1
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Zhao Y, Gu L, Chen Y, Lin Y, Xing J, Xu D, Su Z, Huang Z. Cysteine-Rich Protein 61 (CCN1) Deficiency Alleviated Cardiac Remodeling in 5/6 Nephrectomized Mice by Suppressing the MAPK Signaling Pathway. Cardiovasc Ther 2025; 2025:6813183. [PMID: 40225592 PMCID: PMC11986956 DOI: 10.1155/cdr/6813183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/28/2025] [Indexed: 04/15/2025] Open
Abstract
Background: With the progression of chronic kidney disease (CKD), we can often observe cardiac remodeling, fibrosis, and cardiac failure in patients. Cysteine-rich protein 61 (CCN1) is an extracellular matrix protein that plays a reuse role in cardiac remodeling. However, whether CCN1 participates in the crosslink between the heart and kidney in CKD and the potential mechanism remains unknown. Methods: We constructed a mouse model of CKD by 5/6 nephrectomy (5/6 Nx). Hematoxylin-eosin staining (H&E), Masson's trichrome staining, and Sirius red staining were used to observe cardiac morphology and fibrosis. H9c2 cells were treated with si-CCN1 or si-NC or mitogen-activated protein kinase (MAPK)-related inhibitors or agonist before being cultured with 5/6 Nx mouse serum. The relative protein level was detected by Western blotting. Results: We observed that CCN1 expression was markedly enhanced in the serum and heart tissues, accompanied by disordered myocardial arrangement, obvious cardiac fibrosis, hypertrophy, and decreased cardiac systolic function reflected by echocardiography. The relative markers collagen 1 (COL-1), transforming growth factor-β (TGF-β), heavy-chain cardiac myosin (MyHC), and atrial natriuretic peptide (ANP) presented an increase in expression. In vivo and in vitro, after the knockdown of CCN1, the above results in the CKD group or CKD serum group were reversed; in addition, the MAPK signaling pathway was obviously activated due to 5/6 Nx, which was abolished by CCN1 inhibition. CCN1 silencing or MAPK pathway inhibition also decreased the expression of myocardial fibrosis and hypertrophy markers in H9c2 cells, while MAPK-related agonist partly reversed the effect of CCN1 inhibition. Conclusion: Our in vivo and in vitro study showed that specific CCN1 deficiency markedly alleviated cardiac remodeling in 5/6 Nx mice through the inhibition of the MAPK pathway.
Collapse
MESH Headings
- Animals
- Nephrectomy
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/deficiency
- Cysteine-Rich Protein 61/metabolism
- Disease Models, Animal
- Ventricular Remodeling/drug effects
- Fibrosis
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/physiopathology
- Male
- Mice, Inbred C57BL
- Cell Line
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Ventricular Function, Left
- MAP Kinase Signaling System
- Rats
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Mice
- Mitogen-Activated Protein Kinase Kinases/metabolism
Collapse
Affiliation(s)
- Yihan Zhao
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liang Gu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of General Medicine, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yunxuan Chen
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibei Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jincheng Xing
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Diyan Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Su
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Kass DA. Assessing and interpreting diastolic function in animal models of heart disease. J Mol Cell Cardiol 2024; 197:1-4. [PMID: 39368650 PMCID: PMC11588505 DOI: 10.1016/j.yjmcc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Increasing interest in identifying the causes of and treatments for heart failure with preserved ejection fraction and cardiac fibrosis has spawned a focus on measures of cardiac diastolic function. The methods, their underlying principals and mechanics, and caveats to their measurement were largely worked out decades ago, but some of this seems a bit forgotten as scientists working in the field now have backgrounds more in molecular and cellular biology. This perspective was spawned by seeing the growing number of studies where diastolic function analysis is a key parameter used to justify a given pre-clinical model or to show the consequences of a particular genetic or pharmacological therapy. The goals are to discuss what comprises and influences diastolic function, how it is measured, what the parameters mean and what their limitations are, and what comprises evidence for pathophysiologically meaningful diastolic dysfunction.
Collapse
Affiliation(s)
- David A Kass
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
Strom J, Bull M, Gohlke J, Saripalli C, Methawasin M, Gotthardt M, Granzier H. Titin's cardiac-specific N2B element is critical to mechanotransduction during volume overload of the heart. J Mol Cell Cardiol 2024; 191:40-49. [PMID: 38604403 PMCID: PMC11229416 DOI: 10.1016/j.yjmcc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal β-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.
Collapse
Affiliation(s)
- Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mathew Bull
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
6
|
Azhar G, Nagano K, Patyal P, Zhang X, Verma A, Wei JY. Deletion of Interleukin-1β Converting Enzyme Alters Mouse Cardiac Structure and Function. BIOLOGY 2024; 13:172. [PMID: 38534442 DOI: 10.3390/biology13030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Interleukin-1β converting enzyme (ICE, caspase-1) is a thiol protease that cleaves the pro-inflammatory cytokine precursors of IL-1β and IL-18 into active forms. Given the association between caspase-1 and cardiovascular pathology, we analyzed the hearts of ICE knockout (ICE KO) mice to test the hypothesis that caspase-1 plays a significant role in cardiac morphology and function. We characterized the histological and functional changes in the hearts of ICE KO mice compared to the Wild type. The cardiomyocytes from the neonatal ICE KO mice showed an impaired response to oxidative stress. Subsequently, the hearts from the ICE KO mice were hypertrophied, with a significant increase in the left ventricular and septal wall thickness and a greater LV mass/body weight ratio. The ICE KO mice hearts exhibited irregular myofibril arrangements and disruption of the cristae in the mitochondrial structure. Proapoptotic proteins that were significantly increased in the hearts of ICE KO versus the Wild type included pErk, pJNK, p53, Fas, Bax, and caspase 3. Further, the antiapoptotic proteins Bag-1 and Bcl-2 are activated in ICE KO hearts. Functionally, there was an increase in the left ventricular epicardial diameter and volume in ICE KO. In conclusion, our findings support the important role of caspase-1 in maintaining cardiac health; specifically, a significant decrease in caspase-1 is detrimental to the cardiovascular system.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Koichiro Nagano
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Abouleisa RRE, Miller JM, Gebreil A, Salama ABM, Dwenger M, Abdelhafez H, Wahid RM, Adewumi AT, Soliman ME, Abo-Dya NE, Mohamed TMA. A novel small molecule inhibitor of p38⍺ MAP kinase augments cardiomyocyte cell cycle entry in response to direct cell cycle stimulation. Br J Pharmacol 2023; 180:3271-3289. [PMID: 37547998 PMCID: PMC10726296 DOI: 10.1111/bph.16209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Myocardial infarction (MI) is the leading cause of mortality globally due in part to the limited ability of cardiomyocytes (CMs) to regenerate. Recently, we demonstrated that overexpression of four-cell cycle factors, CDK1, CDK4, cyclin B1 and cyclin D1 (4F), induced cell division in ~20% of the post-mitotic CMs overexpressed 4F. The current study aims to identify a small molecule that augments 4F-induced CM cycle induction. EXPERIMENTAL APPROACH, KEY RESULTS Screening of small molecules with a potential to augment 4F-induced cell-cycle induction in 60-day-old mature human induced pluripotent cardiomyocytes (hiPS-CMs) revealed N-(4,6-Dimethylpyridin-2-yl)-4-(pyridine-4-yl)piperazine-1-carbothioamide (NDPPC), which activates cell cycle progression in 4F-transduced hiPS-CMs. Autodock tool and Autodock vina computational methods showed that NDPPC has a potential interaction with the binding site at the human p38⍺ mitogen-activated protein kinase (p38⍺ MAP kinase), a critical negative regulator of the mammalian cell cycle. A p38 MAP kinase activity assay showed that NDPPC inhibits p38⍺ with 5-10 times lower IC50 compared to the other P38 isoforms in a dose-dependent manner. Overexpression of p38⍺ MAP kinase in CMs inhibited 4F cell cycle induction, and treatment with NDPPC reversed the cell cycle inhibitory effect. CONCLUSION AND IMPLICATIONS NDPPC is a novel inhibitor for p38 MAP kinase and is a promising drug to augment CM cell cycle response to the 4F. NDPPC could become an adjunct treatment with other cell cycle activators for heart failure treatment.
Collapse
Affiliation(s)
- Riham R E Abouleisa
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Jessica M. Miller
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Ahmad Gebreil
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Abou Bakr M. Salama
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
- Department of Cardiovascular Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - Marc Dwenger
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Hania Abdelhafez
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Reham M. Wahid
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
- Physiology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Adeniyi T. Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Nader E. Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
8
|
Balderas-Villalobos J, Medina-Contreras JML, Lynch C, Kabadi R, Hayles J, Ramirez RJ, Tan AY, Kaszala K, Samsó M, Huizar JF, Eltit JM. Mechanisms of adaptive hypertrophic cardiac remodeling in a large animal model of premature ventricular contraction-induced cardiomyopathy. IUBMB Life 2023; 75:926-940. [PMID: 37427864 PMCID: PMC10592397 DOI: 10.1002/iub.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Frequent premature ventricular contractions (PVCs) promoted eccentric cardiac hypertrophy and reduced ejection fraction (EF) in a large animal model of PVC-induced cardiomyopathy (PVC-CM), but the molecular mechanisms and markers of this hypertrophic remodeling remain unexplored. Healthy mongrel canines were implanted with pacemakers to deliver bigeminal PVCs (50% burden with 200-220 ms coupling interval). After 12 weeks, left ventricular (LV) free wall samples were studied from PVC-CM and Sham groups. In addition to reduced LV ejection fraction (LVEF), the PVC-CM group showed larger cardiac myocytes without evident ultrastructural alterations compared to the Sham group. Biochemical markers of pathological hypertrophy, such as store-operated Ca2+ entry, calcineurin/NFAT pathway, β-myosin heavy chain, and skeletal type α-actin were unaltered in the PVC-CM group. In contrast, pro-hypertrophic and antiapoptotic pathways including ERK1/2 and AKT/mTOR were activated and/or overexpressed in the PVC-CM group, which appeared counterbalanced by an overexpression of protein phosphatase 1 and a borderline elevation of the anti-hypertrophic factor atrial natriuretic peptide. Moreover, the potent angiogenic and pro-hypertrophic factor VEGF-A and its receptor VEGFR2 were significantly elevated in the PVC-CM group. In conclusion, a molecular program is in place to keep this structural remodeling associated with frequent PVCs as an adaptive pathological hypertrophy.
Collapse
Affiliation(s)
| | - JML Medina-Contreras
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Christopher Lynch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Rajiv Kabadi
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Janée Hayles
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rafael J. Ramirez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Alex Y. Tan
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Karoly Kaszala
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Jose F. Huizar
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Jose M. Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| |
Collapse
|
9
|
Singh M, Anvekar P, Baraskar B, Pallipamu N, Gadam S, Cherukuri ASS, Damani DN, Kulkarni K, Arunachalam SP. Prospective of Pancreatic Cancer Diagnosis Using Cardiac Sensing. J Imaging 2023; 9:149. [PMID: 37623681 PMCID: PMC10455647 DOI: 10.3390/jimaging9080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Pancreatic carcinoma (Ca Pancreas) is the third leading cause of cancer-related deaths in the world. The malignancies of the pancreas can be diagnosed with the help of various imaging modalities. An endoscopic ultrasound with a tissue biopsy is so far considered to be the gold standard in terms of the detection of Ca Pancreas, especially for lesions <2 mm. However, other methods, like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), are also conventionally used. Moreover, newer techniques, like proteomics, radiomics, metabolomics, and artificial intelligence (AI), are slowly being introduced for diagnosing pancreatic cancer. Regardless, it is still a challenge to diagnose pancreatic carcinoma non-invasively at an early stage due to its delayed presentation. Similarly, this also makes it difficult to demonstrate an association between Ca Pancreas and other vital organs of the body, such as the heart. A number of studies have proven a correlation between the heart and pancreatic cancer. The tumor of the pancreas affects the heart at the physiological, as well as the molecular, level. An overexpression of the SMAD4 gene; a disruption in biomolecules, such as IGF, MAPK, and ApoE; and increased CA19-9 markers are a few of the many factors that are noted to affect cardiovascular systems with pancreatic malignancies. A comprehensive review of this correlation will aid researchers in conducting studies to help establish a definite relation between the two organs and discover ways to use it for the early detection of Ca Pancreas.
Collapse
Affiliation(s)
- Mansunderbir Singh
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Priyanka Anvekar
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bhavana Baraskar
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Akhila Sai Sree Cherukuri
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Devanshi N. Damani
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX 79995, USA
| | - Kanchan Kulkarni
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, U1045, 33000 Bordeaux, France;
- IHU Liryc, Heart Rhythm Disease Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Ridwan M, Dimiati H, Syukri M, Lesmana R. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review. Egypt Heart J 2023; 75:46. [PMID: 37306727 PMCID: PMC10260731 DOI: 10.1186/s43044-023-00376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common risk factors for cardiovascular disease in the world with prevalence of more than 500 million population in 2021. Cardiac fibrosis with its complex process has been hypothesized as one of the mechanisms explaining development of heart failure in diabetic patients. Recently, the biomolecular mechanism of cardiac fibrosis in the hyperglycemia setting has been focusing around transforming growth factor β-1 (TGFβ-1) as a major factor. However, there is interplay role of several factors including microRNAs (miRNAs) which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. This narrative review included articles from the PubMed and Science Direct databases published in the last 10 years (2012-2022). MAIN TEXT In diabetic patients, excessive activation of myofibroblasts occurs and triggers pro-collagen to convert into mature collagen to fill the cardiac interstitial space resulting in a pathological process of extracellular matrix remodeling. The balance between matrix metalloproteinase (MMP) and its inhibitor (tissue inhibitor of metalloproteinase, TIMP) is crucial in degradation of the extracellular matrix. Diabetes-related cardiac fibrosis is modulated by increasing level of TGF-β1 mediated by cellular components, including cardiomyocyte and non-cardiomyocyte cells involving fibroblasts, vascular pericytes smooth muscle cells, endothelial cells, mast cells, macrophages, and dendritic cells. Several miRNAs such as miR-21, miR-9, miR-29, miR-30d, miR-144, miR-34a, miR-150, miR-320, and miR-378 are upregulated in diabetic cardiomyopathy. TGF-β1, together with inflammatory cytokines, oxidative stress, combined sma and the mothers against decapentaplegic (smad) protein, mitogen-activated protein kinase (MAPK), and microRNAs, is interconnectedly involved in extracellular matrix production and fibrotic response. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. CONCLUSIONS Long-term hyperglycemia activates cardiac fibroblast via complex processes involving TGF-β1, miRNA, inflammatory chemokines, oxidative stress, smad, or MAPK pathways. There is increasing evidence of miRNA's roles lately in modulating cardiac fibrosis.
Collapse
Affiliation(s)
- Muhammad Ridwan
- Doctorate School of Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Herlina Dimiati
- Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Maimun Syukri
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
11
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
MacRae CA, Taylor MR, Mestroni L, Moses J, Ashley EA, Wheeler MT, Lakdawala NK, Hershberger RE, Sandor V, Saunders ME, Oliver C, Lee PA, Judge DP. Efficacy and Safety of ARRY-371797 in LMNA-Related Dilated Cardiomyopathy: A Phase 2 Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 16:e003730. [PMID: 36515663 PMCID: PMC9946172 DOI: 10.1161/circgen.122.003730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lamin A/C gene (LMNA)-related dilated cardiomyopathy is a serious and life-threatening condition with a high unmet medical need. This phase 2 study assessed the effects of the oral selective p38 mitogen-activated protein kinase inhibitor ARRY-371797 on functional capacity and cardiac function in patients with LMNA-related dilated cardiomyopathy. METHODS Patients with LMNA-related dilated cardiomyopathy in New York Heart Association class II-IIIA, on background heart failure treatment, received ARRY-371797 100 or 400 mg twice daily for 48 weeks. The primary end point was change from baseline in the 6-minute walk test distance at 12 weeks. Secondary end points included changes over time in 6-minute walk test distance, NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration, left ventricular ejection fraction, and quality-of-life scores on the Kansas City Cardiomyopathy Questionnaire. Data from the 2 dose groups were combined. RESULTS Twelve patients were enrolled; median (minimum, maximum) 6-minute walk test distance at baseline was 314 (246, 412) m. At week 12, the mean (80% CI) increase from baseline in 6-minute walk test distance was 69 (39, 100) m (median, 47 m). Median NT-proBNP concentration declined from 1409 pg/mL at baseline to 848 pg/mL at week 12. Mean left ventricular ejection fraction was stable at week 12. There was a trend toward improvement in Kansas City Cardiomyopathy Questionnaire Overall and Clinical Summary scores at week 12. No clinically significant drug-related safety concerns were identified. CONCLUSIONS ARRY-371797 was well tolerated and resulted in potential increases in functional capacity and lower concentrations of cardiac biomarker NT-proBNP in patients with LMNA-related dilated cardiomyopathy. REGISTRATION URL: https://clinicaltrials.gov; Unique identifier: NCT02057341.
Collapse
Affiliation(s)
- Calum A. MacRae
- Brigham and Women’s Hospital, Cardiovascular Medicine, Boston, MA (C.A.M., N.K.L.)
| | - Matthew R.G. Taylor
- Department of Medicine, Adult Medical Genetics Program, University of Colorado, Aurora (M.R.G.T., L.M.)
| | - Luisa Mestroni
- Department of Medicine, Adult Medical Genetics Program, University of Colorado, Aurora (M.R.G.T., L.M.)
| | - John Moses
- UnityPoint Health, Heart and Vascular Institute, Madison, WI (J.M.)
| | - Euan A. Ashley
- Center for Inherited Cardiovascular Disease, Stanford University, CA (E.A.A., M.T.W.)
| | - Matthew T. Wheeler
- Center for Inherited Cardiovascular Disease, Stanford University, CA (E.A.A., M.T.W.)
| | - Neal K. Lakdawala
- Brigham and Women’s Hospital, Cardiovascular Medicine, Boston, MA (C.A.M., N.K.L.)
| | - Ray E. Hershberger
- Human Genetics and Cardiovascular Medicine, The Ohio State University, Columbus (R.E.H.)
| | - Victor Sandor
- Pfizer Inc, Boulder, CO (V.S., M.E.S., C.O., P.A.L.)
| | | | | | | | - Daniel P. Judge
- Cardiovascular Genetics, Medical University of South Carolina, Charleston (D.P.J.)
| |
Collapse
|
13
|
Romero-Becerra R, Mora A, Manieri E, Nikolic I, Santamans AM, Montalvo-Romeral V, Cruz FM, Rodríguez E, León M, Leiva-Vega L, Sanz L, Bondía V, Filgueiras-Rama D, Jiménez-Borreguero LJ, Jalife J, Gonzalez-Teran B, Sabio G. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation. eLife 2022; 11:e75250. [PMID: 35971771 PMCID: PMC9381040 DOI: 10.7554/elife.75250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38β, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.
Collapse
Affiliation(s)
| | - Alfonso Mora
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Elisa Manieri
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Ivana Nikolic
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | | | | | - Elena Rodríguez
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Marta León
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Laura Sanz
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Víctor Bondía
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Hospital Clínico Universitario San CarlosMadridSpain
| | | | - José Jalife
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann ArborAnn ArborUnited States
| | - Barbara Gonzalez-Teran
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- Gladstone InstitutesSan FranciscoUnited States
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| |
Collapse
|
14
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
15
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
16
|
Role of puerarin in pathological cardiac remodeling: A review. Pharmacol Res 2022; 178:106152. [DOI: 10.1016/j.phrs.2022.106152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
|
17
|
Ross I, Omengan DB, Huang GN, Payumo AY. Thyroid hormone-dependent regulation of metabolism and heart regeneration. J Endocrinol 2022; 252:R71-R82. [PMID: 34935637 PMCID: PMC8776588 DOI: 10.1530/joe-21-0335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023]
Abstract
While adult zebrafish and newborn mice possess a robust capacity to regenerate their hearts, this ability is generally lost in adult mammals. The logic behind the diversity of cardiac regenerative capacity across the animal kingdom is not well understood. We have recently reported that animal metabolism is inversely correlated to the abundance of mononucleated diploid cardiomyocytes in the heart, which retain proliferative and regenerative potential. Thyroid hormones are classical regulators of animal metabolism, mitochondrial function, and thermogenesis, and a growing body of scientific evidence demonstrates that these hormonal regulators also have direct effects on cardiomyocyte proliferation and maturation. We propose that thyroid hormones dually control animal metabolism and cardiac regenerative potential through distinct mechanisms, which may represent an evolutionary tradeoff for the acquisition of endothermy and loss of heart regenerative capacity. In this review, we describe the effects of thyroid hormones on animal metabolism and cardiomyocyte regeneration and highlight recent reports linking the loss of mammalian cardiac regenerative capacity to metabolic shifts occurring after birth.
Collapse
Affiliation(s)
- Ines Ross
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
| | - Denzel B. Omengan
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
- Correspondence: ,
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
- Correspondence: ,
| |
Collapse
|
18
|
Ouyang Y, Meng F, Du M, Ma Q, Liu H, Zhuang Y, Pang M, Cai T, Cai Y. Protective effects of psoralen polymer lipid nanoparticles on doxorubicin - induced myocardial toxicity. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yong Ouyang
- Guangzhou hospital of integrated traditional Chinese and western medicine, P. R. China
| | - Fansu Meng
- Guangzhou University of TCM, P. R. China
| | | | | | - Hui Liu
- Jinan University, P. R. China
| | | | | | | | - Yu Cai
- Jinan University, P. R. China
| |
Collapse
|
19
|
Changes in Thyroid Hormone Signaling Mediate Cardiac Dysfunction in the Tg197 Mouse Model of Arthritis: Potential Therapeutic Implications. J Clin Med 2021; 10:jcm10235512. [PMID: 34884213 PMCID: PMC8658216 DOI: 10.3390/jcm10235512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Rheumatoid Arthritis (RA) patients show a higher risk of heart failure. The present study investigated possible causes of cardiac dysfunction related to thyroid hormone (TH) signaling in a RA mouse model. Methods A TNF-driven mouse model of RA[TghuTNF (Tg197)] was used. Cardiac function was evaluated by echocardiography. SERCA2a and phospholamban protein levels in left ventricle (LV) tissue, thyroid hormone levels in serum, TH receptors in LV and TH-related kinase signaling pathways were measured. T3 hormone was administered in female Tg197 mice. Results We show LV and atrial dilatation with systolic dysfunction in Tg197 animals, accompanied by downregulated SERCA2a. We suggest an interaction of pro-inflammatory and thyroid hormone signaling indicated by increased p38 MAPK and downregulation of TRβ1 receptor in Tg197 hearts. Interestingly, female Tg197 mice showed a worse cardiac phenotype related to reduced T3 levels and Akt activation. T3 supplementation increased Akt activation, restored SERCA2a expression and improved cardiac function in female Tg197 mice. Conclusions TNF overexpression of Tg197 mice results in cardiac dysfunction via p38 MAPK activation and downregulation of TRβ1. Gender-specific reduction in T3 levels could cause the worse cardiac phenotype observed in female mice, while T3 administration improves cardiac function and calcium handling via modified Akt activation.
Collapse
|
20
|
Ma SQ, Guo Z, Liu FY, Hasan SG, Yang D, Tang N, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. 6-Gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway. Acta Pharmacol Sin 2021; 42:1575-1586. [PMID: 33462378 PMCID: PMC8463710 DOI: 10.1038/s41401-020-00587-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
6-Gingerol, a pungent ingredient of ginger, has been reported to possess anti-inflammatory and antioxidant activities, but the effect of 6-gingerol on pressure overload-induced cardiac remodeling remains inconclusive. In this study, we investigated the effect of 6-gingerol on cardiac remodeling in in vivo and in vitro models, and to clarify the underlying mechanisms. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 6-gingerol (20 mg/kg, ig) three times a week (1 week in advance and continued until the end of the experiment). Four weeks after TAC surgery, the mice were subjected to echocardiography, and then sacrificed to harvest the hearts for analysis. For in vitro study, neonatal rat cardiomyocytes and cardiac fibroblasts were used to validate the protective effects of 6-gingerol in response to phenylephrine (PE) and transforming growth factor-β (TGF-β) challenge. We showed that 6-gingerol administration protected against pressure overload-induced cardiac hypertrophy, fibrosis, inflammation, and dysfunction in TAC mice. In the in vitro study, we showed that treatment with 6-gingerol (20 μM) blocked PE-induced-cardiomyocyte hypertrophy and TGF-β-induced cardiac fibroblast activation. Furthermore, 6-gingerol treatment significantly decreased mitogen-activated protein kinase p38 (p38) phosphorylation in response to pressure overload in vivo and extracellular stimuli in vitro, which was upregulated in the absence of 6-gingerol treatment. Moreover, transfection with mitogen-activated protein kinase kinase 6 expressing adenoviruses (Ad-MKK6), which specifically activated p38, abolished the protective effects of 6-gingerol in both in vitro and in vivo models. In conclusion, 6-gingerol improves cardiac function and alleviates cardiac remodeling induced by pressure overload in a p38-dependent manner. The present study demonstrates that 6-gingerol is a promising agent for the intervention of pathological cardiac remodeling.
Collapse
Affiliation(s)
- Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Shahzad-Gul Hasan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Department of Medicine, Bahawal Victoria Hospital, Bahawalpur, 63100, Pakistan
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
21
|
Huang KW, Wang IH, Fu P, Krum H, Bach LA, Wang BH. Insulin-like growth factor-1 directly affects cardiac cellular remodelling via distinct pathways. IJC HEART & VASCULATURE 2021; 36:100852. [PMID: 34401470 PMCID: PMC8349770 DOI: 10.1016/j.ijcha.2021.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
Background Studies of insulin-like growth factor 1 (IGF-1) as a novel therapy for the treatment of cardiovascular diseases have proven promising. However, elevated IGF-1 levels have also been associated with poor patient outcomes in heart failure with reduced ejection fraction. IGF-1 therapy has additionally been shown to not be beneficial in the percutaneous coronary intervention setting. Although IGF-1 activation of the PI3K/Akt and ERK1/2 pathways have been demonstrated as cardioprotective, other cellular mechanisms have not been fully investigated. Methods Neonatal rat cardiac myocytes (NCMs) and fibroblasts (NCFs) were isolated from 1 to 2-day old pups using enzymatic digestion. NCMs and NCFs were pre-treated with IGF binding protein 6, inhibitors for the PI3K/Akt Wortmannin, ERK1/2 U0126, Rho Associated Protein Kinase (ROCK) GSK576371, Apoptosis Signal-regulating Kinase-1 (ASK-1) G2261818A, and p38MAPK RWJ67657 pathways before stimulation with IGF-1 for 62 and 50 h, respectively. Cardiac myocyte hypertrophy and fibroblast collagen synthesis were determined by 3H-leucine and 3H-proline incorporation, respectively. Results IGF-1 dose-dependently stimulated NCM hypertrophy and NCF collagen synthesis.Treatment with IGFBP6 and the kinase inhibitors, Wortmannin, U0126, GSK576371, G2261818A and RWJ67657 significantly inhibited IGF-1 stimulated NCM hypertrophy and NCF collagen synthesis. Conclusion This study is the first to demonstrate that IGF-1 treatment in NCMs and NCFs activates the ROCK, ASK-1 and p38MAPK pathways. Future research may be guided by consideration of the PI3K/Akt and ERK1/2 pathways potentially increasing collagen synthesis, and the utilisation of a biased agonist to reduce activation of the ROCK, ASK-1 and p38MAPK pathways to maximise cardioprotective benefit whilst mitigating risks.
Collapse
Affiliation(s)
- Kevin W. Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ian H. Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ping Fu
- Central Clinical School, Monash University, Melbourne, Australia
| | - Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Leon A. Bach
- Central Clinical School, Monash University, Melbourne, Australia
| | - Bing H. Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Corresponding author at: Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
22
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
23
|
Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:13. [PMID: 33821373 PMCID: PMC8021683 DOI: 10.1186/s13619-021-00075-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.
Collapse
Affiliation(s)
- Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| |
Collapse
|
24
|
Zhao J, Jiang X, Liu J, Ye P, Jiang L, Chen M, Xia J. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. J Am Heart Assoc 2021; 10:e014311. [PMID: 33522247 PMCID: PMC7955340 DOI: 10.1161/jaha.119.014311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoli Jiang
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jinhua Liu
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ping Ye
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Lang Jiang
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Manhua Chen
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
25
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
26
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
27
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
28
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
29
|
Mancilla TR, Davis LR, Aune GJ. Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts. PLoS One 2020; 15:e0238856. [PMID: 32960902 PMCID: PMC7508395 DOI: 10.1371/journal.pone.0238856] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are the critical component in a majority of pediatric chemotherapy regimens due to their broad anticancer efficacy. Unfortunately, the vast majority of long-term childhood cancer survivors will develop a chronic health condition caused by their successful treatments and severe cardiac disease is a common life-threatening outcome that is unequivocally linked to previous anthracycline exposure. The intricacies of how anthracyclines such as doxorubicin, damage the heart and initiate a disease process that progresses over multiple decades is not fully understood. One area left largely unstudied is the role of the cardiac fibroblast, a key cell type in cardiac maturation and injury response. In this study, we demonstrate the effect of doxorubicin on cardiac fibroblast function in the presence and absence of the critical DNA damage response protein p53. In wildtype cardiac fibroblasts, doxorubicin-induced damage correlated with decreased proliferation and migration, cell cycle arrest, and a dilated cardiomyopathy gene expression profile. Interestingly, these doxorubicin-induced changes were completely or partially restored in p53-/- cardiac fibroblasts. Moreover, in wildtype cardiac fibroblasts, doxorubicin produced DNA damage and mitochondrial dysfunction, both of which are well-characterized cell stress responses induced by cytotoxic chemotherapy and varied forms of heart injury. A 3-fold increase in p53 (p = 0.004) prevented the completion of mitophagy (p = 0.032) through sequestration of Parkin. Interactions between p53 and Parkin increased in doxorubicin-treated cardiac fibroblasts (p = 0.0003). Finally, Parkin was unable to localize to the mitochondria in wildtype cardiac fibroblasts, but mitochondrial localization was restored in p53-/- cardiac fibroblasts. These findings strongly suggest that cardiac fibroblasts are an important myocardial cell type that merits further study in the context of doxorubicin treatment. A more robust knowledge of the role cardiac fibroblasts play in the development of doxorubicin-induced cardiotoxicity will lead to novel clinical strategies that will improve the quality of life of cancer survivors.
Collapse
Affiliation(s)
- T. R. Mancilla
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - L. R. Davis
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - G. J. Aune
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Department of Pediatrics, Division of Hematology-Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
30
|
Miao R, Lu Y, He X, Liu X, Chen Z, Wang J. Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway. J Cell Mol Med 2020; 24:10946-10957. [PMID: 32798288 PMCID: PMC7521154 DOI: 10.1111/jcmm.15724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/26/2022] Open
Abstract
Ubiquitin‐specific protease 19 (USP19) belongs to USP family and is involved in promoting skeletal muscle atrophy. Although USP19 is expressed in the heart, the role of USP19 in the heart disease remains unknown. The present study provides in vivo and in vitro data to reveal the role of USP19 in preventing pathological cardiac hypertrophy. We generated USP19‐knockout mice and isolated neonatal rat cardiomyocytes (NRCMs) that overexpressed or were deficient in USP19 to investigate the effect of USP19 on transverse aortic constriction (TAC) or phenylephrine (PE)‐mediated cardiac hypertrophy. Echocardiography, pathological and molecular analysis were used to determine the extent of cardiac hypertrophy, fibrosis, dysfunction and inflammation. USP19 expression was markedly increased in rodent hypertrophic heart or cardiomyocytes underwent TAC or PE culturing, the increase was mediated by the reduction of Seven In Absentia Homolog‐2. The extent of TAC‐induced cardiac hypertrophy, fibrosis, dysfunction and inflammation in USP19‐knockout mice was exacerbated. Consistently, gain‐of‐function and loss‐of‐function approaches that involved USP19 in cardiomyocytes suggested that the down‐regulation of USP19 promoted the hypertrophic phenotype, while the up‐regulation of USP19 improved the worsened phenotype. Mechanistically, the USP19‐elicited cardiac hypertrophy improvement was attributed to the abrogation of the transforming growth factor beta‐activated kinase 1 (TAK1)‐p38/JNK1/2 transduction. Furthermore, the inhibition of TAK1 abolished the aggravated hypertrophy induced by the loss of USP19. In conclusion, the present study revealed that USP19 and the downstream of TAK1‐p38/JNK1/2 signalling pathway might be a potential target to attenuate pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Rujia Miao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Lu
- Department of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xue He
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuelian Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|
32
|
Yoshida T, Das NA, Carpenter AJ, Izadpanah R, Kumar SA, Gautam S, Bender SB, Siebenlist U, Chandrasekar B. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal 2020; 73:109690. [PMID: 32553549 DOI: 10.1016/j.cellsig.2020.109690] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Minocycline, an FDA-approved second-generation semisynthetic tetracycline, exerts antioxidant, anti-apoptotic and anti-inflammatory effects, independent of its antimicrobial properties. Interleukin (IL)-17A is an immune and inflammatory mediator, and its sustained induction is associated with various cardiovascular diseases. Here we investigated (i) whether IL-17A induces cardiomyocyte contractile depression and death, (ii) whether minocycline reverses IL-17A's negative inotropic effects and (iii) investigated the underlying molecular mechanisms. Indeed, treatment with recombinant mouse IL-17A impaired adult cardiomyocyte contractility as evidenced by a 34% inhibition in maximal velocity of shortening and relengthening after 4 h (P < .01). Contractile depression followed iNOS induction at 2 h (2.13-fold, P < .01) and NO generation at 3 h (3.71-fold, P <.01). Further mechanistic investigations revealed that IL-17A-dependent induction of iNOS occurred via TRAF3IP2, TRAF6, TAK1, NF-κB, and p38MAPK signaling. 1400 W, a highly specific iNOS inhibitor, suppressed IL-17A-induced NO generation and contractile depression, where as the NO donors SNAP and PAPA-NONOate both suppressed cardiomyocyte contractility. IL-17A also stimulated cardiomyocyte IL-1β and TNF-α secretion, however, their neutralization failed to modulate IL-17A-mediated contractile depression or viability. Further increases of IL-17A concentration and the duration of exposure enhanced IL-1β and TNF-α secreted levels, buthad no impact on adult cardiomyocyte viability. However, when combined with pathophysiological concentrations of IL-1β or TNF-α, IL-17A promoted adult cardiomyocyte death. Importantly, minocycline blunted IL-17A-mediated deleterious effects, indicating its therapeutic potential in inflammatory cardiac diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nitin A Das
- Cardiothoracic Surgery, UT Health, San Antonio, TX 78229, USA
| | | | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Senthil A Kumar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sandeep Gautam
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
33
|
Huang JJ, Xie Y, Li H, Zhang XX, Huang Q, Zhu Y, Gu P, Jiang WM. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med 2020; 17:746-755. [PMID: 31703755 DOI: 10.1016/s1875-5364(19)30091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/20/2022]
Abstract
To investigate the effect of Yiqi Wenyang (YQWY) decoction on reversing cardiac hypertrophy induced by the transverse aortic constriction (TAC). Wistar rats aged 7-8 weeks were subjected to TAC surgery and then randomly divided into 4 groups (n = 5/group): Sham group, TAC group, low-dose group and high dose group. After 16-week intragastric administration of YQWY decoction, the effect of YQWY decoction on alleviating cardiomyocyte hypertrophy was examined by transthoracic echocardiography (TTE), hematoxylin/eosin (HE), wheat germ agglutinin (WGA) staining, enzyme linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC) and immunofluorescence (IF), respectively. The results showed significant differences in left ventricle volume-diastole/systole (LV Vol d/s), N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) (P < 0.01), Ejection Fraction (EF), LV mass and fractional shortening (FS) (P < 0.05) between YQWY-treated group and TAC group. HE and WGA staining showed that treatment with YQWY decoction dramatically prevented TAC-induced cardiomycyte hypertrophy. Moreover, the results of WB, IHC and IF indicated that administration of YQWY could suppress the expressions of cardiac hypertrophic markers, which included the atrial natriuretic peptide (ANP), BNP and myosin heavy chain 7 (MYH7) (P < 0.05) and inhibit phosphorylation of GATA binding protein 4 (P-GATA4) (P < 0.05), phosphorylation of extracellular signal-regulated kinase (P-ERK) (P < 0.05), phosphorylation of P38 mitogen activated protein kinase (P-P38) (P < 0.05) and phosphorylation of c-Jun N-terminal kinase (P-JNK) (P < 0.05). Thus, we concluded that YQWY decoction suppressed cardiomyocyte hypertrophy and reversed the impaired heart function, and the curative effects of YQWY decoction were associated with the decreased phosphorylation of GATA4 and mitogen activated protein kinases (MAPKs), as well as the reduced expression of the downstream targets of GATA4, including ANP, BNP, and MYH7.
Collapse
Affiliation(s)
- Jing-Jing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yong Xie
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - He Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Xiao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Qing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yao Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 21002, China.
| | - Wei-Min Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
34
|
LaRocca TJ, Seeger T, Prado M, Perea-Gil I, Neofytou E, Mecham BH, Ameen M, Chang ACY, Pandey G, Wu JC, Karakikes I. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure. Circ Heart Fail 2020; 13:e006298. [PMID: 32160771 DOI: 10.1161/circheartfailure.119.006298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF. METHODS AND RESULTS We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; P<0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; P<0.001). CONCLUSIONS The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA
| | - Timon Seeger
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Maricela Prado
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA
| | - Isaac Perea-Gil
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | | | - Mohamed Ameen
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (A.C.Y.C.)
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (G.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.,Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| |
Collapse
|
35
|
Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H. Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med 2020; 7:34. [PMID: 32211422 PMCID: PMC7075814 DOI: 10.3389/fcvm.2020.00034] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a common mediator of cancer progression and fibrosis. Fibrosis can be a significant pathology in multiple organs, including the heart. In this review, we explain how inhibitors of TGF-β signaling can work as antifibrotic therapy. After cardiac injury, profibrotic mediators such as TGF-β, angiotensin II, and endothelin-1 simultaneously activate cardiac fibroblasts, resulting in fibroblast proliferation and migration, deposition of extracellular matrix proteins, and myofibroblast differentiation, which ultimately lead to the development of cardiac fibrosis. The consequences of fibrosis include a wide range of cardiac disorders, including contractile dysfunction, distortion of the cardiac structure, cardiac remodeling, and heart failure. Among various molecular contributors, TGF-β and its signaling pathways which play a major role in carcinogenesis are considered master fibrotic mediators. In fact, recently the inhibition of TGF-β signaling pathways using small molecule inhibitors, antibodies, and gene deletion has shown that the progression of several cancer types was suppressed. Therefore, inhibitors of TGF-β signaling are promising targets for the treatment of tissue fibrosis and cancers. In this review, we discuss the molecular mechanisms of TGF-β in the pathogenesis of cardiac fibrosis and cancer. We will review recent in vitro and in vivo evidence regarding antifibrotic and anticancer actions of TGF-β inhibitors. In addition, we also present available clinical data on therapy based on inhibiting TGF-β signaling for the treatment of cancers and cardiac fibrosis.
Collapse
Affiliation(s)
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Zhang Y, Beketaev I, Segura AM, Yu W, Xi Y, Chang J, Ma Y, Wang J. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci 2020; 7:35. [PMID: 32195266 PMCID: PMC7063104 DOI: 10.3389/fmolb.2020.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Yin Yang 2 (YY2) is a member of the Yin Yang family of transcription factors. Although the bioactivity of YY2 has been previously studied, its role in cardiovascular diseases is not known. We observed the increased expression of YY2 in failing human hearts compared with control hearts, raising the question of whether YY2 is involved in the pathogenesis of cardiomyopathy. To investigate the potential contribution of YY2 to the development of cardiomyopathy, we crossed two independent transgenic (Tg) mouse lines, pCAG-YY2-Tg+and alpha-myosin heavy chain-cre (α-MHC-Cre), to generate two independent double transgenic (dTg) mouse lines in which the conditional cardiomyocyte-specific expression of YY2 driven by the α-MHC promoter was mediated by Cre recombinase, starting at embryonic day 9.0. In dTg mice, we observed partial embryonic lethality and hearts with defective cardiomyocyte proliferation. Surviving dTg mice from both lines developed cardiomyopathy and heart failure that occurred with aging, showing different degrees of severity that were associated with the level of transgene expression. The development of cardiomyopathy was accompanied by increased levels of cardiac disease markers, apoptosis, and cardiac fibrosis. Our studies further revealed that the Cre-mediated cardiomyocyte-specific increase in YY2 expression led to increased levels of Beclin 1 and LC3II, indicating that YY2 is involved in mediating autophagic activity in mouse hearts in vivo. Also, compared with control hearts, dTg mouse hearts showed increased JNK activity. Because autophagy and JNK activity are important for maintaining cardiac homeostasis, the dysregulation of these signaling pathways may contribute to YY2-induced cardiomyopathy and heart failure in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States
| | - Ilimbek Beketaev
- Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States
| | - Ana Maria Segura
- Department of Cardiac Pathology, Texas Heart Institute, Houston, TX, United States
| | - Wei Yu
- Department of Biochemistry and Molecular Biology, University of Houston, Houston, TX, United States
| | - Yutao Xi
- Laboratory of Electrophysiology, Texas Heart Institute, Houston, TX, United States
| | - Jiang Chang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Yanlin Ma
- The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jun Wang
- Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
37
|
Ramugounder R. The impact of p38 MAPK, 5-HT/DA/E signaling pathways in the development and progression of cardiovascular diseases and heart failure in type 1 diabetes. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Wang J, Han M, Han SX, Zhi C, Gao S, Li Y. Effect of c-Ski on atrial remodelling in a rapid atrial pacing canine model. J Cell Mol Med 2019; 24:1795-1803. [PMID: 31815360 PMCID: PMC6991632 DOI: 10.1111/jcmm.14876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022] Open
Abstract
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c‐Ski, suggesting that this approach may have therapeutic effects. c‐Ski was found to be down‐regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up‐regulated c‐Ski expression with a c‐Ski–overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c‐Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α‐SMA were higher in the groups of dogs subjected to right‐atrial pacing, and this increase was attenuated by c‐Ski overexpression. In addition, c‐Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38β) as well as the expression of TGF‐β1 in atrial tissues, as shown by a comparison of the right‐atrial pacing + c‐Ski‐overexpression group to the control group with right‐atrial pacing only. These results suggest that c‐Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF‐β1–Smad signalling and p38 MAPK activation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital to Xin Jiang Medical University, Urumchi, Xin Jiang, China
| | - Min Han
- Xin Jiang Medical University, Urumchi, Xin Jiang, China
| | - Su-Xia Han
- Department of Cardiovascular Medicine, Shanghai Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, China
| | - Cuiju Zhi
- Department of Cardiovascular Medicine, Shanghai Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, China
| | - Suli Gao
- Department of Cardiovascular Medicine, Shanghai Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, China
| | - Yao Li
- Department of Cardiovascular Medicine, Shanghai Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, China
| |
Collapse
|
39
|
The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019; 8:cells8111383. [PMID: 31689891 PMCID: PMC6912541 DOI: 10.3390/cells8111383] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence (in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress and inflammation. These networks contribute to the promotion of age-associated cardiovascular diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these cardiovascular diseases as well as senescence and aging. In this review we focus on whether the (a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases. Pharmacological intervention is, therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.
Collapse
|
40
|
Dumont AA, Dumont L, Berthiaume J, Auger-Messier M. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118557. [PMID: 31505169 DOI: 10.1016/j.bbamcr.2019.118557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is essential for normal heart function. However, p38 also contributes to heart failure pathogenesis by affecting cardiomyocytes contractility and survival. To unravel part of the complex role of p38 in cardiac function, we performed an APEX2-based proximity assay in cultured neonatal rat ventricular myocytes and identified the protein interaction networks (interactomes) of two highly expressed p38 isoforms in the heart. We found that p38α and p38γ have distinct interactomes in cardiomyocytes under both basal and osmotic stress-activated states. Interestingly, the activated p38α interactome contains many RNA-binding proteins implicated in splicing, including the serine/arginine-rich splicing factor 3 (SRSF3). Its interaction with the activated p38α was validated by co-immunoprecipitation. The cytoplasmic abundance and alternative splicing function of SRSF3 are also both modulated by the p38 signaling pathway. Our findings reveal a new function for p38 as a specific regulator of SRSF3 in cardiomyocytes.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
41
|
Polidovitch N, Yang S, Sun H, Lakin R, Ahmad F, Gao X, Turnbull PC, Chiarello C, Perry CG, Manganiello V, Yang P, Backx PH. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 2019; 132:60-70. [DOI: 10.1016/j.yjmcc.2019.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
|
42
|
Czarzasta K, Koperski L, Segiet A, Janiszewski M, Kuch M, Gornicka B, Cudnoch-Jedrzejewska A. The role of high fat diet in the regulation of MAP kinases activity in left ventricular fibrosis. Acta Histochem 2019; 121:303-310. [PMID: 30733042 DOI: 10.1016/j.acthis.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
It is well known that obesity contributes to the development of systemic inflammatory responses, which in turn may be involved in the process of interstitial fibrosis and left ventricular (LV) remodelling. Activation of pro-inflammatory factors such as transforming growth factor β (TGF-β) can directly stimulate mitogen-activated protein kinase (MAPK) p38 and JNK. The aim of the study was to evaluate the level of TGF-β and MAPK p38 and JNK in the LV in Sprague Dawley (SPRD) rats maintained on a high fat diet (HFD). The SPRD rats from 4 weeks of age were on a normal fat diet (NFD) or a HFD for 12 weeks (NFD-16-week-old rats, NFD 16-wk; or HFD-16-week-old rats, HFD 16-wk) or 16 weeks (NFD-20-week-old rats, NFD 20-wk; or HFD-20-week-old rats, HFD 20-wk). At the end of the experiment, blood and LV were collected from all rats for further analysis (biochemical, Real Time PCR and immunohistochemical analysis). TGF-β mRNA expression did not differ between the study groups of rats. However, p38 MAPK mRNA expression was significantly lower in the HFD 20-wk rats than in both the HFD 16-wk rats and the NFD 20-wk rats. c-jun mRNA expression was significantly higher in the HFD 16-wk rats than in the NFD 16-wk rats. There was significantly lower expression of c-jun mRNA in the HFD 20-wk rats and in the NFD 20-wk rats than in the HFD 16-wk rats and in the NFD 16-wk rats, respectively. TGF-β type II receptor (TβRII) protein demonstrated only cytoplasmic reactivity, while p38 MAPK protein and c-jun protein showed both nuclear and cytoplasmic reactivity. The results suggest that a high fat diet and in two time intervals significantly influence the expression of p38 MAPK and JNK in the LV. However, demonstrating their potential involvement in the processes of interstitial myocardial fibrosis and left ventricular remodeling requires further research.
Collapse
|
43
|
Rehmani T, Salih M, Tuana BS. Cardiac-Specific Cre Induces Age-Dependent Dilated Cardiomyopathy (DCM) in Mice. Molecules 2019; 24:molecules24061189. [PMID: 30917606 PMCID: PMC6471127 DOI: 10.3390/molecules24061189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The genetic modification of the mouse genome using the cre-lox system has been an invaluable tool in deciphering gene and protein function in a temporal and/or spatial manner. However, it has its pitfalls, as researchers have shown that the unregulated expression of cre recombinase can cause DNA damage, the consequences of which can be very detrimental to mouse health. Previously published literature on the most utilized cardiac-specific cre, αMHC-cre, mouse model exhibited a nonlethal hypertrophic cardiomyopathy (HCM) with aging. However, using the same αMHC-cre mice, we observed a cardiac pathology, resulting in complete lethality by 11 months of age. Echocardiography and histology revealed that the αMHC-cre mice were displaying symptoms of dilated cardiomyopathy (DCM) by seven months of age, which ultimately led to their demise in the absence of any HCM at any age. Molecular analysis showed that this phenotype was associated with the DNA damage response through the downregulation of activated p38 and increased expression of JNK, p53, and Bax, known inducers of myocyte death resulting in fibrosis. Our data urges strong caution when interpreting the phenotypic impact of gene responses using αMHC-cre mice, since a lethal DCM was induced by the cre driver in an age-dependent manner in this commonly utilized model system.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
44
|
Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov 2019; 5:71. [PMID: 30854230 PMCID: PMC6397280 DOI: 10.1038/s41420-019-0153-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022] Open
Abstract
Heart failure is a worldwide leading cause of death. Diet and obesity are particularly of high concern in heart disease etiology. Gravely, altered nutrition during developmental windows of vulnerability can have long-term impact on heart health; however, the underlying mechanisms are poorly understood. In the understanding of the initiation of chronic diseases related to developmental exposure to environmental challenges, deregulations in epigenetic mechanisms including micro-RNAs have been proposed as key events. In this context, we aimed at delineating the role of micro-RNAs in the programming of cardiac alterations induced by early developmental exposure to nutritional imbalance. To reach our aim, we developed a human relevant model of developmental exposure to nutritional imbalance by maternally exposing rat to high-fat diet during gestation and lactation. In this model, offspring exposed to maternal high-fat diet developed cardiac hypertrophy and increased extracellular matrix depot compared to those exposed to chow diet. Microarray approach performed on cardiac tissue allowed the identification of a micro-RNA subset which was down-regulated in high-fat diet-exposed animals and which were predicted to regulate transforming growth factor-beta (TGFβ)-mediated remodeling. As indicated by in vitro approaches and gene expression measurement in the heart of our animals, decrease in DiGeorge critical region 8 (DGCR8) expression, involved in micro-RNA biogenesis, seems to be a critical point in the alterations of the micro-RNA profile and the TGFβ-mediated remodeling induced by maternal exposure to high-fat diet. Finally, increasing DGCR8 activity and/or expression through hemin treatment in vitro revealed its potential in the rescue of the pro-fibrotic phenotype in cardiomyocytes driven by DGCR8 decrease. These findings suggest that cardiac alterations induced by maternal exposure to high-fat diet is related to abnormalities in TGFβ pathway and associated with down-regulated micro-RNA processing. Our study highlighted DGCR8 as a potential therapeutic target for heart diseases related to early exposure to dietary challenge.
Collapse
|
45
|
Sun S, Kee HJ, Jin L, Ryu Y, Choi SY, Kim GR, Jeong MH. Gentisic acid attenuates pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway. J Cell Mol Med 2018; 22:5964-5977. [PMID: 30256522 PMCID: PMC6237595 DOI: 10.1111/jcmm.13869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
We previously reported that gentisic acid (2,5‐dihydroxybenzoic acid) is the third most abundant phenolic component of Dendropanax morbifera branch extracts. Here, we investigated its effects on cardiac hypertrophy and fibrosis in a mouse model of pressure overload and compared them to those of the beta blocker bisoprolol and calcium channel blocker diltiazem. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC). Beginning 2 weeks after this procedure, the mice were given daily intraperitoneal injections of gentisic acid (100 mg/kg/d), bisoprolol (5 mg/kg/d) or diltiazem (10 mg/kg/d) for 3 weeks. Cardiac hypertrophy was evaluated by the heart weight‐to‐body weight ratio, the cardiomyocyte cross‐sectional area after haematoxylin and eosin staining, and echocardiography. Markers of cardiac hypertrophy and fibrosis were tested by reverse transcription‐quantitative real‐time polymerase chain reaction, western blotting and Masson's trichrome staining. The suppressive effects of gentisic acid treatment on TAC‐induced cardiac hypertrophy and fibrosis were comparable to those of bisoprolol administration. Cardiac hypertrophy was reversed and left ventricular septum and posterior wall thickness were restored by gentisic acid, bisoprolol and diltiazem treatment. Cardiac hypertrophic marker gene expression and atrial and brain natriuretic peptide levels were decreased by gentisic acid and bisoprolol, as were cardiac (interstitial and perivascular) fibrosis and fibrosis‐related gene expression. Cardiac hypertrophy‐associated upregulation of the transcription factors GATA4 and Sp1 and activation of extracellular signal‐regulated kinase 1/2 were also negated by these drugs. These results suggest that gentisic acid could serve as a therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Simei Sun
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Molecular Medicine, Brain Korea 21 PLUS, Chonnam National University Graduate School, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Li Jin
- The Second Affiliated Hospital & Yuying Children's Hospital Wenzhou Medical University, Wenzhou, China
| | - Yuhee Ryu
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sin Young Choi
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwi Ran Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
46
|
Frank DU, Sutcliffe MD, Saucerman JJ. Network-based predictions of in vivo cardiac hypertrophy. J Mol Cell Cardiol 2018; 121:180-189. [PMID: 30030017 DOI: 10.1016/j.yjmcc.2018.07.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Cardiac hypertrophy is a common response of cardiac myocytes to stress and a predictor of heart failure. While in vitro cell culture studies have identified numerous molecular mechanisms driving hypertrophy, it is unclear to what extent these mechanisms can be integrated into a consistent framework predictive of in vivo phenotypes. To address this question, we investigate the degree to which an in vitro-based, manually curated computational model of the hypertrophy signaling network is able to predict in vivo hypertrophy of 52 cardiac-specific transgenic mice. After minor revisions motivated by in vivo literature, the model concordantly predicts the qualitative responses of 78% of output species and 69% of signaling intermediates within the network model. Analysis of four double-transgenic mouse models reveals that the computational model robustly predicts hypertrophic responses in mice subjected to multiple, simultaneous perturbations. Thus the model provides a framework with which to mechanistically integrate data from multiple laboratories and experimental systems to predict molecular regulation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Deborah U Frank
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States.
| |
Collapse
|
47
|
Klenke S, Eul S, Peters J, Neumann T, Adamzik M, Frey UH. Circulating miR-192 is a prognostic marker in patients with ischemic cardiomyopathy. Future Cardiol 2018; 14:283-289. [DOI: 10.2217/fca-2017-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is characterized by accumulation of p53 causing apoptosis of cardiomyocytes and resulting in upregulation of miRNA (miR)-192, which plays an important role in the development of heart failure after acute myocardial infarction. However, for other cardiomyopathies, miR-192 seems to have minor relevance. We tested in a prospective, observational study comprising 91 patients with diagnosed heart failure (59.3% ICM and 40.7% non-ICM), the hypothesis that miR-192 expression predicts survival in patients with ICM. Median follow-up was 59 months (range: 1–118). While miR-192 expression was significantly associated with age (p = 0.028), log-rank analysis revealed significant association with survival in ICM (p = 0.003) but not in non-ICM (p = 0.6). In ICM, median age at time of death was 84 years in patients with low miR-192 expression but 67 years with high miR-192 expression. Thus, miR-192 expression is associated with survival in ICM and represents a prognostic marker in ischemic heart failure.
Collapse
Affiliation(s)
- Stefanie Klenke
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Sebastian Eul
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Till Neumann
- Praxis für Herz- und Gefäßerkrankungen, Bochum-Wattenscheid, Voedestraße 79, D-44866 Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, D-45882 Bochum, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| |
Collapse
|
48
|
Steiger D, Yokota T, Li J, Ren S, Minamisawa S, Wang Y. The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload-induced heart failure. J Biol Chem 2018; 293:9652-9661. [PMID: 29769316 DOI: 10.1074/jbc.ra118.003448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Heart failure is associated with induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The serine/threonine protein kinase/endoribonuclease IRE1α is a key protein in ER stress signal transduction. IRE1α activity can induce both protective UPR and apoptotic downstream signaling events, but the specific role for IRE1α activity in the heart is unknown. A major aim of this study was to characterize the specific contribution of IRE1α in cardiac physiology and pathogenesis. We used both cultured myocytes and a transgenic mouse line with inducible and cardiomyocyte-specific IRE1α overexpression as experimental models to achieve targeted IRE1α activation. IRE1α expression induced a potent but transient ER stress response in cardiomyocytes and did not cause significant effects in the intact heart under normal physiological conditions. Furthermore, the IRE1α-activated transgenic heart responding to pressure overload exhibited preserved function and reduced fibrotic area, associated with increased adaptive UPR signaling and with blunted inflammatory and pathological gene expression. Therefore, we conclude that IRE1α induces transient ER stress signaling and confers a protective effect against pressure overload-induced pathological remodeling in the heart. To our knowledge, this report provides first direct evidence of a specific and protective role for IRE1α in the heart and reveals an interaction between ER stress signaling and inflammatory regulation in the pathologically stressed heart.
Collapse
Affiliation(s)
- DeAnna Steiger
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Tomohiro Yokota
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Jin Li
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Shuxun Ren
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Susumu Minamisawa
- the Department of Cell Physiology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yibin Wang
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
49
|
Laurini E, Martinelli V, Lanzicher T, Puzzi L, Borin D, Chen SN, Long CS, Lee P, Mestroni L, Taylor MRG, Sbaizero O, Pricl S. Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovasc Res 2018; 114:846-857. [PMID: 29432544 PMCID: PMC5909658 DOI: 10.1093/cvr/cvy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aims Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM), and molecular modeling was used to analyse the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte model. Methods and results The severity of biomechanical defects due to the three LMNA mutations correlated with the severity of the clinical phenotype. AFM and molecular modeling identified distinctive biomechanical and structural changes, with increasing severity from E161K to N195K and D192G, respectively. Additionally, the biomechanical defects were rescued with a p38 MAPK inhibitor. Conclusions AFM and molecular modeling were able to quantify distinct biomechanical and structural defects in LMNA mutations E161K, D192G, and N195K and correlate the defects with clinical phenotypic severity. Improvements in cellular biomechanical phenotype was demonstrated and may represent a mechanism of action for p38 MAPK inhibition therapy that is now being used in human clinical trials to treat laminopathies.
Collapse
Affiliation(s)
- Erik Laurini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Valentina Martinelli
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlin S Long
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrice Lee
- Array BioPharma Inc., Boulder, CO 80301, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
50
|
Diviani D, Osman H, Reggi E. A-Kinase Anchoring Protein-Lbc: A Molecular Scaffold Involved in Cardiac Protection. J Cardiovasc Dev Dis 2018; 5:E12. [PMID: 29419761 PMCID: PMC5872360 DOI: 10.3390/jcdd5010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a lethal disease that can develop after myocardial infarction, hypertension, or anticancer therapy. In the damaged heart, loss of function is mainly due to cardiomyocyte death and associated cardiac remodeling and fibrosis. In this context, A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that facilitate the spatiotemporal activation of the cyclic adenosine monophosphate (AMP)-dependent protein kinase (PKA) and other transduction enzymes involved in cardiac remodeling. AKAP-Lbc, a cardiac enriched anchoring protein, has been shown to act as a key coordinator of the activity of signaling pathways involved in cardiac protection and remodeling. This review will summarize and discuss recent advances highlighting the role of the AKAP-Lbc signalosome in orchestrating adaptive responses in the stressed heart.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Halima Osman
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| |
Collapse
|