1
|
Xu X, Zhang C, Tong N, Lan X, Cui J, Muhammad A, Zhang Z, Zhang Z, Chen Y, Lin Y, Lai Z. Transcriptome Analysis Revealed the Regulatory Mechanism of DIMBOA Affecting Early Somatic Embryogenesis in Dimocarpus longan Lour. PLANTS (BASEL, SWITZERLAND) 2025; 14:442. [PMID: 39943004 PMCID: PMC11820951 DOI: 10.3390/plants14030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Dimocarpus longan Lour. is an evergreen tree of the genus Longan in the Sapindaceae family, native to tropical and subtropical regions. Longan embryonic development is closely related to fruit set and fruit quality. An in-depth study of the mechanism of longan embryonic development could therefore contribute to the development of the longan industry. DIMBOA is the principal compound representing benzoxazinoids (BXs), and is closely linked to auxin biosynthesis and signal transduction. Auxin is one of the crucial hormones for inducing somatic embryogenesis (SE) in plants. Previous research has shown that DIMBOA promotes morphogenesis in the early somatic embryogenesis of longan, but the specific regulatory mechanism has not yet been clarified. To elucidate the molecular mechanism by which DIMBOA affects early somatic embryogenesis in longan, we chose longan embryogenic cultures grown under 0 mg/L DIMBOA as the control group (the check, CK), and longan embryogenic cultures grown under 0.1 mg/L DIMBOA as the treatment group (D) to be analyzed by transcriptomic sequencing. A total of 478 differentially expressed genes (DEGs) are detected in check vs. D, of which 193 are upregulated and 285 are downregulated. These DEGs are significantly enriched in the biosynthetic and metabolic functions of various substances such as vitamin B6 (VB6) biosynthesis, phenylpropanoid pathways, and carbohydrate metabolism. DIMBOA affects SE processes in longan via TFs, including MYB, ZF, bHLH, LBD, NAC, WRKY, etc. After DIMBOA treatment, the expression of most of the key genes for IAA synthesis was significantly downregulated, VB6 content was significantly reduced, and H2O2 content was significantly increased. Therefore, it is suggested that DIMBOA directly or indirectly affects the H2O2 content through the VB6 metabolic pathway, thereby regulating the endogenous IAA level to modulate the early SE morphogenesis of longan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (C.Z.); (N.T.); (X.L.); (J.C.); (A.M.); (Z.Z.); (Z.Z.)
| |
Collapse
|
2
|
Heidemann B, Primetis E, Zahn IE, Underwood CJ. To infinity and beyond: recent progress, bottlenecks, and potential of clonal seeds by apomixis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70054. [PMID: 39981717 PMCID: PMC11843595 DOI: 10.1111/tpj.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Apomixis - clonal seed production in plants - is a rare yet phylogenetically widespread trait that has recurrently evolved in plants to fix hybrid genotypes over generations. Apomixis is absent from major crop species and has been seen as a holy grail of plant breeding due to its potential to propagate hybrid vigor in perpetuity. Here we exhaustively review recent progress, bottlenecks, and potential in the individual components of gametophytic apomixis (avoidance of meiosis, skipping fertilization by parthenogenesis, autonomous endosperm development), and sporophytic apomixis. The Mitosis instead of Meiosis system has now been successfully set up in three species (Arabidopsis, rice, and tomato), yet significant hurdles remain for universal bioengineering of clonal gametes. Parthenogenesis has been engineered in even more species, yet incomplete penetrance still remains an issue; we discuss the choice of parthenogenesis genes (BABY BOOM, PARTHENOGENESIS, WUSCHEL) and also how to drive egg cell-specific expression. The identification of pathways to engineer autonomous endosperm development would allow fully autonomous seed production, yet here significant challenges remain. The recent achievements in the engineering of synthetic apomixis in rice at high penetrance show great potential and the remaining obstacles toward implementation in this crop are addressed. Overall, the recent practical examples of synthetic apomixis suggest the field is flourishing and implementation in agricultural systems could soon take place.
Collapse
Affiliation(s)
- Bas Heidemann
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenthe Netherlands
| | - Elias Primetis
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenthe Netherlands
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| | - Iris E. Zahn
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenthe Netherlands
| | - Charles J. Underwood
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenthe Netherlands
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| |
Collapse
|
3
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
4
|
Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, Sankaranarayanan S, Pathak B. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Front Genome Ed 2025; 6:1488024. [PMID: 39840374 PMCID: PMC11747156 DOI: 10.3389/fgeed.2024.1488024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates. Recent genomic, transcriptomic, and metabolomics research has expanded our understanding of the genetic and physiological control of fatty acid biosynthesis and composition. Many oilseed species have inherent stress-combating mechanisms, including transcription factor regulation. Advances in genome editing tools like CRISPR/Cas9 offer precise genetic modifications, targeting transcription factors and binding sites to enhance desirable traits, such as the nutritional profile and chemical composition of fatty acids. This review explores the application of genome editing in oilseed improvement, covering recent progress, challenges, and future potential to boost yield and oil content. These advancements could play a transformative role in developing resilient, nutritious crop varieties essential for sustainable food security in a changing climate.
Collapse
Affiliation(s)
- Charli Kaushal
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Mahak Sachdev
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mansi Parekh
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harini Gowrishankar
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Bhuvan Pathak
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Hong Z, Zhu L, Liu C, Wang K, Rao Y, Lu H. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes (Basel) 2024; 15:1614. [PMID: 39766881 PMCID: PMC11675363 DOI: 10.3390/genes15121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: BABY BOOM (BBM), a transcription factor from the APETALA2 (AP2) protein family, plays a critical role in somatic embryo induction and apomixis. BBM has now been widely applied to induce apomixis or enhance plant transformation and regeneration efficiency through overexpression or ectopic expression. However, the structural and functional evolutionary history of BBM genes in plants is still not well understood. Methods: The protein sequences of 10 selected plant species were used to locate the branch of BBM-Like by key domain identification and phylogenetic tree construction. The identified BBML genes were used for further conserved motif identification, gene structural analysis, miRNA binding site prediction, cis-acting element prediction, collinear analysis, protein-protein interaction network construction, three-dimensional structure modeling, molecular docking, and expression pattern analysis. Results: A total of 24 BBML proteins were identified from 10 representative plant species. Phylogenetic relationship analysis displayed that BBML proteins from eudicots and monocots were divided into two clusters, with monocots exhibiting a higher number of BBMLs. Gene duplication events indicated that whole genome/segmental duplication were the primary drivers of BBML genes' evolution in the tested species, with purifying selection playing a key role during evolution processes. Comparative analysis of motif, domains, and gene structures revealed that most BBMLs were highly evolutionarily conserved. The expression patterns of BBML genes revealed significant tissue specificity, particularly in the root and embryo. We also constructed protein-protein interaction networks and molecular docking models to identify functional pathways and key amino acid residues of BBML proteins. The functions of BBMLs may differ between monocots and eudicots, as suggested by the functional enrichment of interacting proteins. Conclusions: Our research delved into the molecular mechanism, evolutionary relationships, functional differentiation, and expression patterns of BBML genes across plants, laying the groundwork for further investigations into the molecular properties and biological roles of BBMLs.
Collapse
Affiliation(s)
- Zhengyuan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Linghong Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
| | - Chaolei Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
| | - Hongwei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| |
Collapse
|
6
|
Fontanet-Manzaneque JB, Haeghebaert J, Aesaert S, Coussens G, Pauwels L, Caño-Delgado AI. Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2076-2088. [PMID: 39527627 DOI: 10.1111/tpj.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.
Collapse
Affiliation(s)
- Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), Barcelona, 08193, Spain
| |
Collapse
|
7
|
Pankaj R, Shoejaeyfar S, Figueiredo DD. An epiQTL underlying asexual seed formation in Arabidopsis. PLANT REPRODUCTION 2024; 37:463-468. [PMID: 38836892 PMCID: PMC11511731 DOI: 10.1007/s00497-024-00504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The DNA methylation status at an epigenetic quantitative trait locus in the Arabidopsis chromosome 2 is linked to the formation of apomictic-like endosperms. Seed development in most angiosperms is coupled to fertilization of the maternal gametes by two sperm cells. However, apomictic species can reproduce asexually via seeds. This trait is of great agricultural interest, as it would fix complex genotypes and allow for pollen-independent seed production. However, engineering full apomixis requires three independent processes: apomeiosis, parthenogenesis and autonomous endosperm development. While the first two have been successfully engineered in some crops, the formation of autonomous endosperms remains a challenge. Although it is known that this trait is under epigenetic control, such as of DNA methylation, the underlying mechanisms remain mostly undiscovered. Here, using epigenetic recombinant inbred lines, we identified an epigenetic quantitative trait locus in the Arabidopsis chromosome 2, which correlates with permissiveness for the formation of asexual seeds: hypomethylation at this genomic region allows the formation of larger autonomous endosperms. Importantly, the methylation at this locus only correlates with asexual seed size, and not to the size of sexual seeds or that of other organs. With this, we aim to show that screening for epialleles is a promising strategy to uncover loci underlying relevant traits and could pave the way to identifying genes necessary for the engineering of apomixis.
Collapse
Affiliation(s)
- Rishabh Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Shiana Shoejaeyfar
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- Business Academy Aarhus, 8260, Viby J, Denmark
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
8
|
Li X, Sun M, Cui Z, Jiang Y, Yang L, Jiang Y. Transcription factor ZmNAC19 promotes embryo development in Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:244. [PMID: 39340665 DOI: 10.1007/s00299-024-03335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE Overexpression of ZmNAC19, a NAC transcription factor gene from maize, improves embryo development in transgenic Arabidopsis. NAC proteins are plant-specific transcription factors that are involved in multiple aspects of plant growth, development and stress response. Although functions of many NAC transcription factors have been elucidated, little is known about their roles in seed development. In this study, we report the function of a maize NAC transcription factor ZmNAC19 in seed development. ZmNAC19 is highly expressed in embryos of developing maize seeds. ZmNAC19 localizes to nucleus and exhibits transactivation activity in yeast cells. Overexpression of ZmNAC19 in Arabidopsis significantly increases seed size and seed yield. During 3 to 7 days after flowering, embryos of ZmNAC19-overexpression Arabidopsis lines developed faster compared to Col-0, while no visible differences were detected for their endosperms. Furthermore, overexpression of ZmNAC19 in Arabidopsis leads to increased transcription levels of two embryo development-related genes YUC1 and RGE1, and several elements proven to be binding sites of NAC transcription factors were observed in promoters of these two genes. Taken together, these results suggest that ZmNAC19 acts as a positive regulator in plant embryo development.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Mengdi Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Zhenhao Cui
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuhan Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lingkun Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
9
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Song J, Datla R, Zou J, Xiang D. Haploid induction: an overview of parental factor manipulation during seed formation. FRONTIERS IN PLANT SCIENCE 2024; 15:1439350. [PMID: 39297013 PMCID: PMC11408167 DOI: 10.3389/fpls.2024.1439350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
In plants, in vivo haploid induction has gained increasing attention for its significant potential applications in crop breeding and genetic research. This strategy reduces the chromosome number in progeny after fertilization, enabling the rapid production of homozygous plants through double haploidization, contrasting with traditional inbreeding over successive generations. Haploidy typically initiates at the onset of seed development, with several key genes identified as paternal or maternal factors that play critical roles during meiosis, fertilization, gamete communication, and chromosome integrity maintenance. The insights gained have led to the development of efficient haploid inducer lines. However, the molecular and genetic mechanisms underlying these factors vary considerably, making it challenging to create broadly applicable haploidy induction systems for plants. In this minireview, we summarize recent discoveries and advances in paternal and maternal haploid induction factors, examining their current understanding and functionalities to further develop efficient haploid inducer systems through the application of parental factor manipulation.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Xiong Y, Lu G, Li H, He J, Fan S, Yan S, Zhang L, Jia H, Li M. Integrating QTL mapping and transcriptomics to decipher the genetic architecture of sterol metabolism in Brassica napus L. HORTICULTURE RESEARCH 2024; 11:uhae196. [PMID: 39257541 PMCID: PMC11384122 DOI: 10.1093/hr/uhae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols as well as total sterol (TS) content were detected in a double haploid (DH) population of Brassica napus, and a total of 24 quantitative trait loci (QTL) and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.
Collapse
Affiliation(s)
- Yiyi Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Guangyuan Lu
- College of Biology and Food Engineering, Kechuang 1st Road, Maonan District, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Huaixin Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Jianjie He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shipeng Fan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shuxiang Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuchang District, Wuhan 430062, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Maoteng Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
12
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
13
|
Liu Q, Han D, Cheng D, Chen J, Tian S, Wang J, Liu M, Yuan L. AtRKD5 inhibits the parthenogenic potential mediated by AtBBM. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1517-1531. [PMID: 38818961 DOI: 10.1111/jipb.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Parthenogenesis, the development of unfertilized egg cells into embryos, is a key component of apomixis. AtBBM (BABY BOOM), a crucial regulator of embryogenesis in Arabidopsis, possesses the capacity to shift nutritional growth toward reproductive growth. However, the mechanisms underlying AtBBM-induced parthenogenesis remain largely unexplored in dicot plants. Our findings revealed that in order to uphold the order of sexual reproduction, the embryo-specific promoter activity of AtBBM as well as repressors that inhibit its expression in egg cells combine to limiting its ability to induce parthenogenesis. Notably, AtRKD5, a RWP-RK domain-containing (RKD) transcription factor, binds to the 3' end of AtBBM and is identified as one of the inhibitory factors for AtBBM expression in the egg cell. In the atrkd5 mutant, we successfully achieved enhanced ectopic expression of AtBBM in egg cells, resulting in the generation of haploid offspring via parthenogenesis at a rate of 0.28%. Furthermore, by introducing chimeric Arabidopsis and rice BBM genes into the egg cell, we achieved a significant 4.6-fold enhancement in haploid induction through the atdmp8/9 mutant. These findings lay a strong foundation for further exploration of the BBM-mediated parthenogenesis mechanism and the improvement of haploid breeding efficiency mediated by the dmp8/9 mutant.
Collapse
Affiliation(s)
- Qiyan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dongfen Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jinfan Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Man Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
14
|
Kerstens M, Galinha C, Hofhuis H, Nodine M, Pardal R, Scheres B, Willemsen V. PLETHORA transcription factors promote early embryo development through induction of meristematic potential. Development 2024; 151:dev202527. [PMID: 38884589 PMCID: PMC11234262 DOI: 10.1242/dev.202527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Plants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools. Despite the parallels between embryonic and post-embryonic stem cells, the role of PLTs during early embryogenesis has not been thoroughly investigated. Here, we demonstrate that the PLT regulome in the zygote, and apical and basal cells is in strong congruence with that of post-embryonic meristematic cells. We reveal that out of all six PLTs, only PLT2 and PLT4/BABY BOOM (BBM) are expressed in the zygote, and that these two factors are essential for progression of embryogenesis beyond the zygote stage and first divisions. Finally, we show that other PLTs can rescue plt2 bbm defects when expressed from the PLT2 and BBM promoters, establishing upstream regulation as a key factor in early embryogenesis. Our data indicate that generic PLT factors facilitate early embryo development in Arabidopsis by induction of meristematic potential.
Collapse
Affiliation(s)
- Merijn Kerstens
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Carla Galinha
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hugo Hofhuis
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michael Nodine
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Renan Pardal
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Xu P, Zhong Y, Xu A, Liu B, Zhang Y, Zhao A, Yang X, Ming M, Cao F, Fu F. Application of Developmental Regulators for Enhancing Plant Regeneration and Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1272. [PMID: 38732487 PMCID: PMC11085514 DOI: 10.3390/plants13091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (P.X.); (Y.Z.); (A.X.); (B.L.); (Y.Z.); (A.Z.); (X.Y.); (M.M.); (F.C.)
| |
Collapse
|
16
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
17
|
Villette J, Lecourieux F, Bastiancig E, Héloir MC, Poinssot B. New improvements in grapevine genome editing: high efficiency biallelic homozygous knock-out from regenerated plantlets by using an optimized zCas9i. PLANT METHODS 2024; 20:45. [PMID: 38500114 PMCID: PMC10949784 DOI: 10.1186/s13007-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND For ten years, CRISPR/cas9 system has become a very useful tool for obtaining site-specific mutations on targeted genes in many plant organisms. This technology opens up a wide range of possibilities for improved plant breeding in the future. In plants, the CRISPR/Cas9 system is mostly used through stable transformation with constructs that allow for the expression of the Cas9 gene and sgRNA. Numerous studies have shown that site-specific mutation efficiency can vary greatly between different plant species due to factors such as plant transformation efficiency, Cas9 expression, Cas9 nucleotide sequence, the addition of intronic sequences, and many other parameters. Since 2016, when the first edited grapevine was created, the number of studies using functional genomic approaches in grapevine has remained low due to difficulties with plant transformation and gene editing efficiency. In this study, we optimized the process to obtain site-specific mutations and generate knock-out mutants of grapevine (Vitis vinifera cv. 'Chardonnay'). Building on existing methods of grapevine transformation, we improved the method for selecting transformed plants at chosen steps of the developing process using fluorescence microscopy. RESULTS By comparison of two different Cas9 gene and two different promoters, we increased site-specific mutation efficiency using a maize-codon optimized Cas9 containing 13 introns (zCas9i), achieving up to 100% biallelic mutation in grapevine plantlets cv. 'Chardonnay'. These results are directly correlated with Cas9 expression level. CONCLUSIONS Taken together, our results highlight a complete methodology for obtaining a wide range of homozygous knock-out mutants for functional genomic studies and future breeding programs in grapevine.
Collapse
Affiliation(s)
- Jérémy Villette
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, Dijon, France
| | - Eliot Bastiancig
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | | | - Benoit Poinssot
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| |
Collapse
|
18
|
Quiroz LF, Gondalia N, Brychkova G, McKeown PC, Spillane C. Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants. THE NEW PHYTOLOGIST 2024; 241:1936-1949. [PMID: 38180262 DOI: 10.1111/nph.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
19
|
Gao Y, Chen X, Liu C, Zhao H, Dai F, Zhao J, Zhang J, Kong L. Involvement of 5mC DNA demethylation via 5-aza-2'-deoxycytidine in regulating gene expression during early somatic embryo development in white spruce ( Picea glauca). FORESTRY RESEARCH 2023; 3:30. [PMID: 39526256 PMCID: PMC11543301 DOI: 10.48130/fr-0023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 11/16/2024]
Abstract
DNA methylation plays a crucial role in the development of somatic embryos (SEs) through the regulation of gene expression. To examine the impact of DNA methylation on gene expression during early SE development in Picea glauca, the demethylation reagent 5-aza-dC (5-aza-2'-deoxycytidine) was employed to modify DNA methylation regions and levels during the pre-maturation stage of somatic embryogenesis. The application of 2.0 µM 5-aza-dC did not induce toxicity to SEs in early development. Following treatment, the global DNA methylation level decreased significantly on the 7th day of pre-maturation and the 1st week of maturation. Methylated DNA immunoprecipitation (MeDIP) sequencing revealed that differentially methylated regions, as analyzed through Gene Ontology (GO), were related to plant development and reproduction and that they were hypomethylated on the 3rd day but hypermethylated on the 7th day in 5-aza-dC-treated embryogenic tissues. These findings indicate that 5-aza-dC treatment positively impacts early SE development, which was inhibited following 7 d of treatment. The expression of MSH7, JMJ14, and CalS10 was associated with DNA methylation, epigenetic regulation, and somatic embryogenesis. Further analysis of methylated regions revealed that the expression profiles of MSH7, JMJ14, and CalS10 were correlated with altered DNA methylation, suggesting DNA methylation at 5 mC may play a role in controlling the expression of these genes and regulating the early development of SEs in P. glauca. This study offers new insights into the regulation of somatic embryogenesis in conifers.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chengbi Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Huanhuan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fengbin Dai
- Zoucheng Improved Variety Experiment and Extension Center, Zoucheng 273518, China
| | - Jian Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinfeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lisheng Kong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
20
|
Wu X, Xie L, Sun X, Wang N, Finnegan EJ, Helliwell C, Yao J, Zhang H, Wu X, Hands P, Lu F, Ma L, Zhou B, Chaudhury A, Cao X, Luo M. Mutation in Polycomb repressive complex 2 gene OsFIE2 promotes asexual embryo formation in rice. NATURE PLANTS 2023; 9:1848-1861. [PMID: 37814022 PMCID: PMC10654051 DOI: 10.1038/s41477-023-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.
Collapse
Affiliation(s)
- Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi, P. R. China
| | - Xizhe Sun
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, P. R. China
| | - E Jean Finnegan
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Chris Helliwell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Phil Hands
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lisong Ma
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bing Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Abed Chaudhury
- Krishan Foundation Pty Ltd, Canberra, Australian Capital Territory, Australia
| | - Xiaofeng Cao
- University of Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ming Luo
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
21
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Mahlandt A, Singh DK, Mercier R. Engineering apomixis in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:131. [PMID: 37199785 DOI: 10.1007/s00122-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany.
| |
Collapse
|
23
|
Khanday I, Santos-Medellín C, Sundaresan V. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. THE NEW PHYTOLOGIST 2023; 238:673-687. [PMID: 36707918 DOI: 10.1111/nph.18774] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/12/2023] [Indexed: 05/02/2023]
Abstract
Plant embryogenesis results from the fusion of male and female gametes but can also be induced in somatic cells. The molecular pathways for embryo initiation are poorly understood, especially in monocots. In rice, the male gamete expressed BABY BOOM1 (OsBBM1) transcription factor functions as an embryogenic trigger in the zygote and can also promote somatic embryogenesis when ectopically expressed in somatic tissues. We used gene editing, transcriptome profiling, and chromatin immunoprecipitation to determine the molecular players involved in embryo initiation downstream of OsBBM1. We identify OsYUCCA (OsYUC) auxin biosynthesis genes as direct targets of OsBBM1. Unexpectedly, these OsYUC targets in zygotes are expressed only from the maternal genome, whereas the paternal genome exclusively provides functional OsBBM1 to initiate embryogenesis. Induction of somatic embryogenesis by exogenous auxin requires OsBBM genes and downstream OsYUC targets. Ectopic OsBBM1 initiates somatic embryogenesis without exogenous auxins but requires functional OsYUC genes. Thus, an OsBBM-OsYUC module is a key player for both somatic and zygotic embryogenesis in rice. Zygotic embryo initiation involves a partnership of male and female genomes, through which paternal OsBBM1 activates maternal OsYUC genes. In somatic embryogenesis, exogenous auxin triggers OsBBM1 expression, which then activates endogenous auxin biosynthesis OsYUC genes.
Collapse
Affiliation(s)
- Imtiyaz Khanday
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | | | - Venkatesan Sundaresan
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Shiba Y, Takahashi T, Ohashi Y, Ueda M, Mimuro A, Sugimoto J, Noguchi Y, Igawa T. Behavior of Male Gamete Fusogen GCS1/HAP2 and the Regulation in Arabidopsis Double Fertilization. Biomolecules 2023; 13:biom13020208. [PMID: 36830580 PMCID: PMC9953686 DOI: 10.3390/biom13020208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In the sexual reproduction of flowering plants, two independent fertilization events occur almost simultaneously: two identical sperm cells fuse with either the egg cell or the central cell, resulting in embryo and endosperm development to produce a seed. GCS1/HAP2 is a sperm cell membrane protein essential for plasma membrane fusion with both female gametes. Other sperm membrane proteins, DMP8 and DMP9, are more important for egg cell fertilization than that of the central cell, suggesting its regulatory mechanism in GCS1/HAP2-driving gamete membrane fusion. To assess the GCS1/HAP2 regulatory cascade in the double fertilization system of flowering plants, we produced Arabidopsis transgenic lines expressing different GCS1/HAP2 variants and evaluated the fertilization in vivo. The fertilization pattern observed in GCS1_RNAi transgenic plants implied that sperm cells over the amount of GCS1/HAP2 required for fusion on their surface could facilitate membrane fusion with both female gametes. The cytological analysis of the dmp8dmp9 sperm cell arrested alone in an embryo sac supported GCS1/HAP2 distribution on the sperm surface. Furthermore, the fertilization failures with both female gametes were caused by GCS1/HAP2 secretion from the egg cell. These results provided a possible scenario of GCS1/HAP2 regulation, showing a potential scheme for capturing additional GCS1/HAP2-interacting proteins.
Collapse
Affiliation(s)
- Yuka Shiba
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Taro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yukino Ohashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Department of Ecological Developmental Adaptability Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Sendai 980-8578, Japan
| | - Amane Mimuro
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Jin Sugimoto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yuka Noguchi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
- Plant Molecular Science Center, Chiba University, 1-33 Yayoi, Chiba-shi 263-8522, Japan
- Correspondence:
| |
Collapse
|
25
|
Shen K, Qu M, Zhao P. The Roads to Haploid Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:243. [PMID: 36678955 PMCID: PMC9865920 DOI: 10.3390/plants12020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 05/31/2023]
Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
Collapse
Affiliation(s)
- Kun Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxue Qu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
26
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
27
|
Wang X, Zhang J, Zhang J, Zhou C, Han L. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050462. [PMID: 36407624 PMCID: PMC9669440 DOI: 10.3389/fpls.2022.1050462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
AINTEGUMENTA-LIKE (AIL) transcription factors are widely studied and play crucial roles in plant growth and development. However, the functions of the AIL family in legume species are largely unknown. In this study, 11 MtAIL genes were identified in the model legume Medicago truncatula, of which four of them are MtANTs. In situ analysis showed that MtANT1 was highly expressed in the shoot apical meristem (SAM) and leaf primordium. Characterization of mtant1 mtant2 mtant3 mtant4 quadruple mutants and MtANT1-overexpressing plants revealed that MtANTs were not only necessary but also sufficient for the regulation of leaf size, and indicated that they mainly function in the regulation of cell proliferation during secondary morphogenesis of leaves in M. truncatula. This study systematically analyzed the MtAIL family at the genome-wide level and revealed the functions of MtANTs in leaf growth. Thus, these genes may provide a potential application for promoting the biomass of legume forages.
Collapse
|