge engineering have guided the recent advancements in applications such as CRISPR/Cas systems, gene circuits, protein engineering, metabolic pathway reconstruction, and bioprocess engineering. Finally, this review addresses the probable challenges of applying ML in metabolic engineering which will guide the researchers toward novel techniques to overcome the limitations.
Collapse
Affiliation(s)
- Pradipta Patra
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Disha B R
- B.M.S College of Engineering, Basavanagudi, Bengaluru, Karnataka 560019, India
| | - Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
22
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Yang D, Eun H, Prabowo CPS, Cho S, Lee SY. Metabolic and cellular engineering for the production of natural products. Curr Opin Biotechnol 2022; 77:102760. [PMID: 35908315 DOI: 10.1016/j.copbio.2022.102760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Increased awareness of the environmental and health concerns of consuming chemically synthesized products has led to a rising demand for natural products that are greener and more sustainable. Despite their importance, however, industrial-scale production of natural products has been challenging due to the low yield and high cost of the bioprocesses. To cope with this problem, systems metabolic engineering has been employed to efficiently produce natural products from renewable biomass. Here, we review the recent systems metabolic engineering strategies employed for enhanced production of value-added natural products, together with accompanying examples. Particular focus is set on systems-level engineering and cell physiology engineering strategies. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Sumin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Cao C, Cao X, Yu W, Chen Y, Lin X, Zhu B, Zhou YJ. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7180-7187. [PMID: 35657170 DOI: 10.1021/acs.jafc.2c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(+)-Valencene is a bioactive sesquiterpene that can be used for flavoring and fragrances, and microbial production provides an alternative sustainable access. However, the complexity of cellular metabolism makes it challenging for its high-level production. Here, we report the global rewiring cellular metabolism for de novo production of (+)-valencene in yeast Saccharomyces cerevisiae by engineering central metabolism, mevalonate pathway, and sesquiterpenoid synthase. In particular, we show that metabolic transformation can help accelerate the strain construction process and multiple copy expression of sesquiterpenoid synthase is essential for boosting the metabolic flux for product synthesis with enhanced supply of precursors. The engineered strain produced 1.2 g/L (+)-valencene under fed-batch fermentation in shake flasks, which was increased by 549-fold and demonstrated great potential of the yeast cell factory for (+)-valencene production.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
25
|
Lv X, Xue H, Qin L, Li C. Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity. BIODESIGN RESEARCH 2022; 2022:9871087. [PMID: 37850143 PMCID: PMC10521751 DOI: 10.34133/2022/9871087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Microbial cell factories (MCFs) are typical and widely used platforms in biomanufacturing for designing and constructing synthesis pathways of target compounds in microorganisms. In MCFs, transporter engineering is especially significant for improving the biomanufacturing efficiency and capacity through enhancing substrate absorption, promoting intracellular mass transfer of intermediate metabolites, and improving transmembrane export of target products. This review discusses the current methods and strategies of mining and characterizing suitable transporters and presents the cases of transporter engineering in the production of various chemicals in MCFs.
Collapse
Affiliation(s)
- Xiaodong Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022; 21:92. [PMID: 35599322 PMCID: PMC9125818 DOI: 10.1186/s12934-022-01819-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial cell factories for terpenoid synthesis form a less expensive and more environment-friendly approach than chemical synthesis and extraction, and are thus being regarded as mainstream research recently. Organelle compartmentalization for terpenoid synthesis has received much attention from researchers owing to the diverse physiochemical characteristics of organelles. In this review, we first systematically summarized various compartmentalization strategies utilized in terpenoid production, mainly plant terpenoids, which can provide catalytic reactions with sufficient intermediates and a suitable environment, while bypassing competing metabolic pathways. In addition, because of the limited storage capacity of cells, strategies used for the expansion of specific organelle membranes were discussed. Next, transporter engineering strategies to overcome the cytotoxic effects of terpenoid accumulation were analyzed. Finally, we discussed the future perspectives of compartmentalization and transporter engineering strategies, with the hope of providing theoretical guidance for designing and constructing cell factories for the purpose of terpenoid production.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Xia
- Richen Bioengineering Co., Ltd, Nantong, 226000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
27
|
Sveshnikova A, MohammadiPeyhani H, Hatzimanikatis V. Computational tools and resources for designing new pathways to small molecules. Curr Opin Biotechnol 2022; 76:102722. [PMID: 35483185 DOI: 10.1016/j.copbio.2022.102722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
The metabolic engineering community relies on computational methods for pathway design to produce important small molecules in microbial hosts. Metabolic network databases are continuously curated and updated with known and novel reactions that expand the known biochemistry based on different sets of enzymatic reaction rules. To address the complexity of the metabolic networks, elaborate methods were developed to transform them into computable graphs, navigate them, and construct the best possible pathways. However, the recent experimental research points to the new challenges and opportunities for the computational pathway design. Here, we review the most recent advances, especially in the last two years, in computational discovery of new pathways and their prospects for expanding metabolic capabilities. We draw attention to the potential ways of improvement for pathway design algorithms, including the expansion of Design-Build-Test-Learn cycle to novel compounds and reactions and the standardization for the reaction rules and metabolic reaction databases.
Collapse
Affiliation(s)
- Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Homa MohammadiPeyhani
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
28
|
ARBRE: Computational resource to predict pathways towards industrially important aromatic compounds. Metab Eng 2022; 72:259-274. [DOI: 10.1016/j.ymben.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 12/16/2022]
|
29
|
Watkins JL, Facchini PJ. Compartmentalization at the interface of primary and alkaloid metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102186. [PMID: 35219143 DOI: 10.1016/j.pbi.2022.102186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Plants produce many compounds used by humans as medicines, including alkaloids of the benzylisoquinoline (BIA), monoterpene indole (MIA) and tropane classes. The biosynthetic pathways of these pharmaceutical alkaloids are complex and spatially segregated across several tissues, cell-types and organelles. This review discusses the origin of primary metabolic inputs required by these specialized biosynthetic pathways and considers aspects relevant to their spatial organization. These factors are important for alkaloid production both in the native plants and for synthetic biology pathway reconstruction in microorganisms.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
30
|
Recent advances in construction and regulation of yeast cell factories. World J Microbiol Biotechnol 2022; 38:57. [PMID: 35174424 DOI: 10.1007/s11274-022-03241-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/30/2022] [Indexed: 01/12/2023]
Abstract
The past decade has witnessed the rapid progress in development of synthetic biology, and advances in construction of yeast cell factories open vast opportunities for green and sustainable production of chemicals. Focusing on the progress in yeast engineering for production of plant natural products in the last 5 years, this review introduces different yeast chassis used for cell factory construction, including Saccharomyces cerevisiae, Yarrowia lipolytica and Komagataella phaffii, together with the emerging genome editing tools. The metabolic regulation strategies developed for yeast engineering are highlighted, such as subcellular pathway localization dynamic regulation, and transporter engineering. C1-based chemical bioproduction by engineered yeast is also covered. Finally, the existing challenges and future prospects in creating efficient yeast cell factories are summarized.
Collapse
|
31
|
Duan Y, Du Y, Yi Z, Wang Z, Pei X, Wei X, Li M. Systematic Metabolic Engineering for the Production of Azaphilones in Monascus purpureus HJ11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1589-1600. [PMID: 35085438 DOI: 10.1021/acs.jafc.1c07588] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using Monascus azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs. In this study, Monascus purpureus HJ11 was systematically engineered through a combination of promoter engineering, gene knockout, rate-limiting enzyme overexpression, repression of the competing pathway, enzyme engineering, and metabolic rebalance. The maximum yield and titer of MAs successfully increased to 906 mg/g dry cell weight (DCW) and 14.6 g/L, respectively, 2.6 and 3.7 times higher than those reported in the literature. Our successful model not only offers a practical and efficient way to improve the azaphilone production but also sheds light on the potential of systematic metabolic engineering in nonmodel fungi as a chassis for the production of high-value chemicals.
Collapse
Affiliation(s)
- Yali Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yun Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiqiang Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhe Wang
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
32
|
Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast. Proc Natl Acad Sci U S A 2021; 118:2112520118. [PMID: 34903659 PMCID: PMC8713753 DOI: 10.1073/pnas.2112520118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
This work demonstrates microbial biosynthesis of bisbenzylisoquinoline (bisBIA) alkaloids. We show that several didomain epimerases can function in yeast to epimerize the nonnative substrate N-methylcoclaurine, an essential step in bisBIA biosynthesis. The N-methylcoclaurine epimerase activity was increased 10-fold by combining individual reductase and oxidase domains from different plant species. Strain engineering and optimization of media and growth conditions increased the bisBIA titer over 10,000-fold. We show that strains can be engineered to primarily produce one bisBIA product by selection of the cytochrome P450 variant that couples the monomer BIA subunits. We then leverage our bisBIA biosynthetic strain as a platform for the screening of other plant enzymes to produce two additional plant natural products de novo in a heterologous host. Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.
Collapse
|
33
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
34
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
35
|
An ATP-Binding Cassette Transporter, LaABCB11, Contributes to Alkaloid Transport in Lycoris aurea. Int J Mol Sci 2021; 22:ijms222111458. [PMID: 34768889 PMCID: PMC8584037 DOI: 10.3390/ijms222111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
As a kind of Amaryllidaceae alkaloid which is accumulated in the species of Lycoris plants, lycorine has a range of physiological effects. The biosynthesis pathway of lycorine has been partly revealed, but the transport and accumulation mechanisms of lycorine have rarely been studied. In this study, an ATP-binding cassette (ABC) transporter from Lycoris aurea (L'Hér) Herb., namely LaABCB11, was cloned and functionally characterized. Heterologous expression showed that LaABCB11 transported lycorine in an outward direction, increased the tolerance of yeast cells to lycorine, and caused a lower lycorine accumulation in transformants than control or mutant in yeast. LaABCB11 is associated with the plasma membrane, and in situ hybridization indicated that LaABCB11 was mainly expressed in the phloem of leaves and bulbs, as well as in the cortical cells of roots. These findings suggest that LaABCB11 functions as a lycorine transport and it might be related to the translocation and accumulation of lycorine from the leaves and bulbs to the roots.
Collapse
|