1
|
Peterman DJ, Byron ML. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform. BIOINSPIRATION & BIOMIMETICS 2024; 19:066002. [PMID: 39255824 DOI: 10.1088/1748-3190/ad791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
A remarkable variety of organisms use metachronal coordination (i.e. numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.
Collapse
Affiliation(s)
- David J Peterman
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, United States of America
| | - Margaret L Byron
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, United States of America
| |
Collapse
|
2
|
Lever JEP, Turner KB, Fernandez CM, Leung HM, Hussain SS, Shei RJ, Lin VY, Birket SE, Chu KK, Tearney GJ, Rowe SM, Solomon GM. Metachrony drives effective mucociliary transport via a calcium-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2024; 327:L282-L292. [PMID: 38860289 PMCID: PMC11444503 DOI: 10.1152/ajplung.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-optical coherence tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+ channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium dependence of metachrony. We demonstrated that metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared with nonmetachronous regions by 48.1%, P = 0.0009 or 47.5%, P < 0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.NEW & NOTEWORTHY We developed a novel imaging-based analysis to detect coordination of ciliary motion and optimal coordination, a process called metachrony. We found that metachrony is key to the optimization of ciliary-mediated mucus transport in both ferret and human tracheal tissue. This process appears to be regulated through calcium-dependent mechanisms. This study demonstrates the capacity to measure a key feature of ciliary coordination that may be important in genetic and acquired disorders of ciliary function.
Collapse
Grants
- F31 HL146083 NHLBI NIH HHS
- 3T32GM008361-30S1 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 2T32HL105346-11A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM008361 NIGMS NIH HHS
- Solomon 20Y0 Cystic Fibrosis Foundation (CFF)
- P30 DK072482 NIDDK NIH HHS
- 5F31HL146083-02 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816 NHLBI NIH HHS
- K08 HL138153 NHLBI NIH HHS
- 2P30DK072482-12 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- T32 HL105346 NHLBI NIH HHS
- 1K08HL138153-01A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jacelyn E Peabody Lever
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Brett Turner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Courtney M Fernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Shah Saddad Hussain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ren-Jay Shei
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vivian Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Susan E Birket
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Steven M Rowe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - George M Solomon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Cheng Z, Vilfan A, Wang Y, Golestanian R, Meng F. Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia. J R Soc Interface 2024; 21:20240221. [PMID: 39106950 PMCID: PMC11303030 DOI: 10.1098/rsif.2024.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.
Collapse
Affiliation(s)
- Ziqi Cheng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, UK
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, People’s Republic of China
| |
Collapse
|
4
|
Cui Z, Ul Islam T, Wang Y, den Toonder JMJ. Curved Surfaces Induce Metachronal Motion of Microscopic Magnetic Cilia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38733-38743. [PMID: 38985460 DOI: 10.1021/acsami.4c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Cilia are hair-like organelles present on cell surfaces. They often exhibit a collective wave-like motion that can enhance fluid or particle transportation function, known as metachronal motion. Inspired by nature, researchers have developed artificial cilia capable of inducing metachronal motion, especially magnetic actuation. However, current methods remain intricate, requiring either control of the magnetic or geometrical properties of individual cilia or the generation of a complex magnetic field. In this paper, we present a novel elegant method that eliminates these complexities and induces metachronal motion of arrays of identical microscopic magnetic artificial cilia by applying a simple rotating uniform magnetic field. The key idea of our method is to place arrays of cilia on surfaces with a specially designed curvature. This results in consecutive cilia experiencing different magnetic field directions at each point in time, inducing a phase lag in their motion, thereby causing collective wave-like motion. Moreover, by tuning the surface curvature profile, we can achieve diverse metachronal patterns analogous to symplectic and antiplectic metachronal motion observed in nature, and we can even devise novel combinations thereof. Furthermore, we characterize the local flow patterns generated by the motion of the cilia, revealing the formation of vortical patterns. Our novel approach simplifies the realization of miniaturized metachronal motion in microfluidic systems and opens the possibility of controlling flow pattern generation and transportation, opening avenues for applications such as lab-on-a-chip technologies, organ-on-a-chip platforms, and microscopic object propulsion.
Collapse
Affiliation(s)
- Zhiwei Cui
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Tanveer Ul Islam
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Ye Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands
| |
Collapse
|
5
|
Cui Z, Wang Y, den Toonder JMJ. Metachronal Motion of Biological and Artificial Cilia. Biomimetics (Basel) 2024; 9:198. [PMID: 38667209 PMCID: PMC11048255 DOI: 10.3390/biomimetics9040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cilia are slender, hair-like cell protrusions that are present ubiquitously in the natural world. They perform essential functions, such as generating fluid flow, propulsion, and feeding, in organisms ranging from protozoa to the human body. The coordinated beating of cilia, which results in wavelike motions known as metachrony, has fascinated researchers for decades for its role in functions such as flow generation and mucus transport. Inspired by nature, researchers have explored diverse materials for the fabrication of artificial cilia and developed several methods to mimic the metachronal motion observed in their biological counterparts. In this review, we will introduce the different types of metachronal motion generated by both biological and artificial cilia, the latter including pneumatically, photonically, electrically, and magnetically driven artificial cilia. Furthermore, we review the possible applications of metachronal motion by artificial cilia, focusing on flow generation, transport of mucus, particles, and droplets, and microrobotic locomotion. The overall aim of this review is to offer a comprehensive overview of the metachronal motions exhibited by diverse artificial cilia and the corresponding practical implementations. Additionally, we identify the potential future directions within this field. These insights present an exciting opportunity for further advancements in this domain.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jaap M. J. den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (Z.C.); (Y.W.)
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Wang T, Ul Islam T, Steur E, Homan T, Aggarwal I, Onck PR, den Toonder JMJ, Wang Y. Programmable metachronal motion of closely packed magnetic artificial cilia. LAB ON A CHIP 2024; 24:1573-1585. [PMID: 38305798 DOI: 10.1039/d3lc00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Despite recent advances in artificial cilia technologies, the application of metachrony, which is the collective wavelike motion by cilia moving out-of-phase, has been severely hampered by difficulties in controlling closely packed artificial cilia at micrometer length scales. Moreover, there has been no direct experimental proof yet that a metachronal wave in combination with fully reciprocal ciliary motion can generate significant microfluidic flow on a micrometer scale as theoretically predicted. In this study, using an in-house developed precise micro-molding technique, we have fabricated closely packed magnetic artificial cilia that can generate well-controlled metachronal waves. We studied the effect of pure metachrony on fluid flow by excluding all symmetry-breaking ciliary features. Experimental and simulation results prove that net fluid transport can be generated by metachronal motion alone, and the effectiveness is strongly dependent on cilia spacing. This technique not only offers a biomimetic experimental platform to better understand the mechanisms underlying metachrony, it also opens new pathways towards advanced industrial applications.
Collapse
Affiliation(s)
- Tongsheng Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Tanveer Ul Islam
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Erik Steur
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Tess Homan
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Ishu Aggarwal
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ye Wang
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Xu F, Zhang H, Liu H, Han W, Nie Z, Lu Y, Wang H, Zhu J. Ultrafast universal fabrication of configurable porous silicone-based elastomers by Joule heating chemistry. Proc Natl Acad Sci U S A 2024; 121:e2317440121. [PMID: 38437532 PMCID: PMC10945771 DOI: 10.1073/pnas.2317440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.
Collapse
Affiliation(s)
- Feng Xu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Wenqi Han
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Yufei Lu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haoyang Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei230027, People’s Republic of China
| |
Collapse
|
8
|
Wan KY, Poon RN. Mechanisms and functions of multiciliary coordination. Curr Opin Cell Biol 2024; 86:102286. [PMID: 38035649 DOI: 10.1016/j.ceb.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Ciliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems. We explore new and emerging trends in bioimaging, analytical, and computational methods, which together with their application in new model systems, have conspired to deliver important insights into one of the most fundamental questions in cellular dynamics.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK.
| | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK
| |
Collapse
|