1
|
Xie X, Liu J. Ku70 silencing aggravates oxygen-glucose deprivation/reperfusion-induced injury by activation of the p53 apoptotic pathway in rat cortical astrocytes. Histochem Cell Biol 2024; 163:20. [PMID: 39715938 DOI: 10.1007/s00418-024-02352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Oxidative stress-induced DNA damage is an important mechanism that leads to the death of neuronal cells after ischemic stroke. Our previous study found that Ku70 was highly expressed in ischemic brain tissue of rats after cerebral ischemia-reperfusion injury. However, the role of Ku70 in glucose-oxygen deprivation/reperfusion (OGD/R) in astrocytes has not been reported. Therefore, we investigated the effect and mechanism of Ku70 on OGD/R-induced astrocyte injury in rats. Rat astrocytes were cultured in vitro to establish the OGD/R-induced injury model and transfected with small interfering RNA (siRNA) to disturb Ku70 expression. Real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunofluorescence were performed to assay the expression of mRNA and proteins. Cell viability, apoptosis, and ROS accumulation were determined by CCK-8 assay, flow cytometry, and fluorescence microscopy, respectively. Our results showed Ku70 can be expressed in both the nucleus and cytoplasm of astrocytes, although mainly in the nucleus. Ku70 expression showed a trend of first increasing and then decreasing after OGD/R, reaching its highest change at 24 h of reoxygenation. OGD/R induced ROS production and DNA damage in rat astrocytes, and Ku70 silencing further increased ROS production and DNA lesions, which aggravated astrocyte injury and apoptosis. Furthermore, the expression of p53, Bax, and caspase 3 proteins significantly increased after OGD/R in astrocytes, and downregulation of Ku70 further enhanced expression of the above proteins. These results indicate that Ku70 silencing promotes OGD/R-induced astrocyte apoptosis, which may be associated with p53 apoptotic pathway activation. Our study suggests that Ku70 may be a novel target for cerebral ischemia-reperfusion injury therapy.
Collapse
Affiliation(s)
- Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Elizalde-Velázquez GA, Gómora-Martínez O, Raldua D, Herrera-Vázquez SE, Gómez-Oliván LM. Understanding the impact of environmentally relevant alkyl C12-16 dimethylbenzyl ammonium chloride concentrations on zebrafish health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175984. [PMID: 39244042 DOI: 10.1016/j.scitotenv.2024.175984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alkyldimethylbenzylammonium chlorides (ADBACs), classified as second-generation quaternary ammonium compounds, are extensively employed across various sectors, encompassing veterinary medicine, food production, pharmaceuticals, cosmetics, ophthalmology, and agriculture. Consequently, significant volumes of ADBAC C12-C16 are discharged into the environment, posing a threat to aquatic organisms. Regrettably, comprehensive data regarding the toxicological characteristics of these compounds remain scarce. This research aimed to determine whether or not ADBAC C12-C16, at environmentally relevant concentrations (0.4, 0.8, and 1.6 μg/L), may instigate oxidative stress and alter the expression of apoptosis-related genes in the liver, brain, gut, and gills of Danio rerio adults (5-6 months). The findings revealed that ADBAC C12-C16 elicited an oxidative stress response across all examined organs following 96 h of exposure. Nonetheless, the magnitude of this response varied among organs, with the gills exhibiting the highest degree of susceptibility, followed by the gut, liver, and brain, in descending order. Only the gut and gills of the examined organs displayed a concentration-dependent reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Akin to the oxidative stress response, all organs exhibited a marked increase in bax, blc2, casp3, and p53 expression levels. However, the gills and gut manifested a distinctive suppression in the expression of nrf1 and nrf2. Our Principal Component Analysis (PCA) confirmed that SOD, CAT, nrf1, and nrf2 were negatively correlated to oxidative damage biomarkers and apoptosis-related genes in the gills and gut; meanwhile, in the remaining organs, all biomarkers were extensively correlated. From the above, it can be concluded that ADBAC C12-C16 in low and environmental concentrations may threaten the health of freshwater fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Omar Gómora-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
3
|
DeCleene NF, Asik E, Sanchez A, Williams CL, Kabotyanski EB, Zhao N, Chatterjee N, Miller KM, Wang YH, Bertuch AA. RPS19 and RPL5, the most commonly mutated genes in Diamond Blackfan anemia, impact DNA double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617668. [PMID: 39416207 PMCID: PMC11482920 DOI: 10.1101/2024.10.10.617668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diamond Blackfan anemia (DBA) is caused by germline heterozygous loss-of-function pathogenic variants (PVs) in ribosomal protein (RP) genes, most commonly RPS19 and RPL5. In addition to red cell aplasia, individuals with DBA are at increased risk of various cancers. Importantly, the mechanism(s) underlying cancer predisposition are poorly understood. We found that DBA patient-derived lymphoblastoid cells had persistent γ-H2AX foci following ionizing radiation (IR) treatment, suggesting DNA double-strand break (DSB) repair defects. RPS19- and RPL5-knocked down (KD) CD34+ cells had delayed repair of IR-induced DSBs, further implicating these RPs in DSB repair. Assessing the impact of RPS19- and RPL5-KD on specific DSB repair pathways, we found RPS19-KD decreased the efficiency of pathways requiring extensive end-resection, whereas RPL5-KD increased end-joining pathways. Additionally, RAD51 was reduced in RPS19- and RPL5-KD and RPS19- and RPL5-mutated DBA cells, whereas RPS19-deficient cells also had a reduction in PARP1 and BRCA2 proteins. RPS19-KD cells had an increase in nuclear RPA2 and a decrease in nuclear RAD51 foci post-IR, reflective of alterations in early, critical steps of homologous recombination. Notably, RPS19 and RPL5 interacted with poly(ADP)-ribose chains noncovalently, were recruited to DSBs in a poly(ADP)-ribose polymerase activity-dependent manner, and interacted with Ku70 and histone H2A. RPL5's recruitment, but not RPS19's, also required p53, suggesting that RPS19 and RPL5 directly participate in DSB repair via different pathways. We propose that defective DSB repair arising from haploinsufficiency of these RPs may underline the cancer predisposition in DBA.
Collapse
Affiliation(s)
- Nicholas F. DeCleene
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Elif Asik
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Christopher L. Williams
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | | | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Nimrat Chatterjee
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Yu-Hsiu Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| |
Collapse
|
4
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. Linked regulation of genome integrity and senescence-associated inflammation by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567963. [PMID: 38045344 PMCID: PMC10690201 DOI: 10.1101/2023.11.20.567963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF). We show, through activation or inactivation of p53 by genetic and pharmacologic approaches, that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), without affecting cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, and this is reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reversed signatures of aging, including age- and senescence-associated transcriptomic signatures of inflammation and age-associated accumulation of monocytes and macrophages in liver. Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation. This pathway is immunomodulatory in mice and a potential target for healthy aging interventions by small molecules already shown to activate p53.
Collapse
|
6
|
Xia J, Zhang T, Sun Y, Huang Z, Shi D, Qin D, Yang X, Liu H, Yao G, Wei L, Chang X, Gao J, Guo Y, Hou XY. Suppression of neuronal CDK9/p53/VDAC signaling provides bioenergetic support and improves post-stroke neuropsychiatric outcomes. Cell Mol Life Sci 2024; 81:384. [PMID: 39235466 PMCID: PMC11377386 DOI: 10.1007/s00018-024-05428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Bioenergy decline occurs with reperfusion following acute ischemic stroke. However, the molecular mechanisms that limit energy metabolism and their impact on post-stroke cognitive and emotional complications are still unclear. In the present study, we demonstrate that the p53 transcriptional response is responsible for neuronal adenosine triphosphate (ATP) deficiency and progressively neuropsychiatric disturbances, involving the downregulation of mitochondrial voltage-dependent anion channels (VDACs). Neuronal p53 transactivated the promoter of microRNA-183 (miR-183) cluster, thereby upregulating biogenesis of miR-183-5p (miR-183), miR-96-5p (miR-96), and miR-182-5p. Both miR-183 and miR-96 directly targeted and post-transcriptionally suppressed VDACs. Neuronal ablation of p53 protected against ATP deficiency and neurological deficits, whereas post-stroke rescue of miR-183/VDAC signaling reversed these benefits. Interestingly, cyclin-dependent kinase 9 (CDK9) was found to be enriched in cortical neurons and upregulated the p53-induced transcription of the miR-183 cluster in neurons after ischemia. Post-treatment with the CDK9 inhibitor oroxylin A promoted neuronal ATP production mainly through suppressing the miR-183 cluster/VDAC axis, further improved long-term sensorimotor abilities and spatial memory, and alleviated depressive-like behaviors in mice following stroke. Our findings reveal an intrinsic CDK9/p53/VDAC pathway that drives neuronal bioenergy decline and underlies post-stroke cognitive impairment and depression, thus highlighting the therapeutic potential of oroxylin A for better outcomes.
Collapse
Affiliation(s)
- Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhu Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dongshen Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xuejun Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Guiying Yao
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaoai Chang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Gao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Yongjian Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
7
|
Yang J, Zhang L, Zhu B, Wu H, Peng M. Immunogenomic profiles and therapeutic options of the pan-programmed cell death-related lncRNA signature for patients with bladder cancer. Sci Rep 2024; 14:18500. [PMID: 39122807 PMCID: PMC11316077 DOI: 10.1038/s41598-024-68859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Programmed cell death (PCD) is a process that eliminates infected, damaged, or possibly neoplastic cells to sustain homeostatic multicellular organisms. Although long noncoding RNAs (lncRNAs) are involved in various types of PCD and regulate tumor growth, invasion, and migration, the role of PCD-related lncRNAs in bladder cancer still lacks systematic exploration. In this research, we integrated multiple types of PCD as pan-PCD and identified eight pan-PCD-related lncRNAs (LINC00174, HCP5, HCG27, UCA1, SNHG15, GHRLOS, CYB561D2, and AGAP11). Then, we generated a pan-PCD-related lncRNA prognostic signature (PPlncPS) with excellent predictive power and reliability, which performed equally well in the E-MTAB-4321 cohort. In comparison with the low-PPlncPS score group, the high-PPlncPS score group had remarkably higher levels of angiogenesis, matrix, cancer-associated fibroblasts, myeloid cell traffic, and protumor cytokine signatures. In addition, the low-PPlncPS score group was positively correlated with relatively abundant immune cell infiltration, upregulated expression levels of immune checkpoints, and high tumor mutation burden (TMB). Immunogenomic profiles revealed that patients with both low PPlncPS scores and high TMB had the best prognosis and may benefit from immune checkpoint inhibitors. Furthermore, for patients with high PPlncPS scores, docetaxel, staurosporine, and luminespib were screened as potential therapeutic candidates. In conclusion, we generated a pan-PCD-related lncRNA signature, providing precise and individualized prediction for clinical prognosis and some new insights into chemotherapy and immune checkpoint inhibitor therapy for bladder cancer.
Collapse
Affiliation(s)
- Jia Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lusi Zhang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bin Zhu
- Department of Urology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hongtao Wu
- Department of Urology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Mou Peng
- Department of Urology, the Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Noor A Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Liu J, Bitsue HK, Yang Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol Ecol 2024; 33:e17369. [PMID: 38713101 DOI: 10.1111/mec.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.
Collapse
Affiliation(s)
- Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Onofre-Camarena DB, Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Galar-Martínez M, Jerónimo Juárez JR, Herrera-Vázquez SE. Assessing the impact of COVID-19 era drug combinations on hepatic functionality: A thorough investigation in adult Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123997. [PMID: 38636837 DOI: 10.1016/j.envpol.2024.123997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Current and thorough information on the ecotoxicological consequences of pharmaceuticals is accessible globally. However, there remains a substantial gap in knowledge concerning the potentially toxic effects of COVID-19 used drugs, individually and combined, on aquatic organisms. Given the factors above, our investigation assumes pivotal importance in elucidating whether or not paracetamol, dexamethasone, metformin, and their tertiary mixtures might prompt histological impairment, oxidative stress, and apoptosis in the liver of zebrafish. The findings indicated that all treatments, except paracetamol, augmented the antioxidant activity of superoxide dismutase (SOD) and catalase (CAD), along with elevating the levels of oxidative biomarkers such as lipid peroxidation (LPX), hydroperoxides (HPC), and protein carbonyl content (PCC). Paracetamol prompted a reduction in the activities SOD and CAT and exhibited the most pronounced toxic response when compared to the other treatments. The gene expression patterns paralleled those of oxidative stress, with all treatments demonstrating overexpression of bax, bcl2, and p53. The above suggested a probable apoptotic response in the liver of the fish. Nevertheless, our histological examinations revealed that none of the treatments induced an apoptotic or inflammatory response in the hepatocytes. Instead, the observed tissue alterations encompassed leukocyte infiltration, sinusoidal dilatation, pyknosis, fatty degeneration, diffuse congestion, and vacuolization. In summary, the hepatic toxicity elicited by COVID-19 drugs in zebrafish was less pronounced than anticipated. This attenuation could be attributed to metformin's antioxidant and hormetic effects.
Collapse
Affiliation(s)
- Diana Belen Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - José Roberto Jerónimo Juárez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Pelicci S, Furia L, Pelicci PG, Faretta M. From Cell Populations to Molecular Complexes: Multiplexed Multimodal Microscopy to Explore p53-53BP1 Molecular Interaction. Int J Mol Sci 2024; 25:4672. [PMID: 38731890 PMCID: PMC11083188 DOI: 10.3390/ijms25094672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules' interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| |
Collapse
|
12
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Madorsky Rowdo FP, Xiao G, Khramtsova GF, Nguyen J, Martini R, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Altorki NK, Cheng E, Ginter PS, Hoda S, Newman L, Elemento O, Olopade OI, Davis MB, Martin ML, Bargonetti J. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment. Cancer Lett 2024; 584:216608. [PMID: 38199587 PMCID: PMC10922546 DOI: 10.1016/j.canlet.2024.216608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.
Collapse
Affiliation(s)
| | - Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY, 10021, USA
| | - Galina F Khramtsova
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Michael O Adinku
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Kofi K Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paula S Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Melissa B Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA, 30310, USA
| | - M Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York City, NY, 10021, USA; The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Sesink A, Becerra M, Ruan JL, Leboucher S, Dubail M, Heinrich S, Jdey W, Petersson K, Fouillade C, Berthault N, Dutreix M, Girard PM. The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer 2024; 6:zcae011. [PMID: 38476631 PMCID: PMC10928987 DOI: 10.1093/narcan/zcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Collapse
Affiliation(s)
- Anouk Sesink
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Margaux Becerra
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Jia-Ling Ruan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Sophie Leboucher
- Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Maxime Dubail
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Sophie Heinrich
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Wael Jdey
- Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France
| | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Charles Fouillade
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Nathalie Berthault
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| |
Collapse
|
15
|
Price K, Yang WH, Cardoso L, Wang CM, Yang RH, Yang WH. Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2. Cancers (Basel) 2024; 16:1000. [PMID: 38473360 DOI: 10.3390/cancers16051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has been shown to interact with the cAMP response element (CRE) site present in many cis-elements of downstream target genes. JDP2 has also demonstrates important roles in cell-cycle regulation, cancer development and progression, inhibition of adipocyte differentiation, and the regulation of antibacterial immunity and bone homeostasis. JDP2 and ATF3 exhibit significant similarity in their C-terminal domains, sharing 60-65% identities. Previous studies have demonstrated that ATF3 is able to influence both the transcriptional activity and p53 stability via a p53-ATF3 interaction. While some studies have shown that JDP2 suppresses p53 transcriptional activity and in turn, p53 represses JDP2 promoter activity, the direct interaction between JDP2 and p53 and the regulatory role of JDP2 in p53 transactivation have not been explored. In the current study, we provide evidence, for the first time, that JDP2 interacts with p53 and regulates p53 transactivation. First, we demonstrated that JDP2 binds to p53 and the C-terminal domain of JDP2 is crucial for the interaction. Second, in p53-null H1299 cells, JDP2 shows a robust increase of p53 transactivation in the presence of p53 using p53 (14X)RE-Luc. Furthermore, JDP2 and ATF3 together additively enhance p53 transactivation in the presence of p53. While JDP2 can increase p53 transactivation in the presence of WT p53, JDP2 fails to enhance transactivation of hotspot mutant p53. Moreover, in CHX chase experiments, we showed that JDP2 slightly enhances p53 stability. Finally, our findings indicate that JDP2 has the ability to reverse MDM2-induced p53 repression, likely due to decreased levels of MDM2 by JDP2. In summary, our results provide evidence that JDP2 directly interacts with p53 and decreases MDM2 levels to enhance p53 transactivation, suggesting that JDP2 is a novel regulator of p53 and MDM2.
Collapse
Affiliation(s)
- Kasey Price
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - William H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Leticia Cardoso
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Chiung-Min Wang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Richard H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| |
Collapse
|
16
|
Chen J, Laverty DJ, Talele S, Bale A, Carlson BL, Porath KA, Bakken KK, Burgenske DM, Decker PA, Vaubel RA, Eckel-Passow JE, Bhargava R, Lou Z, Hamerlik P, Harley B, Elmquist WF, Nagel ZD, Gupta SK, Sarkaria JN. Aberrant ATM signaling and homology-directed DNA repair as a vulnerability of p53-mutant GBM to AZD1390-mediated radiosensitization. Sci Transl Med 2024; 16:eadj5962. [PMID: 38354228 PMCID: PMC11064970 DOI: 10.1126/scitranslmed.adj5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Ashwin Bale
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katrina K. Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachael A. Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Ellison V, Polotskaia A, Xiao G, Leybengrub P, Qiu W, Lee R, Hendrickson R, Hu W, Bargonetti J. A CANCER PERSISTENT DNA REPAIR CIRCUIT DRIVEN BY MDM2, MDM4 (MDMX), AND MUTANT P53 FOR RECRUITMENT OF MDC1 AND 53BP1 TO CHROMATIN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576487. [PMID: 38328189 PMCID: PMC10849484 DOI: 10.1101/2024.01.20.576487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The influence of the metastasis promoting proteins mutant p53 (mtp53) and MDM2 on Cancer Persistent Repair (CPR) to promote cancer cell survival is understudied. Interactions between the DNA repair choice protein 53BP1 and wild type tumor suppressor protein p53 (wtp53) regulates cell cycle control. Cancer cells often express elevated levels of transcriptionally inactive missense mutant p53 (mtp53) that interacts with MDM2 and MDM4/MDMX (herein called MDMX). The ability of mtp53 to maintain a 53BP1 interaction while in the context of interactions with MDM2 and MDMX has not been described. We asked if MDM2 regulates chromatin-based phosphorylation events in the context of mtp53 by comparing the chromatin of T47D breast cancer cells with and without MDM2 in a phospho-peptide stable isotope labeling in cell culture (SILAC) screen. We found reduced phospho-53BP1 chromatin association, which we confirmed by chromatin fractionation and immunofluorescence in multiple breast cancer cell lines. We used the Proximity Ligation Assay (PLA) in breast cancer cell lines and detected 53BP1 in close proximity to mtp53, MDM2, and the DNA repair protein MDC1. Through disruption of the mtp53-MDM2 interaction, by either Nutlin 3a or a mtp53 R273H C-terminal deletion, we uncovered that mtp53 was required for MDM2-53BP1 interaction foci. Our data suggests that mtp53 works with MDM2 and 53BP1 to promote CPR and cell survival.
Collapse
Affiliation(s)
- Viola Ellison
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Alla Polotskaia
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Gu Xiao
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Pamella Leybengrub
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Weigang Qiu
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Rusia Lee
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
- The Graduate Center City University of New York, Departments of Biology and Biochemistry, New York, NY
| | | | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Jill Bargonetti
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
- The Graduate Center City University of New York, Departments of Biology and Biochemistry, New York, NY
- Weill Cornell Medical College, Department of Cell and Developmental Biology, New York, NY
| |
Collapse
|
18
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
19
|
Yan HJ, Lin SC, Xu SH, Gao YB, Zhou BJ, Zhou R, Chen FM, Li FR. Proteomic analysis reveals LRPAP1 as a key player in the micropapillary pattern metastasis of lung adenocarcinoma. Heliyon 2024; 10:e23913. [PMID: 38226250 PMCID: PMC10788494 DOI: 10.1016/j.heliyon.2023.e23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Lung adenocarcinomas have different prognoses depending on their histological growth patterns. Micropapillary growth within lung adenocarcinoma, particularly metastasis, is related to dismal prognostic outcome. Metastasis accounts for a major factor leading to mortality among lung cancer patients. Understanding the mechanisms underlying early stage metastasis can help develop novel treatments for improving patient survival. Methods Here, quantitative mass spectrometry was conducted for comparing protein expression profiles among various histological subtypes, including adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma (including acinar and micropapillary [MIP] types). To determine the mechanism of MIP-associated metastasis, we identified a protein that was highly expressed in MIP. The expression of the selected highly expressed MIP protein was verified via immunohistochemical (IHC) analysis and its function was validated by an in vitro migration assay. Results Proteomic data revealed that low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1) was highly expressed in MIP group, which was confirmed by IHC. The co-expressed proteins in this study, PSMD1 and HSP90AB1, have been reported to be highly expressed in different cancers and play an essential role in metastasis. We observed that LRPAP1 promoted lung cancer progression, including metastasis, invasion and proliferation in vitro and in vivo. Conclusion LRPAP1 is necessary for MIP-associated metastasis and is the candidate novel anti-metastasis therapeutic target.
Collapse
Affiliation(s)
- Hao-jie Yan
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, 510632, Guangzhou, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Sheng-cheng Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518172, Shenzhen, China
| | | | - Yu-biao Gao
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Bao-jin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruo Zhou
- Deepxomics Co., Ltd, 518112, Shenzhen, China
| | - Fu-ming Chen
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Fu-rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
- Institute of Health Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
20
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
21
|
Khan GH, Veltkamp F, Scheper M, Hoebe RA, Claessen N, Butter L, Bouts AHM, Florquin S, Guikema JEJ. Levamisole suppresses activation and proliferation of human T cells by the induction of a p53-dependent DNA damage response. Eur J Immunol 2023; 53:e2350562. [PMID: 37597325 DOI: 10.1002/eji.202350562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/21/2023]
Abstract
Levamisole (LMS) is a small molecule used in the treatment of idiopathic nephrotic syndrome (INS). The pathogenesis of INS remains unknown, but evidence points toward an immunological basis of the disease. Recently, LMS has been shown to increase the relapse-free survival in INS patients. While LMS has been hypothesized to exert an immunomodulatory effect, its mechanism of action remains unknown. Here, we show that LMS decreased activation and proliferation of human T cells. T-cell activation-associated cytokines such as IL-2, TNF-α, and IFN-γ were reduced upon LMS treatment, whereas IL-4 and IL-13 were increased. Gene expression profiling confirmed that the suppressive effects of LMS as genes involved in cell cycle progression were downregulated. Furthermore, genes associated with p53 activation were upregulated by LMS. In agreement, LMS treatment resulted in p53 phosphorylation and increased expression of the p53 target gene FAS. Accordingly, LMS sensitized activated T cells for Fas-mediated apoptosis. LMS treatment resulted in a mid-S phase cell cycle arrest accompanied by γH2AX-foci formation and phosphorylation of CHK1. Our findings indicate that LMS acts as an immunosuppressive drug that directly affects the activation and proliferation of human T cells by induction of DNA damage and the activation of a p53-dependent DNA damage response.
Collapse
Affiliation(s)
- Gerarda H Khan
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor Veltkamp
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mirte Scheper
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Department of Medical Biology, Amsterdam UMC and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Loes Butter
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonia H M Bouts
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Caramia F, Speed TP, Shen H, Haupt Y, Haupt S. Establishing the Link between X-Chromosome Aberrations and TP53 Status, with Breast Cancer Patient Outcomes. Cells 2023; 12:2245. [PMID: 37759468 PMCID: PMC10526523 DOI: 10.3390/cells12182245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitous to normal female human somatic cells, X-chromosome inactivation (XCI) tightly regulates the transcriptional silencing of a single X chromosome from each pair. Some genes escape XCI, including crucial tumour suppressors. Cancer susceptibility can be influenced by the variability in the genes that escape XCI. The mechanisms of XCI dysregulation remain poorly understood in complex diseases, including cancer. Using publicly available breast cancer next-generation sequencing data, we show that the status of the major tumour suppressor TP53 from Chromosome 17 is highly associated with the genomic integrity of the inactive X (Xi) and the active X (Xa) chromosomes. Our quantification of XCI and XCI escape demonstrates that aberrant XCI is linked to poor survival. We derived prognostic gene expression signatures associated with either large deletions of Xi; large amplifications of Xa; or abnormal X-methylation. Our findings expose a novel insight into female cancer risks, beyond those associated with the standard molecular subtypes.
Collapse
Affiliation(s)
- Franco Caramia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Terence P. Speed
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia;
| | - Hui Shen
- Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (F.C.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
23
|
Bianchini RM, Kurz EU. The analysis of protein recruitment to laser microirradiation-induced DNA damage in live cells: Best practices for data analysis. DNA Repair (Amst) 2023; 129:103545. [PMID: 37524003 DOI: 10.1016/j.dnarep.2023.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Laser microirradiation coupled with live-cell fluorescence microscopy is a powerful technique that has been used widely in studying the recruitment and retention of proteins at sites of DNA damage. Results obtained from this technique can be found in published works by both seasoned and infrequent users of microscopy. However, like many other microscopy-based techniques, the presentation of data from laser microirradiation experiments is inconsistent; papers report a wide assortment of analytic techniques, not all of which result in accurate and/or appropriate representation of the data. In addition to the varied methods of analysis, experimental and analytical details are commonly under-reported. Consequently, publications reporting data from laser microirradiation coupled with fluorescence microscopy experiments need to be carefully and critically assessed by readers. Here, we undertake a systematic investigation of commonly reported corrections used in the analysis of laser microirradiation data. We validate the critical need to correct data for photobleaching and we identify key experimental parameters that must be accounted for when presenting data from laser microirradiation experiments. Furthermore, we propose a straightforward, four-step analytical protocol that can readily be applied across platforms and that aims to improve the quality of data reporting in the DNA damage field.
Collapse
Affiliation(s)
- Ryan M Bianchini
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ebba U Kurz
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
24
|
Brahme A. TP53 and the Ultimate Biological Optimization Steps of Curative Radiation Oncology. Cancers (Basel) 2023; 15:4286. [PMID: 37686565 PMCID: PMC10487030 DOI: 10.3390/cancers15174286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The new biological interaction cross-section-based repairable-homologically repairable (RHR) damage formulation for radiation-induced cellular inactivation, repair, misrepair, and apoptosis was applied to optimize radiation therapy. This new formulation implies renewed thinking about biologically optimized radiation therapy, suggesting that most TP53 intact normal tissues are low-dose hypersensitive (LDHS) and low-dose apoptotic (LDA). This generates a fractionation window in LDHS normal tissues, indicating that the maximum dose to organs at risk should be ≤2.3 Gy/Fr, preferably of low LET. This calls for biologically optimized treatments using a few high tumor dose-intensity-modulated light ion beams, thereby avoiding secondary cancer risks and generating a real tumor cure without a caspase-3-induced accelerated tumor cell repopulation. Light ions with the lowest possible LET in normal tissues and high LET only in the tumor imply the use of the lightest ions, from lithium to boron. The high microscopic heterogeneity in the tumor will cause local microscopic cold spots; thus, in the last week of curative ion therapy, when there are few remaining viable tumor clonogens randomly spread in the target volume, the patient should preferably receive the last 10 GyE via low LET, ensuring perfect tumor coverage, a high cure probability, and a reduced risk for adverse normal tissue reactions. Interestingly, such an approach would also ensure a steeper rise in tumor cure probability and a higher complication-free cure, as the few remaining clonogens are often fairly well oxygenated, eliminating a shallower tumor response due to inherent ion beam heterogeneity. With the improved fractionation proposal, these approaches may improve the complication-free cure probability by about 10-25% or even more.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet,17176 Stockholm, Sweden
| |
Collapse
|
25
|
Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, Werts M, Barnoud T, Lu DY, Shinde R, Murphy ME, Claiborne DT. The African-centric P47S Variant of TP53 Confers Immune Dysregulation and Impaired Response to Immune Checkpoint Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1200-1211. [PMID: 37441266 PMCID: PMC10335007 DOI: 10.1158/2767-9764.crc-23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in cancer and is mutationally inactivated in 50% of sporadic tumors. Inactivating mutations in TP53 also occur in Li Fraumeni syndrome (LFS). In addition to germline mutations in TP53 in LFS that completely inactivate this protein, there are many more germline mutant forms of TP53 in human populations that partially inactivate this protein: we call these partially inactivating mutations "hypomorphs." One of these hypomorphs is a SNP that exists in 6%-10% of Africans and 1%-2% of African Americans, which changes proline at amino acid 47 to serine (Pro47Ser; P47S). We previously showed that the P47S variant of p53 is intrinsically impaired for tumor suppressor function, and that this SNP is associated with increased cancer risk in mice and humans. Here we show that this SNP also influences the tumor microenvironment, and the immune microenvironment profile in P47S mice is more protumorigenic. At basal levels, P47S mice show impaired memory T-cell formation and function, along with increased anti-inflammatory (so-called "M2") macrophages. We show that in tumor-bearing P47S mice, there is an increase in immunosuppressive myeloid-derived suppressor cells and decreased numbers of activated dendritic cells, macrophages, and B cells, along with evidence for increased T-cell exhaustion in the tumor microenvironment. Finally, we show that P47S mice demonstrate an incomplete response to anti-PD-L1 therapy. Our combined data suggest that the African-centric P47S variant leads to both intrinsic and extrinsic defects in tumor suppression. Significance Findings presented here show that the P47S variant of TP53 influences the immune microenvironment, and the immune response to cancer. This is the first time that a naturally occurring genetic variant of TP53 has been shown to negatively impact the immune microenvironment and the response to immunotherapy.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L. D. Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gauri Mirji
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sarah Kim Reiser
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nivitha Murali
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madison Werts
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rahul Shinde
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Hassel JC, Zimmer L, Sickmann T, Eigentler TK, Meier F, Mohr P, Pukrop T, Roesch A, Vordermark D, Wendl C, Gutzmer R. Medical Needs and Therapeutic Options for Melanoma Patients Resistant to Anti-PD-1-Directed Immune Checkpoint Inhibition. Cancers (Basel) 2023; 15:3448. [PMID: 37444558 DOI: 10.3390/cancers15133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, 69120 Heidelberg, Germany
| | | | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Friedegund Meier
- Department of Dermatology, Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32429 Minden, Germany
| |
Collapse
|
27
|
Krishnaraj J, Yamamoto T, Ohki R. p53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers (Basel) 2023; 15:3399. [PMID: 37444509 DOI: 10.3390/cancers15133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
28
|
Madorsky Rowdo FP, Xiao G, Khramtsova GF, Nguyen J, Olopade OI, Martini R, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Altorki NK, Cheng E, Ginter PS, Hoda S, Newman L, Elemento O, Davis MB, Martin ML, Bargonetti J. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.544406. [PMID: 38076873 PMCID: PMC10705575 DOI: 10.1101/2023.06.22.544406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.
Collapse
Affiliation(s)
| | - Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY10021
| | - Galina F Khramtsova
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY10021
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York City, NY 10021
- The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY 10016
| |
Collapse
|
29
|
Yan Q, Ding J, Khan SJ, Lawton LN, Shipp MA. DTX3L E3 ligase targets p53 for degradation at poly ADP-ribose polymerase-associated DNA damage sites. iScience 2023; 26:106444. [PMID: 37096048 PMCID: PMC10122052 DOI: 10.1016/j.isci.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
P53 is a master transcriptional regulator and effector of the DNA damage response (DDR) that localizes to DNA damage sites, in part, via an interaction with PARP1. However, the mechanisms that regulate p53 abundance and activity at PARP1-decorated DNA damage sites remain undefined. The PARP9 (BAL1) macrodomain-containing protein and its partner DTX3L (BBAP) E3 ligase are rapidly recruited to PARP1-PARylated DNA damage sites. During an initial DDR, we found that DTX3L rapidly colocalized with p53, polyubiquitylated its lysine-rich C-terminal domain, and targeted p53 for proteasomal degradation. DTX3L knockout significantly increased and prolonged p53 retention at PARP-decorated DNA damage sites. These findings reveal a non-redundant, PARP- and PARylation-dependent role for DTX3L in the spatiotemporal regulation of p53 during an initial DDR. Our studies suggest that targeted inhibition of DTX3L may augment the efficacy of certain DNA-damaging agents by increasing p53 abundance and activity.
Collapse
Affiliation(s)
- Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyi Ding
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lee N. Lawton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
30
|
Yang WH, George AP, Wang CM, Yang RH, Duncan AM, Patel D, Neil ZD, Yang WH. Tumor Suppressor p53 Down-Regulates Programmed Cell Death Protein 4 (PDCD4) Expression. Curr Oncol 2023; 30:1614-1625. [PMID: 36826085 PMCID: PMC9955764 DOI: 10.3390/curroncol30020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hsiung Yang
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
31
|
Löffler T, Krüger A, Zirak P, Winterhalder MJ, Müller AL, Fischbach A, Mangerich A, Zumbusch A. Influence of chain length and branching on poly(ADP-ribose)-protein interactions. Nucleic Acids Res 2023; 51:536-552. [PMID: 36625274 PMCID: PMC9881148 DOI: 10.1093/nar/gkac1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Hundreds of proteins interact with poly(ADP-ribose) (PAR) via multiple PAR interaction motifs, thereby regulating their physico-chemical properties, sub-cellular localizations, enzymatic activities, or protein stability. Here, we present a targeted approach based on fluorescence correlation spectroscopy (FCS) to characterize potential structure-specific interactions of PAR molecules of defined chain length and branching with three prime PAR-binding proteins, the tumor suppressor protein p53, histone H1, and the histone chaperone APLF. Our study reveals complex and structure-specific PAR-protein interactions. Quantitative Kd values were determined and binding affinities for all three proteins were shown to be in the nanomolar range. We report PAR chain length dependent binding of p53 and H1, yet chain length independent binding of APLF. For all three PAR binders, we found a preference for linear over hyperbranched PAR. Importantly, protein- and PAR-structure-specific binding modes were revealed. Thus, while the H1-PAR interaction occurred largely on a bi-molecular 1:1 basis, p53-and potentially also APLF-can form complex multivalent PAR-protein structures. In conclusion, our study gives detailed and quantitative insight into PAR-protein interactions in a solution-based setting at near physiological buffer conditions. The results support the notion of protein and PAR-structure-specific binding modes that have evolved to fit the purpose of the respective biochemical functions and biological contexts.
Collapse
Affiliation(s)
| | | | - Peyman Zirak
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | | | - Anna-Lena Müller
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | - Arthur Fischbach
- Department of Biology, Universität Konstanz, Konstanz D-78457, Germany
| | - Aswin Mangerich
- To whom correspondence should be addressed. Tel: +49 33200 88 5301;
| | - Andreas Zumbusch
- Correspondence may also be addressed to Andreas Zumbusch. Tel: +49 7531 882027;
| |
Collapse
|
32
|
Wang YH, Sheetz MP. Transcription-independent functions of p53 in DNA repair pathway selection. Bioessays 2023; 45:e2200122. [PMID: 36404121 DOI: 10.1002/bies.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
Recently discovered transcription-independent features of p53 involve the choice of DNA damage repair pathway after PARylation, and p53's complex formation with phosphoinositide lipids, PI(4,5)P2 . PARylation-mediated rapid accumulation of p53 at DNA damage sites is linked to the recruitment of downstream repair factors and tumor suppression. This links p53's capability to sense damaged DNA in vitro and its relevant functions in cells. Further, PI(4,5)P2 rapidly accumulates at damage sites like p53 and complexes with p53, while it is required for ATR recruitment. These findings help explain how p53 and PI(4,5)P2 maintain genome stability by directing DNA repair pathway choice. Additionally, there is a strong correlation between p53 sequence homology, genome mutation rates as well as lifespans across various mammalian species. Further investigation is required to better understand the connections between genome stability, tumor suppression, longevity and the transcriptional-independent function of p53.
Collapse
Affiliation(s)
- Yu-Hsiu Wang
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Michael P Sheetz
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| |
Collapse
|
33
|
Wang H, Stevens T, Lu J, Airik M, Airik R, Prochownik EV. Disruption of Multiple Overlapping Functions Following Stepwise Inactivation of the Extended Myc Network. Cells 2022; 11:4087. [PMID: 36552851 PMCID: PMC9777503 DOI: 10.3390/cells11244087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Myc, a member of the "Myc Network" of bHLH-ZIP transcription factors, supervises proliferation, metabolism, and translation. It also engages in crosstalk with the related "Mlx Network" to co-regulate overlapping genes and functions. We investigated the consequences of stepwise conditional inactivation of Myc and Mlx in primary and SV40 T-antigen-immortalized murine embryonic fibroblasts (MEFs). Myc-knockout (MycKO) and Myc × Mlx "double KO" (DKO)-but not MlxKO-primary MEFs showed rapid growth arrest and displayed features of accelerated aging and senescence. However, DKO MEFs soon resumed proliferating, indicating that durable growth arrest requires an intact Mlx network. All three KO MEF groups deregulated multiple genes and functions pertaining to aging, senescence, and DNA damage recognition/repair. Immortalized KO MEFs proliferated in Myc's absence while demonstrating variable degrees of widespread genomic instability and sensitivity to genotoxic agents. Finally, compared to primary MycKO MEFs, DKO MEFs selectively downregulated numerous gene sets associated with the p53 and retinoblastoma (Rb) pathways and G2/M arrest. Thus, the reversal of primary MycKO MEF growth arrest by either Mlx loss or SV40 T-antigen immortalization appears to involve inactivation of the p53 and/or Rb pathways.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Developmental Biology, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- The UPMC Hillman Comprehensive Cancer Center, Pittsburgh, PA 25232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
34
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
35
|
Lundine D, Annor GK, Chavez V, Maimos S, Syed Z, Jiang S, Ellison V, Bargonetti J. The C-terminus of Gain-of-Function Mutant p53 R273H Is Required for Association with PARP1 and Poly-ADP-Ribose. Mol Cancer Res 2022; 20:1799-1810. [PMID: 36074101 PMCID: PMC9716242 DOI: 10.1158/1541-7786.mcr-22-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 01/15/2023]
Abstract
The TP53 gene is mutated in 80% of triple-negative breast cancers. Cells that harbor the hot-spot p53 gene mutation R273H produce an oncogenic mutant p53 (mtp53) that enhances cell proliferative and metastatic properties. The enhanced activities of mtp53 are collectively referred to as gain-of-function (GOF), and may include transcription-independent chromatin-based activities shared with wild-type p53 (wtp53) such as association with replicating DNA and DNA replication associated proteins like PARP1. However, how mtp53 upregulates cell proliferation is not well understood. wtp53 interacts with PARP1 using a portion of its C-terminus. The wtp53 oligomerization and far C-terminal domain (CTD) located within the C-terminus constitute putative GOF-associated domains, because mtp53 R273H expressing breast cancer cells lacking both domains manifest slow proliferation phenotypes. We addressed if the C-terminal region of mtp53 R273H is important for chromatin interaction and breast cancer cell proliferation using CRISPR-Cas9 mutated MDA-MB-468 cells endogenously expressing mtp53 R273H C-terminal deleted isoforms (R273HΔ381-388 and R273HΔ347-393). The mtp53 R273HΔ347-393 lacks the CTD and a portion of the oligomerization domain. We observed that cells harboring mtp53 R273HΔ347-393 (compared with mtp53 R273H full-length) manifest a significant reduction in chromatin, PARP1, poly-ADP-ribose (PAR), and replicating DNA binding. These cells also exhibited impaired response to hydroxyurea replicative stress, decreased sensitivity to the PARP-trapping drug combination temozolomide-talazoparib, and increased phosphorylated 53BP1 foci, suggesting reduced Okazaki fragment processing. IMPLICATIONS The C-terminal region of mtp53 confers GOF activity that mediates mtp53-PARP1 and PAR interactions assisting DNA replication, thus implicating new biomarkers for PARP inhibitor therapy.
Collapse
Affiliation(s)
- Devon Lundine
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - George K. Annor
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Valery Chavez
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Styliana Maimos
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Zafar Syed
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Shuhong Jiang
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Viola Ellison
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
36
|
Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, Gu M, You B. RNA Modifications Meet Tumors. Cancer Manag Res 2022; 14:3223-3243. [PMID: 36444355 PMCID: PMC9700476 DOI: 10.2147/cmar.s391067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/14/2023] Open
Abstract
RNA modifications occur through the whole process of gene expression regulation, including transcription, translation, and post-translational processes. They are closely associated with gene expression, RNA stability, and cell cycle. RNA modifications in tumor cells play a vital role in tumor development and metastasis, changes in the tumor microenvironment, drug resistance in tumors, construction of tumor cell-cell "internet", etc. Several types of RNA modifications have been identified to date and have various effects on the biological characteristics of different tumors. In this review, we discussed the function of RNA modifications, including N 6-methyladenine (m6A), 5-methylcytosine (m5C), N 7-methyladenosine (m7G), N 1-methyladenosine (m1A), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I), in the microenvironment and therapy of solid and liquid tumors.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yue Fan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Ying Shan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jiayan Xiong
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
37
|
NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Dis 2022; 8:436. [PMCID: PMC9622906 DOI: 10.1038/s41420-022-01226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.
Collapse
|
38
|
Furia L, Pelicci S, Scanarini M, Pelicci PG, Faretta M. From Double-Strand Break Recognition to Cell-Cycle Checkpoint Activation: High Content and Resolution Image Cytometry Unmasks 53BP1 Multiple Roles in DNA Damage Response and p53 Action. Int J Mol Sci 2022; 23:10193. [PMID: 36077590 PMCID: PMC9456172 DOI: 10.3390/ijms231710193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
53BP1 protein has been isolated in-vitro as a putative p53 interactor. From the discovery of its engagement in the DNA-Damage Response (DDR), its role in sustaining the activity of the p53-regulated transcriptional program has been frequently under-evaluated, even in the case of a specific response to numerous DNA Double-Strand Breaks (DSBs), i.e., exposure to ionizing radiation. The localization of 53BP1 protein constitutes a key to decipher the network of activities exerted in response to stress. We present here an automated-microscopy for image cytometry protocol to analyze the evolution of the DDR, and to demonstrate how 53BP1 moved from damaged sites, where the well-known interaction with the DSB marker γH2A.X takes place, to nucleoplasm, interacting with p53, and enhancing the transcriptional regulation of the guardian of the genome protein. Molecular interactions have been quantitatively described and spatiotemporally localized at the highest spatial resolution by a simultaneous analysis of the impairment of the cell-cycle progression. Thanks to the high statistical sampling of the presented protocol, we provide a detailed quantitative description of the molecular events following the DSBs formation. Single-Molecule Localization Microscopy (SMLM) Analysis finally confirmed the p53-53BP1 interaction on the tens of nanometers scale during the distinct phases of the response.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Mirco Scanarini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
39
|
Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022; 12:12156. [PMID: 35840793 PMCID: PMC9287420 DOI: 10.1038/s41598-022-16516-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons are overproduced during cerebral cortical development. Neural progenitor cells (NPCs) divide rapidly and incur frequent DNA double-strand breaks (DSBs) throughout cortical neurogenesis. Although half of the neurons born during neurodevelopment die, many neurons with inaccurate DNA repair survive leading to brain somatic mosaicism. Recurrent DNA DSBs during neurodevelopment are associated with both gene expression level and gene length. We used imaging flow cytometry and a genome-wide DNA DSB capture approach to quantify and map DNA DSBs during human induced pluripotent stem cell (hiPSC)-based neurogenesis. Reduced p53 signaling was brought about by knockdown (p53KD); p53KD led to elevated DNA DSB burden in neurons that was associated with gene expression level but not gene length in neural progenitor cells (NPCs). Furthermore, DNA DSBs incurred from transcriptional, but not replicative, stress lead to p53 activation in neurotypical NPCs. In p53KD NPCs, DNA DSBs accumulate at transcription start sites of genes that are associated with neurological and psychiatric disorders. These findings add to a growing understanding of how neuronal genome dynamics are engaged by high transcriptional or replicative burden during neurodevelopment.
Collapse
Affiliation(s)
- Nadine Michel
- Neuroscience Graduate Program, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Umar Arshad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Reem Al-Humadi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Lana Gore
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Sede de la Patagonia, Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt, Chile
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
41
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|