1
|
Martínez-Navarro SM, de Iceta Soler X, Martínez-Martínez M, Olazábal-Morán M, Santos-Moriano P, Gómez S. Structural and Phylogenetic In Silico Characterization of Vitis vinifera PRR Protein as Potential Target for Plasmopara viticola Infection. Int J Mol Sci 2024; 25:9553. [PMID: 39273500 PMCID: PMC11395273 DOI: 10.3390/ijms25179553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms are activated. PRRs (Pattern Recognition Receptors) and particularly RLKs (receptor-like kinases) take part in the first barrier of the immune system, and, as a consequence, the kinase signaling cascade is activated, resulting in an immune response. In this context, discovering new lectin-RLK (LecRLK) membrane-bounded proteins has emerged as a promising strategy. The genome-wide localization of potential LecRLKs involved in disease defense was reported in two grapevine varieties of great economic impact: Chardonnay and Pinot Noir. A total of 23 potential amino acid sequences were identified, exhibiting high-sequence homology and evolution related to tandem events. Based on the domain architecture, a carbohydrate specificity ligand assay was conducted with docking, revealing two sequences as candidates for specific Vitis vinifera-Plasmopara viticola host-pathogen interaction. This study confers a starting point for designing new effective antifungal treatments directed at LecRLK targets in Vitis vinifera.
Collapse
Affiliation(s)
- Sofía M Martínez-Navarro
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Xavier de Iceta Soler
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Mónica Martínez-Martínez
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Manuel Olazábal-Morán
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Paloma Santos-Moriano
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Sara Gómez
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
2
|
Jin J, Zhan Z, Wei X, Pan Z, Zhao Y, Yu D, Zhang F. Genomic insights into the chromosomal elongation in a family of Collembola. Proc Biol Sci 2024; 291:20232937. [PMID: 38471545 PMCID: PMC10932724 DOI: 10.1098/rspb.2023.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhihong Zhan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiping Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhixiang Pan
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Yuxin Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
3
|
Iglesias-Moya J, Benítez Á, Segura M, Alonso S, Garrido D, Martínez C, Jamilena M. Structural and functional characterization of genes PYL-PP2C-SnRK2s in the ABA signalling pathway of Cucurbita pepo. BMC Genomics 2024; 25:268. [PMID: 38468207 PMCID: PMC10926676 DOI: 10.1186/s12864-024-10158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.
Collapse
Affiliation(s)
- Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology. Faculty of Science, University of Granada, 18021, Granada, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
4
|
Liu C, Jiang X, Liu S, Liu Y, Li H, Wang Z, Kan J, Yang Q, Li X. Comprehensive Evolutionary Analysis of the SMXL Gene Family in Rosaceae: Further Insights into Its Origin, Expansion, Diversification, and Role in Regulating Pear Branching. Int J Mol Sci 2024; 25:2971. [PMID: 38474218 DOI: 10.3390/ijms25052971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianda Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Susha Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yilong Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Navarro-Quiles C, Lup SD, Muñoz-Nortes T, Candela H, Micol JL. The genetic and molecular basis of haploinsufficiency in flowering plants. TRENDS IN PLANT SCIENCE 2024; 29:72-85. [PMID: 37633803 DOI: 10.1016/j.tplants.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.
Collapse
Affiliation(s)
- Carla Navarro-Quiles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
6
|
Fang C, Yang M, Tang Y, Zhang L, Zhao H, Ni H, Chen Q, Meng F, Jiang J. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc Natl Acad Sci U S A 2023; 120:e2303836120. [PMID: 37871213 PMCID: PMC10622917 DOI: 10.1073/pnas.2303836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Mingyu Yang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Yuecheng Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun130033, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Hejia Ni
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Fanli Meng
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Michigan State University AgBioResearch, East Lansing, MI48824
| |
Collapse
|
7
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Genomic imbalance modulates transposable element expression in maize. PLANT COMMUNICATIONS 2023; 4:100467. [PMID: 36307986 PMCID: PMC10030319 DOI: 10.1016/j.xplc.2022.100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Genomic imbalance refers to the more severe phenotypic consequences of changing part of a chromosome compared with the whole genome set. Previous genome imbalance studies in maize have identified prevalent inverse modulation of genes on the unvaried chromosomes (trans) with both the addition or subtraction of chromosome arms. Transposable elements (TEs) comprise a substantial fraction of the genome, and their reaction to genomic imbalance is therefore of interest. Here, we analyzed TE expression using RNA-seq data of aneuploidy and ploidy series and found that most aneuploidies showed an inverse modulation of TEs, but reductions in monosomy and increases in disomy and trisomy were also common. By contrast, the ploidy series showed little TE modulation. The modulation of TEs and genes in the same experimental group were compared, and TEs showed greater modulation than genes, especially in disomy. Class I and II TEs were differentially modulated in most aneuploidies, and some superfamilies in each TE class also showed differential modulation. Finally, the significantly upregulated TEs in three disomies (TB-7Lb, TB9Lc, and TB-10L19) did not increase the proportion of adjacent gene expression when compared with non-differentially expressed TEs, indicating that modulations of TEs do not compound the effect on genes. These results suggest that the prevalent inverse TE modulation in aneuploidy results from stoichiometric upset of the regulatory machinery used by TEs, similar to the response of core genes to genomic imbalance.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Li Y, Liu H, Steenwyk JL, LaBella AL, Harrison MC, Groenewald M, Zhou X, Shen XX, Zhao T, Hittinger CT, Rokas A. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum. Curr Biol 2022; 32:5335-5343.e4. [PMID: 36334587 PMCID: PMC10615371 DOI: 10.1016/j.cub.2022.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Examination of the changes in order and arrangement of homologous genes is key for understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons between eukaryotic genomes have revealed considerable conservation across species that diverged hundreds of millions of years ago (e.g., vertebrates,1,2,3 bilaterian animals,4,5 and filamentous fungi6). However, understanding how genome organization evolves within and between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ∼400 million years of eukaryotic evolution to examine how their genome organization evolved and to compare it with the evolution of animal and plant genome organization.7 We found that the decay of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the conservation of local gene content and order) was strongly associated with evolutionary divergence across budding yeast major clades. However, although macrosynteny decayed very fast, within ∼100 million years, the microsynteny of many genes-especially genes in metabolic clusters (e.g., in the GAL gene cluster8)-was much more deeply conserved both within major clades and across the subphylum. We further found that when genomes with similar evolutionary divergence times were compared, budding yeasts had lower macrosynteny conservation than animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms exhibited very low conservation. Our results provide new insight into the tempo and mode of the evolution of gene and genome organization across an entire eukaryotic subphylum.
Collapse
Affiliation(s)
- Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 483 Wushan Road, Guangzhou 520643, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, 1552 University Avenue, University of Wisconsin-Madison, Madison, WI 53726-4084, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| |
Collapse
|
9
|
Xu Y, Zhang J, Ma C, Lei Y, Shen G, Jin J, Eaton DAR, Wu J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. MOLECULAR PLANT 2022; 15:1384-1399. [PMID: 35854658 DOI: 10.1016/j.molp.2022.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianjun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
11
|
Li C, Ma J, Wang G, Li H, Wang H, Wang G, Jiang Y, Liu Y, Liu G, Liu G, Cheng R, Wang H, Wei J, Yao L. Exploring the SiCCT Gene Family and Its Role in Heading Date in Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2022; 13:863298. [PMID: 35755676 PMCID: PMC9218912 DOI: 10.3389/fpls.2022.863298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
CCT transcription factors are involved in the regulation of photoperiod and abiotic stress in Arabidopsis and rice. It is not clear that how CCT gene family expand and regulate heading date in foxtail millet. In this study, we conducted a systematic analysis of the CCT gene family in foxtail millet. Thirty-nine CCT genes were identified and divided into four subfamilies based on functional motifs. Analysis showed that dispersed duplication played a predominant role in the expansion of CCT genes during evolution. Nucleotide diversity analysis suggested that genes in CONSTANS (COL)-like, CCT MOTIF FAMILY (CMF)-like, and pseudoresponse response regulator (PRR)-like subfamilies were subjected to selection. Fifteen CCT genes were colocalized with previous heading date quantitative trait loci (QTL) and genome-wide association analysis (GWAS) signals. Transgenic plants were then employed to confirm that overexpression of the CCT gene SiPRR37 delayed the heading date and increased plant height. Our study first investigated the characterization and expansion of the CCT family in foxtail millet and demonstrated the role of SiPRR37. These results lay a significant foundation for further research on the function of CCT genes and provide a cue for the regulation of heading date.
Collapse
Affiliation(s)
- Congcong Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Vegetable Research, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hailong Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Guoliang Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Lei Yao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| |
Collapse
|
12
|
Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication. Mol Biol Evol 2022; 39:msac118. [PMID: 35639978 PMCID: PMC9206413 DOI: 10.1093/molbev/msac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, "marking" one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
14
|
Ullah U, Buttar ZA, Shalmani A, Muhammad I, Ud-Din A, Ali H. Genome-wide identification and expression analysis of CPP-like gene family in Triticum aestivum L. under different hormone and stress conditions. Open Life Sci 2022; 17:544-562. [PMID: 35647295 PMCID: PMC9123298 DOI: 10.1515/biol-2022-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
The CPP-like plant‐specific transcription factor has a prominent role in plant development and growth through cell division and differential activities. However, little information is available about the CPP gene family in Triticum aestivum L. Herein, we identified 37 and 11 CPP genes in the wheat and rice genome databases, respectively. The phylogeny of the CPP protein-like family members was further divided into five subfamilies based on structural similarities and phenotypic functional diversities. The in silico expression analysis showed that CPP genes are highly expressed in some tissues, such as shoot apex, shoot, leaf, leaf sheath, and microspore. Furthermore, the qRT-PCR found higher expression for TaCPP gene family members in leaf, leaf blade, young spike, mature spike, and differential expression patterns under abiotic stresses, including heat, drought, salt, and hormonal treatment, such as indole acetic acid and 1-aminocyclopropane-1 carboxylic acid. We found that CPP gene family members are mostly located in the nucleus after infiltrating the CPP5-1B-GFP and TaCPP11-3B-GFP into tobacco leaves. The overexpression of the TaCPP5-1D gene revealed that the CPP gene positively regulates the germanium, shoot, and root activities in Arabidopsis. The TaCPP5-1D-overexpressed plants showed less anti-oxidative sensitivity under drought stress conditions. These results demonstrated that TaCPP5-1D protein has a crucial contribution by interacting with TaCPP11-3B protein in maintaining stress homeostasis under the natural and unfavorable environmental conditions for growth, development, and stress resistance activities. Therefore, this study could be used as pioneer knowledge to further investigate the function of CPP genes in plant growth and development.
Collapse
Affiliation(s)
- Uzair Ullah
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Zeeshan Ali Buttar
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Abdullah Shalmani
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Izhar Muhammad
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| |
Collapse
|
15
|
Shen S, Li Y, Wang J, Wei C, Wang Z, Ge W, Yuan M, Zhang L, Wang L, Sun S, Teng J, Xiao Q, Bao S, Feng Y, Zhang Y, Wang J, Hao Y, Lei T, Wang J. Illegitimate Recombination between Duplicated Genes Generated from Recursive Polyploidizations Accelerated the Divergence of the Genus Arachis. Genes (Basel) 2021; 12:genes12121944. [PMID: 34946893 PMCID: PMC8701993 DOI: 10.3390/genes12121944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8–13.1% of LCT-related and 11.3–16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates’ conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.
Collapse
Affiliation(s)
- Shaoqi Shen
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Weina Ge
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Sangrong Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jia Teng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yishan Feng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jiaqi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yanan Hao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- Correspondence: (T.L.); (J.W.)
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondence: (T.L.); (J.W.)
| |
Collapse
|
16
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
17
|
Hulse-Kemp AM, Bostan H, Chen S, Ashrafi H, Stoffel K, Sanseverino W, Li L, Cheng S, Schatz MC, Garvin T, du Toit LJ, Tseng E, Chin J, Iorizzo M, Van Deynze A. An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. THE PLANT GENOME 2021; 14:e20101. [PMID: 34109759 DOI: 10.1002/tpg2.20101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work.
Collapse
Affiliation(s)
- Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, USA
- USDA, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Shiyu Chen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Ashrafi
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Kevin Stoffel
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | - Shifeng Cheng
- BGI-Shenzhen, Shenzhen, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, P. R. China
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tyler Garvin
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
| | - Lindsey J du Toit
- Washington State University, SU Mount Vernon Northwestern Washington Research & Extension Center (NWREC), Mount Vernon, WA, 98273, USA
| | | | - Jason Chin
- Pacific Biosciences, Menlo Park, CA, USA
- DNAnexus Inc, 1975 W El Camino Real #204, Mountain View, CA, 94040, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
19
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. THE PLANT CELL 2021; 33:901-916. [PMID: 33656551 PMCID: PMC8226288 DOI: 10.1093/plcell/koab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/23/2021] [Indexed: 05/12/2023]
Abstract
The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
20
|
The Landscape of the Genomic Distribution and the Expression of the F-Box Genes Unveil Genome Plasticity in Hexaploid Wheat during Grain Development and in Response to Heat and Drought Stress. Int J Mol Sci 2021; 22:ijms22063111. [PMID: 33803701 PMCID: PMC8002965 DOI: 10.3390/ijms22063111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
FBX proteins are subunits of the SCF complex (Skp1-cullin-FBX) belonging to the E3 ligase family, which is involved in the ubiquitin-proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions.
Collapse
|
21
|
Shi X, Chen C, Yang H, Hou J, Ji T, Cheng J, Veitia RA, Birchler JA. The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods Mol Biol 2020; 2093:161-171. [PMID: 32088896 DOI: 10.1007/978-1-0716-0179-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France
- Universite Paris-Diderot/Paris 7, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Huang L, Ma Y, Jiang J, Li T, Yang W, Zhang L, Wu L, Feng L, Xi Z, Xu X, Liu J, Hu Q. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance. HORTICULTURE RESEARCH 2020; 7:197. [PMID: 33328471 PMCID: PMC7705659 DOI: 10.1038/s41438-020-00422-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Lobularia maritima (L.) Desv. is an ornamental plant cultivated across the world. It belongs to the family Brassicaceae and can tolerate dry, poor and contaminated habitats. Here, we present a chromosome-scale, high-quality genome assembly of L. maritima based on integrated approaches combining Illumina short reads and Hi-C chromosome conformation data. The genome was assembled into 12 pseudochromosomes with a 197.70 Mb length, and it includes 25,813 protein-coding genes. Approximately 41.94% of the genome consists of repetitive sequences, with abundant long terminal repeat transposable elements. Comparative genomic analysis confirmed that L. maritima underwent a species-specific whole-genome duplication (WGD) event ~22.99 million years ago. We identified ~1900 species-specific genes, 25 expanded gene families, and 50 positively selected genes in L. maritima. Functional annotations of these genes indicated that they are mainly related to stress tolerance. These results provide new insights into the stress tolerance of L. maritima, and this genomic resource will be valuable for further genetic improvement of this important ornamental plant.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jiebei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
23
|
Million KM, Bhattacharya A, Dinges ZM, Montgomery S, Smith E, Lively CM. DNA Content Variation and SNP Diversity Within a Single Population of Asexual Snails. J Hered 2020; 112:58-66. [PMID: 33245337 DOI: 10.1093/jhered/esaa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
A growing body of research suggests that many clonal populations maintain genetic diversity even without occasional sexual reproduction. The purpose of our study was to document variation in single-nucleotide polymorphism (SNP) diversity, DNA content, and pathogen susceptibility in clonal lineages of the New Zealand freshwater snail, Potamopyrgus antipodarum. We studied snails that were collected from multiple field sites around a single lake (Lake Alexandrina), as well as isofemale clonal lineages that had been isolated and maintained in the laboratory. We used the kompetitive allele specific PCR (KASP) method to genotype our samples at 46 nuclear SNP sites, and we used flow cytometry to estimate DNA content. We found high levels of SNP diversity, both in our field samples and in our clonal laboratory lines. We also found evidence of high variation in DNA content among clones, even among clones with identical genotypes across all SNP sites. Controlled pathogen exposures of the laboratory populations revealed variation in susceptibility among distinct clonal genotypes, which was independent of DNA content. Taken together, these results show high levels of diversity among asexual snails, especially for DNA content, and they suggest rapid genome evolution in asexuals.
Collapse
Affiliation(s)
- Kara M Million
- Department of Biology, Indiana University, Bloomington, IN
| | - Amrita Bhattacharya
- Department of Biology, Indiana University, Bloomington, IN.,Department of Biology, Penn State University, Mueller Laboratory, State College, PA
| | - Zoe M Dinges
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Eries Smith
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
24
|
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. THE NEW PHYTOLOGIST 2020; 226:1506-1516. [PMID: 31967665 DOI: 10.1111/nph.16445] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Coleine C, Masonjones S, Sterflinger K, Onofri S, Selbmann L, Stajich JE. Peculiar genomic traits in the stress-adapted cryptoendolithic Antarctic fungus Friedmanniomyces endolithicus. Fungal Biol 2020; 124:458-467. [PMID: 32389308 DOI: 10.1016/j.funbio.2020.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/28/2022]
Abstract
Friedmanniomyces endolithicus is a highly melanized fungus endemic to the Antarctic, occurring exclusively in endolithic communities of the ice-free areas of the Victoria Land, including the McMurdo Dry Valleys, the coldest and most hyper-arid desert on Earth and accounted as the Martian analog on our planet. F. endolithicus is highly successful in these inhospitable environments, the most widespread and commonly isolated species from these peculiar niches, indicating a high degree of adaptation. The nature of its extremo tolerance has not been previously studied. To investigate this, we sequenced genome of F. endolithicus CCFEE 5311 to explore gene content and genomic patterns that could be attributed to its specialization. The predicted functional potential of the genes was assigned by similarity to InterPro and CAZy domains. The genome was compared to phylogenetically close relatives which are also melanized fungi occurring in extreme environments including Friedmanniomyces simplex, Baudoinia panamericana, Acidomyces acidophilus, Hortaea thailandica and Hortaea werneckii. We tested if shared genomic traits existed among these species and hyper-extremotolerant fungus F. endolithicus. We found that some characters for stress tolerance such as meristematic growth and cold tolerance are enriched in F. endolithicus that may be triggered by the exposure to Antarctic prohibitive conditions.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
27
|
Kong W, Gong Z, Zhong H, Zhang Y, Zhao G, Gautam M, Deng X, Liu C, Zhang C, Li Y. Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica. Biomolecules 2019; 9:E188. [PMID: 31096659 PMCID: PMC6571792 DOI: 10.3390/biom9050188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls play a fundamental role in several ways, providing structural support for cells, resistance against pathogens and facilitating the communication between cells. The glycosyltransferase family 8 (GT8) is involved in the formation of the plant cell wall. However, the evolutionary relationship and the functional differentiation of this important gene family remain obscure in Gramineae crop genomes. In the present investigation, we identified 269 GT8 genes in the seven Gramineae representative crop genomes, namely, 33 in Hordeum vulgare, 37 in Brachypodium distachyon, 40 in Oryza sativa ssp. japonica, 41 in Oryza rufipogon, 36 in Setaria italica, 37 in Sorghum bicolor, and 45 in Zea mays. Phylogenetic analysis suggested that all identified GT8 proteins belonged to seven subfamilies: galacturonosyltransferase (GAUT), galacturonosyltransferase-like (GATL), GATL-related (GATR), galactinol synthase (GolS), and plant glycogenin-like starch initiation proteins A (PGSIP-A), PGSIP-B, and PGSIP-C. We estimated that the GAUT subfamily might be further divided into four subgroups (I-IV) due to differentiation of gene structures and expression patterns. Our orthogroup analysis identified 22 orthogroups with different sizes. Of these orthogroups, several orthogroups were lost in some species, such as S. italica and Z. mays. Moreover, lots of duplicate pairs and collinear pairs were discovered among these species. These results indicated that multiple duplication modes led to the expansion of this important gene family and unequal loss of orthogroups and subfamilies might have happened during the evolutionary process. RNA-seq, microarray analysis, and qRT-PCR analyses indicated that GT8 genes are critical for plant growth and development, and for stresses responses. We found that OsGolS1 was significantly up-regulated under salt stress, while OsGAUT21, OsGATL2, and OsGATL5 had remarkable up-regulation under cold stress. The current study highlighted the expansion and evolutionary patterns of the GT8 gene family in these seven Gramineae crop genomes and provided potential candidate genes for future salt- and cold- resistant molecular breeding studies in O. sativa.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ziyun Gong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Gangqing Zhao
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mayank Gautam
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoxiao Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chang Liu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chenhao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
28
|
Liu M, Fu Q, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). PLANTA 2019; 249:1301-1318. [PMID: 30617544 DOI: 10.1007/s00425-019-03089-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Genome-wide identification, expression analysis and potential functional characterization of previously uncharacterized MADS family of tartary buckwheat, emphasized the importance of this gene family in plant growth and development. The MADS transcription factor is a key regulatory factor in the development of most plants. The MADS gene in plants controls all aspects of tissue and organ growth and reproduction and can be used to regulate plant seed cracking. However, there has been little research on the MADS genes of tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allows us to study the tissue and expression profiles of the MADS gene in tartary buckwheat at a genome-wide level. In this study, 65 MADS genes of tartary buckwheat were identified and renamed according to the chromosomal distribution of the FtMADS genes. Here, we provide a complete overview of the gene structure, gene expression, genomic mapping, protein motif organization, and phylogenetic relationships of each member of the gene family. According to the phylogenetic relationship of MADS genes, the transcription factor family was divided into two subfamilies, the M subfamily (28 genes) and the MIKC subfamily (37 genes). The results showed that the FtMADS genes belonged to related sister pairs and the chromosomal map showed that the replication of FtMADSs was related to the replication of chromosome blocks. In different tissues and at different fruit development stages, the FtMADS genes obtained by real-time quantitative PCR (RT-qPCR) showed obvious expression patterns. A comprehensive analysis of the MADS genes in tartary buckwheat was conducted. Through systematic analysis, the potential genes that may regulate the growth and development of tartary buckwheat and the genes that may regulate the easy dehulling of tartary buckwheat fruit were screened, which laid a solid foundation for improving the quality of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qiankun Fu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
29
|
Chen L, Li YX, Li C, Shi Y, Song Y, Zhang D, Li Y, Wang T. Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development. BMC PLANT BIOLOGY 2018; 18:366. [PMID: 30567489 PMCID: PMC6299966 DOI: 10.1186/s12870-018-1572-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants (450 PPR genes in Arabidopsis, 477 PPR genes in rice and 486 PPR genes in foxtail millet) and is important for plant development and growth. Most PPR genes are encoded by plastid and mitochondrial genomes, and the gene products regulate the expression of the related genes in higher plants. However, the functions remain largely unknown, and systematic analysis and comparison of the PPR gene family in different maize genomes have not been performed. RESULTS In this study, systematic identification and comparison of PPR genes from two elite maize inbred lines, B73 and PH207, were performed. A total of 491 and 456 PPR genes were identified in the B73 and PH207 genomes, respectively. Basic bioinformatics analyses, including of the classification, gene structure, chromosomal location and conserved motifs, were conducted. Examination of PPR gene duplication showed that 12 and 15 segmental duplication gene pairs exist in the B73 and PH207 genomes, respectively, with eight duplication events being shared between the two genomes. Expression analysis suggested that 53 PPR genes exhibit qualitative variations in the different genetic backgrounds. Based on analysis of the correlation between PPR gene expression in kernels and kernel-related traits, four PPR genes are significantly negatively correlated with hundred kernel weight, 12 are significantly negatively correlated with kernel width, and eight are significantly correlated with kernel number. Eight of the 24 PPR genes are also located in metaQTL regions associated with yield and kernel-related traits in maize. Two important PPR genes (GRMZM2G353195 and GRMZM2G141202) might be regarded as important candidate genes associated with maize kernel-related traits. CONCLUSIONS Our results provide a more comprehensive understanding of PPR genes in different maize inbred lines and identify important candidate genes related to kernel development for subsequent functional validation in maize.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong-xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
30
|
Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen MR, Hsu FM, Ji T, Chen PY, Matzke M, Matzke AJM, Cheng J, Birchler JA. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 2018; 115:E11321-E11330. [PMID: 30429332 PMCID: PMC6275517 DOI: 10.1073/pnas.1807796115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 550000
| | - Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding, Cologne, Germany 50829
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Fei-Man Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Antonius J M Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
31
|
Lachowiec J, Mason GA, Schultz K, Queitsch C. Redundancy, Feedback, and Robustness in the Arabidopsis thaliana BZR/BEH Gene Family. Front Genet 2018; 9:523. [PMID: 30542366 PMCID: PMC6277886 DOI: 10.3389/fgene.2018.00523] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
Organismal development is remarkably robust, tolerating stochastic errors to produce consistent, so-called canalized adult phenotypes. The mechanistic underpinnings of developmental robustness are poorly understood, but recent studies implicate certain features of genetic networks such as functional redundancy, connectivity, and feedback. Here, we examine the BZR/BEH gene family, whose function contributes to embryonic stem development in the plant Arabidopsis thaliana, to test current assumptions on functional redundancy and trait robustness. Our analyses of BZR/BEH gene mutants and mutant combinations revealed that functional redundancy among these gene family members is not necessary for trait robustness. Connectivity is another commonly cited determinant of robustness; however, we found no correlation between connectivity among gene family members or their connectivity with other transcription factors and effects on developmental robustness. Instead, our data suggest that BEH4, the earliest diverged family member, modulates developmental robustness. We present evidence indicating that regulatory cross-talk among gene family members is integrated by BEH4 to promote wild-type levels of developmental robustness. Further, the chaperone HSP90, a known determinant of developmental robustness, appears to act via BEH4 in maintaining robustness of embryonic stem length. In summary, we demonstrate that even among closely related transcription factors, trait robustness can arise through the activity of a single gene family member, challenging common assumptions about the molecular underpinnings of robustness.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - G. Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Karla Schultz
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
32
|
Gao B, Chen M, Li X, Liang Y, Zhu F, Liu T, Zhang D, Wood AJ, Oliver MJ, Zhang J. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC PLANT BIOLOGY 2018; 18:256. [PMID: 30367626 PMCID: PMC6204039 DOI: 10.1186/s12870-018-1437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Facilitated by the rapid progress of sequencing technology, comparative genomic studies in plants have unveiled recurrent whole genome duplication (i.e. polyploidization) events throughout plant evolution. The evolutionary past of plant genes should be analyzed in a background of recurrent polyploidy events in distinctive plant lineages. The Vascular Plant One Zinc-finger (VOZ) gene family encode transcription factors associated with a number of important traits including control of flowering time and photoperiodic pathways, but the evolutionary trajectory of this gene family remains uncharacterized. RESULTS In this study, we deciphered the evolutionary history of the VOZ gene family by analyses of 107 VOZ genes in 46 plant genomes using integrated methods: phylogenic reconstruction, Ks-based age estimation and genomic synteny comparisons. By scrutinizing the VOZ gene family phylogeny the core eudicot γ event was well circumscribed, and relics of the precommelinid τ duplication event were detected by incorporating genes from oil palm and banana. The more recent T and ρ polyploidy events, closely coincident with the species diversification in Solanaceae and Poaceae, respectively, were also identified. Other important polyploidy events captured included the "salicoid" event in poplar and willow, the "early legume" and "soybean specific" events in soybean, as well as the recent polyploidy event in Physcomitrella patens. Although a small transcription factor gene family, the evolutionary history of VOZ genes provided an outstanding record of polyploidy events in plants. The evolutionary past of VOZ gene family demonstrated a close correlation with critical plant polyploidy events which generated species diversification and provided answer to Darwin's "abominable mystery". CONCLUSIONS We deciphered the evolutionary history of VOZ transcription factor family in plants and ancestral polyploidy events in plants were recapitulated simultaneously. This analysis allowed for the generation of an idealized plant gene tree demonstrating distinctive retention and fractionation patterns following polyploidy events.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Fuyuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 China
| | - Tieyuan Liu
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale, IL 62901-6509 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211 USA
| | - Jianhua Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
33
|
Jones DM, Wells R, Pullen N, Trick M, Irwin JA, Morris RJ. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29989238 PMCID: PMC6175450 DOI: 10.1111/tpj.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms such events have occurred repeatedly in many plant lineages. Here we investigate the retention and spatio-temporal expression dynamics of duplicated genes predicted to regulate the floral transition in Brassica napus (oilseed rape, OSR). We show that flowering time genes are preferentially retained relative to other genes in the OSR genome. Using a transcriptome time series in two tissues (leaf and shoot apex) across development we show that 67% of these retained flowering time genes are expressed. Furthermore, between 64% (leaf) and 74% (shoot apex) of the retained gene homologues show diverged expression patterns relative to each other across development, suggesting neo- or subfunctionalization. A case study of homologues of the shoot meristem identity gene TFL1 reveals differences in cis-regulatory elements that could explain this divergence. Such differences in the expression dynamics of duplicated genes highlight the challenges involved in translating gene regulatory networks from diploid model systems to more complex polyploid crop species.
Collapse
Affiliation(s)
- D. Marc Jones
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rachel Wells
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nick Pullen
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Martin Trick
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Judith A. Irwin
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
34
|
Microsynteny analysis to understand evolution and impact of polyploidization on MIR319 family within Brassicaceae. Dev Genes Evol 2018; 228:227-242. [PMID: 30242472 DOI: 10.1007/s00427-018-0620-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
The availability of a large number of whole-genome sequences allows comparative genomic analysis to reveal and understand evolution of regulatory regions and elements. The role played by events such as whole-genome and segmental duplications followed by genome fractionation in shaping genomic landscape and in expansion of gene families is crucial toward developing insights into evolutionary trends and consequences such as sequence and functional diversification. Members of Brassicaceae are known to have experienced several rounds of whole-genome duplication (WGD) that have been termed as paleopolyploidy, mesopolyploidy, and neopolyploidy. Such repeated events led to the creation and expansion of a large number of gene families. MIR319 is reported to be one of the most ancient and conserved plant MIRNA families and plays a role in growth and development including leaf development, seedling development, and embryo patterning. We have previously reported functional diversification of members of miR319 in Brassica oleracea affecting leaf architecture; however, the evolutionary history of the MIR319 gene family across Brassicaceae remains unknown and requires investigation. We therefore identified homologous and homeologous segments of ca. 100 kb, with or without MIR319, performed comparative synteny analysis and genome fractionation studies. We detected variable rates of gene retention across members of Brassicaceae when genomic blocks of MIR319a, MIR319b, and MIR319c were compared either between themselves or against Arabidopsis thaliana genome which was taken as the base genome. The highest levels of shared genes were found between A. thaliana and Capsella rubella in both MIR319b- and MIR319c-containing genomic segments, and with the closest species of A. thaliana, A. lyrata, only in MIR319a-containing segment. Synteny analysis across 12 genomes (with 30 sub-genomes) revealed MIR319c to be the most conserved MIRNA loci (present in 27 genomes/sub-genomes) followed by MIR319a (present in 23 genomes/sub-genomes); MIR319b was found to be frequently lost (present in 20 genomes/sub-genomes) and thus is under least selection pressure for retention. Genome fractionation revealed extensive and differential loss of MIRNA homeologous loci and flanking genes from various sub-genomes of Brassica species that is in accordance with their older history of polyploidy when compared to Camelina sativa, a recent neopolyploid, where the effect of genome fractionation was least. Finally, estimation of phylogenetic relationship using precursor sequences of MIR319 reveals MIR319a and MIR319b form sister clades, with MIR319c forming a separate clade. An intra-species synteny analysis between MIR319a-, MIR319b-, and MIR319c-containing genomic segments suggests segmental duplications at the base of Brassicaceae to be responsible for the origin of MIR319a and MIR319b.
Collapse
|
35
|
Genome-Wide Identification, Classification, and Expression Divergence of Glutathione-Transferase Family in Brassica rapa under Multiple Hormone Treatments. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6023457. [PMID: 29992155 PMCID: PMC5994329 DOI: 10.1155/2018/6023457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/26/2022]
Abstract
The GSTs is one of the most important multifunctional protein families which has been playing a crucial role in the different aspects of plant growth. This extensive study about GSTs may establish a solid foundation for the brief functional analysis of BraGSTs in future. In this study, a total of 75 genes were identified in B. rapa. Phylogenetic analysis characterized them into eight different subclasses, while Tau and Phi subclasses were the most numerous. The exon-intron structure and the motif composition of BraGSTs were exhibited accordingly to their subclasses. Notably, we also investigated 15 tandem paralogous pairs of genes, which highlighted that all the pairs were purifying in nature as their synonymous values were lower than 1.00. Duplication analysis indicated that about 45.33% of genes mainly occurred through tandem duplication in B. rapa. Predominately, the tandem cluster of genes in subclass Tau was greater than the other subclasses. Furthermore, among eight multiple hormonal treatments (ABA, GA, BR, ETH, IAA, IBA, NPA, and JA), most number of BraGSTs was activated by NPA, BR, and ABA treatments. This analysis has provided comprehensive information about GSTs family which may assist in elucidating their exact functions in B. rapa.
Collapse
|
36
|
Herklotz V, Kovařík A, Lunerová J, Lippitsch S, Groth M, Ritz CM. The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:77-90. [PMID: 29385286 DOI: 10.1111/tpj.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 05/02/2023]
Abstract
Dogroses represent an exceptional system for studying the effects of genome doubling and hybridization: their asymmetrical meiosis enables recombination in bi-parentally inherited chromosomes but prevents it in maternally inherited ones. We employed fluorescent in situ hybridization, genome skimming, amplicon sequencing of genomic and cDNA as well as conventional cloning of nuclear ribosomal DNA in two phylogenetically distinct pentaploid (2n = 5x = 35) species, Rosa canina and Rosa inodora, and their naturally occurring reciprocal hybrids, Rosa dumalis (5x) and Rosa agrestis (5x, 6x). Both progenitor species differed in composition, meiotic behaviour and expression of rDNA loci: R. canina (five 18S and 5-8 5S loci) was dominated by the Canina ribotypes, but R. inodora (four 18S loci and 7-8 5S loci) by the Rubiginosa ribotype. The co-localized 5S/18S loci occurred on either bivalent-forming (R. canina) or univalent-forming (R. inodora) chromosomes. Ribosomal DNA loci were additively inherited; however, the Canina ribotypes were dominantly expressed, even in genotypes with relatively low copy number of these genes. Moreover, we observed rDNA homogenization towards the paternally transmitted Canina ribotype in 6x R. agrestis. The here-observed variation in arrangement and composition of rDNA types between R. canina and R. inodora suggests the involvement of different genomes in bivalent formation. This results supports the hypothesis that the asymmetrical meiosis arose at least twice by independent ancient hybridization events.
Collapse
Affiliation(s)
- Veit Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Am Museum 1, D-02826, Görlitz, Germany
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Susan Lippitsch
- Department of Ecology and Environment Protection, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, D-02763, Zittau, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Christiane M Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Am Museum 1, D-02826, Görlitz, Germany
| |
Collapse
|
37
|
Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J. Widespread Whole Genome Duplications Contribute to Genome Complexity and Species Diversity in Angiosperms. MOLECULAR PLANT 2018; 11:414-428. [PMID: 29317285 DOI: 10.1016/j.molp.2018.01.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 05/18/2023]
Abstract
Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of retained duplicates. WGDs are strongly supported by evidence commonly found in many species-rich lineages of eukaryotes, and thus are considered as a major driving force in species diversification. We performed comparative genomic and phylogenomic analyses of 59 public genomes/transcriptomes and 46 newly sequenced transcriptomes covering major lineages of angiosperms to detect large-scale gene duplication events by surveying tens of thousands of gene family trees. These analyses confirmed most of the previously reported WGDs and provided strong evidence for novel ones in many lineages. The detected WGDs supported a model of exponential gene loss during evolution with an estimated half-life of approximately 21.6 million years, and were correlated with both the emergence of lineages with high degrees of diversification and periods of global climate changes. The new datasets and analyses detected many novel WGDs widely spread during angiosperm evolution, uncovered preferential retention of gene functions in essential cellular metabolisms, and provided clues for the roles of WGD in promoting angiosperm radiation and enhancing their adaptation to environmental changes.
Collapse
Affiliation(s)
- Ren Ren
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Haifeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunce Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, USA
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Science, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Rody HVS, Oliveira LOD. Evolutionary history of the cobalamin-independent methionine synthase gene family across the land plants. Mol Phylogenet Evol 2018; 120:33-42. [PMID: 29222062 DOI: 10.1016/j.ympev.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/26/2023]
Abstract
Plants are successful paleopolyploids. The wide diversity of land plants is driven strongly by their gene duplicates undergoing distinct evolutionary fates after duplication. We used genomic resources from 35 model plant species to unravel the evolutionary fate of gene copies (paralogs) of the cobalamin-independent methionine synthase (metE) gene family across the land plants. To explore genealogical relationships and characterize positive selection as a driving force in the evolution of metE paralogs within a single species, we carried out complementary analyses on genomic data of 32 genotypes of soybean. The size of the metE gene family remained small across the land plants; most of the studied species possessed 1-6 paralogs. Gene products were either cytosolic or chloroplastic; this dual subcellular distribution arose early during the divergence of the land plants and reached all extant lineages. Biased gene loss and gene retention events took place multiple times; recurrent evolution remodeled redundant metE paralogs to recover and maintain the dual subcellular distribution of MetE. Shared whole-genome duplication events gave rise to the metE paralogs of both soybean and Medicago truncatula. In soybean, the ancestral paralog pair GlymaPP2A encoded a cytosolic isoform of MetE, was under strong purifying selection, and retained high levels of expression across eight RNA-seq expression libraries. The daughters GlymaPP1 and GlymaPP2B showed accelerated rates of evolution, accumulated many sites predicted to be under positive selection, and possessed low levels of expression. Our results suggest that the metE paralogs of soybean follow Ohno's neofunctionalization model of gene duplicate evolution.
Collapse
Affiliation(s)
- Hugo Vianna Silva Rody
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Luiz Orlando de Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
39
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Liu L, Wu Y, Liao Z, Xiong J, Wu F, Xu J, Lan H, Tang Q, Zhou S, Liu Y, Lu Y. Evolutionary conservation and functional divergence of the LFK gene family play important roles in the photoperiodic flowering pathway of land plants. Heredity (Edinb) 2017; 120:310-328. [PMID: 29225355 DOI: 10.1038/s41437-017-0006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1)-blue-light photoreceptors-play important roles in regulating the circadian clock and photoperiodic flowering pathway in plants. In this study, phylogenetic analysis revealed that the LOV (Light, Oxygen, or Voltage) and Kelch repeat-containing F-box (LFK) gene family can be classified into two clades, ZTL/LKP2 and FKF1, with clear differentiation between monocots and dicots within each clade. The LFK family genes underwent strong purifying selection; however, signatures of positive selection to adapt to local conditions still existed in 18 specific codons. In 87 diverse maize inbred lines, significant differences were identified (P ≤ 0.01) for days to female flowering between the haplotypes consisting of eight positive selection sites at ZmFKF1b corresponding to tropical and temperate maize groups of the phylogenetic tree, indicating a key role of ZmFKF1b in maize adaptive evolution. In addition, positive coevolution was detected in the domains of the LFK family for long-term cooperation to targets. The Type-I and Type-II functional divergence analysis revealed subfunctionalization or neofunctionalization of the LFKs, and the ZTL subfamily is most likely to maintain the ancestral function of LFKs. Over 50% of critical amino acid sites involved in the functional divergence were identified in the Kelch repeat domain, resulting in the distinction of substrates for ubiquitination and degradation. These results suggest that evolutionary conservation contributes to the maintenance of critical physiological functions, whereas functional divergence after duplication helps to generate diverse molecular regulation mechanisms.
Collapse
Affiliation(s)
- Ling Liu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Yuanqi Wu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Jing Xiong
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Qiling Tang
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Shufeng Zhou
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China. .,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, China.
| |
Collapse
|
41
|
Banerjee S, Feyertag F, Alvarez-Ponce D. Intrinsic protein disorder reduces small-scale gene duplicability. DNA Res 2017; 24:435-444. [PMID: 28430886 PMCID: PMC5737077 DOI: 10.1093/dnares/dsx015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/28/2017] [Indexed: 01/23/2023] Open
Abstract
Whereas the rate of gene duplication is relatively high, only certain duplications survive the filter of natural selection and can contribute to genome evolution. However, the reasons why certain genes can be retained after duplication whereas others cannot remain largely unknown. Many proteins contain intrinsically disordered regions (IDRs), whose structures fluctuate between alternative conformational states. Due to their high flexibility, IDRs often enable protein–protein interactions and are the target of post-translational modifications. Intrinsically disordered proteins (IDPs) have characteristics that might either stimulate or hamper the retention of their encoding genes after duplication. On the one hand, IDRs may enable functional diversification, thus promoting duplicate retention. On the other hand, increased IDP availability is expected to result in deleterious unspecific interactions. Here, we interrogate the proteomes of human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli, in order to ascertain the impact of protein intrinsic disorder on gene duplicability. We show that, in general, proteins encoded by duplicated genes tend to be less disordered than those encoded by singletons. The only exception is proteins encoded by ohnologs, which tend to be more disordered than those encoded by singletons or genes resulting from small-scale duplications. Our results indicate that duplication of genes encoding IDPs outside the context of whole-genome duplication (WGD) is often deleterious, but that IDRs facilitate retention of duplicates in the context of WGD. We discuss the potential evolutionary implications of our results.
Collapse
Affiliation(s)
- Sanghita Banerjee
- Department of Biology, University of Nevada, Reno, NV 89557, USA.,Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
42
|
Yu J, Tehrim S, Wang L, Dossa K, Zhang X, Ke T, Liao B. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. BMC Genomics 2017; 18:733. [PMID: 28923019 PMCID: PMC5604286 DOI: 10.1186/s12864-017-4094-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 08/29/2017] [Indexed: 11/23/2022] Open
Abstract
Background The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Results Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana–B. rapa and A. thaliana–B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. Conclusions This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450 gene families in A. thaliana and Brassica species. This study provides a biology model to study the mechanism of gene family formation, particularly in the context of the evolutionary history of angiosperms, and offers novel insights for the study of angiosperm genomes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4094-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Sadia Tehrim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Sénégal
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Tao Ke
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
43
|
Kou X, Qi K, Qiao X, Yin H, Liu X, Zhang S, Wu J. Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics 2017; 109:290-301. [DOI: 10.1016/j.ygeno.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
|
44
|
Yang H, Shi G, Du H, Wang H, Zhang Z, Hu D, Wang J, Huang F, Yu D. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12. THE PLANT GENOME 2017; 10. [PMID: 28464070 DOI: 10.3835/plantgenome2016.07.0058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
Plant-specific () genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L.) Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II). The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11%) of them were detected in segmental duplicated regions. Furthermore, the exon-intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L.) Heynh resulted in increases in lateral root (LR) number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA), abscisic acid (ABA), and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.
Collapse
|
45
|
Rody HVS, Baute GJ, Rieseberg LH, Oliveira LO. Both mechanism and age of duplications contribute to biased gene retention patterns in plants. BMC Genomics 2017; 18:46. [PMID: 28061859 PMCID: PMC5219802 DOI: 10.1186/s12864-016-3423-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. RESULTS We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. CONCLUSIONS Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.
Collapse
Affiliation(s)
- Hugo V S Rody
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Gregory J Baute
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Luiz O Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
46
|
Huang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics. Mol Biol Evol 2016; 33:2820-2835. [PMID: 27604225 PMCID: PMC5062320 DOI: 10.1093/molbev/msw157] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mian Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA
| | - Tiangang Gao
- State Key Laboratory of Evolutionary and Systematic Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Le B, Nawaz MA, Rehman HM, Le T, Yang SH, Golokhvast KS, Son E, Chung G. Genome-wide characterization and expression pattern of auxin response factor (ARF) gene family in soybean and common bean. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Chen S, Wirthmueller L, Stauber J, Lory N, Holtkotte X, Leson L, Schenkel C, Ahmad M, Hoecker U. The functional divergence between SPA1 and SPA2 in Arabidopsis photomorphogenesis maps primarily to the respective N-terminal kinase-like domain. BMC PLANT BIOLOGY 2016; 16:165. [PMID: 27444995 PMCID: PMC4957354 DOI: 10.1186/s12870-016-0854-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. In the light, COP1/SPA activity is inhibited by photoreceptors, thereby allowing accumulation of these transcription factors and a subsequent light response. Previous results have shown that the four members of the SPA family exhibit partially divergent functions. In particular, SPA1 and SPA2 strongly differ in their responsiveness to light, while they have indistinguishable activities in darkness. The much higher light-responsiveness of SPA2 is partially explained by the much stronger light-induced degradation of SPA2 when compared to SPA1. Here, we have conducted SPA1/SPA2 domain swap experiments to identify the protein domain(s) responsible for the functional divergence between SPA1 and SPA2. RESULTS We have individually swapped the three domains between SPA1 and SPA2 - the N-terminal kinase-like domain, the coiled-coil domain and the WD-repeat domain - and expressed them in spa mutant Arabidopsis plants. The phenotypes of transgenic seedlings show that the respective N-terminal kinase-like domain is primarily responsible for the respective light-responsiveness of SPA1 and SPA2. Furthermore, the most divergent part of the N-terminal domain was sufficient to confer a SPA1- or SPA2-like activity to the respective SPA protein. The stronger light-induced degradation of SPA2 when compared to SPA1 was also primarily conferred by the SPA2 N-terminal domain. At last, the different affinities of SPA1 and SPA2 for cryptochrome 2 are defined by the N-terminal domain of the respective SPA protein. In contrast, both SPA1 and SPA2 similarly interacted with COP1 in light-grown seedlings. CONCLUSIONS Our results show that the distinct activities and protein stabilities of SPA1 and SPA2 in light-grown seedlings are primarily encoded by their N-terminal kinase-like domains. Similarly, the different affinities of SPA1 and SPA2 for cry2 are explained by their respective N-terminal domain. Hence, after a duplication event during evolution, the N-terminal domains of SPA1 and SPA2 underwent subfunctionalization, possibly to allow optimal adaptation of growth and development to a changing light environment.
Collapse
Affiliation(s)
- Song Chen
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- />Present Address: Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Lennart Wirthmueller
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- />Present Address: Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, Berlin, Germany
| | - Johannes Stauber
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Niels Lory
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Xu Holtkotte
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Lisa Leson
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Christian Schenkel
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Margaret Ahmad
- />UMR 8256 (B2A) CNRS - UPMC, IBPS, Université Pierre et Marie Curie, Bat C, 9 quai Saint-Bernard, 75252 Paris Cedex 05, France
| | - Ute Hoecker
- />Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
49
|
Zhang J, Tian Y, Yan L, Zhang G, Wang X, Zeng Y, Zhang J, Ma X, Tan Y, Long N, Wang Y, Ma Y, He Y, Xue Y, Hao S, Yang S, Wang W, Zhang L, Dong Y, Chen W, Sheng J. Genome of Plant Maca (Lepidium meyenii) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes. MOLECULAR PLANT 2016; 9:1066-77. [PMID: 27174404 DOI: 10.1016/j.molp.2016.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 05/20/2023]
Abstract
Maca (Lepidium meyenii Walp, 2n = 8x = 64), belonging to the Brassicaceae family, is an economic plant cultivated in the central Andes sierra in Peru (4000-4500 m). Considering that the rapid uplift of the central Andes occurred 5-10 million years ago (Ma), an evolutionary question arises regarding how plants such as maca acquire high-altitude adaptation within a short geological period. Here, we report the high-quality genome assembly of maca, in which two closely spaced maca-specific whole-genome duplications (WGDs; ∼6.7 Ma) were identified. Comparative genomic analysis between maca and closely related Brassicaceae species revealed expansions of maca genes and gene families involved in abiotic stress response, hormone signaling pathway, and secondary metabolite biosynthesis via WGDs. The retention and subsequent functional divergence of many duplicated genes may account for the morphological and physiological changes (i.e., small leaf shape and self-fertility) in maca in a high-altitude environment. In addition, some duplicated maca genes were identified with functions in morphological adaptation (i.e., LEAF CURLING RESPONSIVENESS) and abiotic stress response (i.e., GLYCINE-RICH RNA-BINDING PROTEINS and DNA-DAMAGE-REPAIR/TOLERATION 2) under positive selection. Collectively, the maca genome provides useful information to understand the important roles of WGDs in the high-altitude adaptation of plants in the Andes.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Tian
- College of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Guanghui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming 650201, China
| | - Xiao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajin Zhang
- School of Science and Information Engineering, Yunnan Agricultural University, Kunming 650201, China
| | - Xiao Ma
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yuntao Tan
- College of Life Science, Kunming University of Science and Technology, Kunming 650504, China
| | - Ni Long
- College of Life Science, Kunming University of Science and Technology, Kunming 650504, China
| | - Yangzi Wang
- College of Life Science, Kunming University of Science and Technology, Kunming 650504, China
| | - Yujin Ma
- College of Life Science, Kunming University of Science and Technology, Kunming 650504, China
| | - Yuqi He
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Xue
- College of Life Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shumei Hao
- Yunnan University, Kunming 650091, China
| | - Shengchao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming 650201, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yang Dong
- College of Life Science, Kunming University of Science and Technology, Kunming 650504, China; Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China.
| | - Wei Chen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China.
| | - Jun Sheng
- College of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Pu'er Institute of Pu-erh Tea, Pu'er 665000, China.
| |
Collapse
|
50
|
Hou J, Ye N, Dong Z, Lu M, Li L, Yin T. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication. Genome Biol Evol 2016; 8:1868-75. [PMID: 27352946 PMCID: PMC4943198 DOI: 10.1093/gbe/evw127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.
Collapse
Affiliation(s)
- Jing Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhongyuan Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|