1
|
Herbert C, Antar AAR, Broach J, Wright C, Stamegna P, Luzuriaga K, Hafer N, McManus DD, Manabe YC, Soni A. Relationship Between Acute Severe Acute Respiratory Syndrome Coronavirus 2 Viral Clearance and Long Coronavirus 2019 (Long COVID) Symptoms: A Cohort Study. Clin Infect Dis 2024:ciae539. [PMID: 39692474 DOI: 10.1093/cid/ciae539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics during acute infection and the development of long coronavirus disease 2019 (COVID-19), or "long COVID," is largely unknown. METHODS Between October 2021 and February 2022, 7361 people not known to have COVID-19 self-collected nasal swab samples for SARS-CoV-2 reverse-transcription polymerase chain reaction testing every 24-48 hours for 10-14 days. Participants whose first known SARS-CoV-2 infection was detected were surveyed for long COVID in August 2023. Their slopes of viral clearance were modeled using linear mixed effects models with random slopes and intercepts, and the relative risk (RR) of long COVID based on viral slopes was calculated using a log binomial model, adjusted for age, symptoms, and variant. Sex-based interaction terms were also evaluated for significance. RESULTS A total of 172 participants were eligible for analyses, and 59 (34.3%) reported long COVID. The risk of long COVID with 3-4 symptoms (adjusted RR, 2.44 [95% confidence interval, .88-6.82]) and ≥5 symptoms (4.97 [1.90-13.0]) increased with each unit increase in slope of viral clearance. While the probability of long COVID increased with slowed viral clearance among women, the same relationship was not observed among men (interaction term: P = .02). Acute SARS-CoV-2 symptoms of abdominal pain (adjusted RR, 5.41 [95% confidence interval, 2.44-12.0]), nausea (3.01 [1.31-6.89]), and body aches (2.58 [1.26-5.30]) were most strongly associated with long COVID. CONCLUSIONS We observed that slower viral clearance rates during acute COVID-19 were associated with increased risk and more symptoms of long COVID . Early viral-host dynamics appear to be mechanistically linked to the development of long COVID.
Collapse
Affiliation(s)
- Carly Herbert
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Annukka A R Antar
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Broach
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Colton Wright
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Pamela Stamegna
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Katherine Luzuriaga
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nathaniel Hafer
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - David D McManus
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Division of Health System Science, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yukari C Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Apurv Soni
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Division of Health System Science, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Stephenson S, Eid W, Wong CH, Mercier E, D'Aoust PM, Kabir MP, Baral S, Gilbride KA, Oswald C, Straus SE, Mackenzie A, Delatolla R, Graber TE. Urban wastewater contains a functional human antibody repertoire of mucosal origin. WATER RESEARCH 2024; 267:122532. [PMID: 39369505 DOI: 10.1016/j.watres.2024.122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Wastewater-based surveillance of human disease offers timely insights to public health, helping to mitigate infectious disease outbreaks and decrease downstream morbidity and mortality. These systems rely on nucleic acid amplification tests for monitoring disease trends, while antibody-based seroprevalence surveys gauge community immunity. However, serological surveys are resource-intensive and subject to potentially long lead times and sampling bias. We identified and characterized a human antibody repertoire, predominantly secretory IgA, isolated from a central wastewater treatment plant and building-scale wastewater collection points. These antibodies partition to the solids fraction and retain immunoaffinity for SARS-CoV-2 and Influenza A virus antigens. This stable pool could enable real-time tracking for correlates of vaccination, infection, and immunity, aiding in establishing population-level thresholds for immune protection and assessing the efficacy of future vaccine campaigns.
Collapse
Affiliation(s)
- Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Chandler Hayyin Wong
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stefan Baral
- Knowledge Translation Program, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kimberly A Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Claire Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Sharon E Straus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alex Mackenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.
| |
Collapse
|
3
|
Ontiveros-Padilla L, Bachelder EM, Ainslie KM. Microparticle and nanoparticle-based influenza vaccines. J Control Release 2024; 376:880-898. [PMID: 39427775 DOI: 10.1016/j.jconrel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally, we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Takahashi Y, Tanaka H, Taniguchi C, Ogata T. Efficiency of indirect protection of COVID-19 vaccination and interactions between indirect and direct protection on household transmission. Vaccine 2024; 42:126110. [PMID: 39019654 DOI: 10.1016/j.vaccine.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND There is little information on relationships between indirect and direct protection by COVID-19 vaccination on close contacts of the vaccinees. Here, we assessed effect modification of direct-indirect action influencing the protective effects of vaccination. METHODS Secondary attack rates (SARs) in household contacts (n = 2422) depending on vaccination status of the index cases (n = 1112) with known vaccination history during the delta variant-dominant period (August 2-November 2, 2021) in two public health jurisdictions were calculated using multivariable logistic regression analysis to assess indirect protection by COVID-19 vaccination as adjusted odds ratios (aORs) for SARs. The impact of the time of index case vaccination on indirect-direct protective effects was also assessed. FINDINGS Contacts of index cases receiving 2× COVID-19 vaccinations showed significantly lower SARs than contacts of unvaccinated index cases (aOR:0.48, 95 %CI = 0.32-0.74). Relative to contacts where neither index cases nor contacts themselves were vaccinated (0,0), those with (2,0), (0,2) and (2,2) had lower SARs (0.45, 95 %CI = 0.24-0.82, 0.24, 95 %CI = 0.17-0.032, 0.11, 95 %CI = 0.06-0.20, respectively. No significant interactions on the SARs regarding times of vaccination between index cases and household contacts were observed, indicating additive but not synergistic protection. INTERPRETATION The indirect protective effects of COVID-19 vaccination were attributed to an additive effect together with the direct effect on onward transmission in the household setting. These findings emphasize the importance of herd immunity by COVID-19 vaccination not only for unvaccinated but also vaccinated individuals.
Collapse
Affiliation(s)
- Yuki Takahashi
- Health and Medical General Affairs Division of Osaka Prefectural Government, Japan.
| | - Hideo Tanaka
- Neyagawa City Public Health Center, 28-3 Yasakacho, Neyagawa, Osaka, Japan.
| | - Chie Taniguchi
- College of Nursing, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Tsuyoshi Ogata
- Itako Public Health Center of Ibaraki Prefectural Government, 1446-1 Osu, Itako, Ibaraki, Japan.
| |
Collapse
|
5
|
Sun K, Bhiman JN, Tempia S, Kleynhans J, Madzorera VS, Mkhize Q, Kaldine H, McMorrow ML, Wolter N, Moyes J, Carrim M, Martinson NA, Kahn K, Lebina L, du Toit JD, Mkhencele T, von Gottberg A, Viboud C, Moore PL, Cohen C. SARS-CoV-2 correlates of protection from infection against variants of concern. Nat Med 2024; 30:2805-2812. [PMID: 39060660 PMCID: PMC11533127 DOI: 10.1038/s41591-024-03131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Serum neutralizing antibodies (nAbs) induced by vaccination have been linked to protection against symptomatic and severe coronavirus disease 2019. However, much less is known about the efficacy of nAbs in preventing the acquisition of infection, especially in the context of natural immunity and against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune-escape variants. Here we conducted mediation analysis to assess serum nAbs induced by prior SARS-CoV-2 infections as potential correlates of protection against Delta and Omicron infections, in rural and urban household cohorts in South Africa. We find that, in the Delta wave, D614G nAbs mediate 37% (95% confidence interval: 34-40%) of the total protection against infection conferred by prior exposure to SARS-CoV-2, and that protection decreases with waning immunity. In contrast, Omicron BA.1 nAbs mediate 11% (95% confidence interval: 9-12%) of the total protection against Omicron BA.1 or BA.2 infections, due to Omicron's neutralization escape. These findings underscore that correlates of protection mediated through nAbs are variant specific, and that boosting of nAbs against circulating variants might restore or confer immune protection lost due to nAb waning and/or immune escape. However, the majority of immune protection against SARS-CoV-2 conferred by natural infection cannot be fully explained by serum nAbs alone. Measuring these and other immune markers including T cell responses, both in the serum and in other compartments such as the nasal mucosa, may be required to comprehensively understand and predict immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Jinal N Bhiman
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vimbai Sharon Madzorera
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Qiniso Mkhize
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Haajira Kaldine
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Meredith L McMorrow
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maimuna Carrim
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, MD, USA
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Jacques D du Toit
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulisa Mkhencele
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Park ES, Kuroda Y, Uda A, Kaku Y, Okutani A, Hotta A, Tatemoto K, Ishijima K, Inoue Y, Harada M, Ami Y, Shirakura M, Watanabe S, Suzuki Y, Harada T, Ainai A, Shiwa N, Sakai Y, Iwata-Yoshikawa N, Nagata N, Suzuki T, Hasegawa H, Maeda K. The comparison of pathogenicity among SARS-CoV-2 variants in domestic cats. Sci Rep 2024; 14:21815. [PMID: 39294189 PMCID: PMC11410826 DOI: 10.1038/s41598-024-71791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected or isolated from domestic cats. It is unclear whether cats play an important role in the SARS-CoV-2 transmission cycle. In this study, we examined the susceptibility of cats to SARS-CoV-2, including wild type and variants, by animal experiments. Cats inoculated with wild type, gamma, and delta variants secreted a large amount of SARS-CoV-2 for 1 week after the inoculation from nasal, oropharyngeal, and rectal routes. Only 100 TCID50 of virus could infect cats and replicate well without severe clinical symptoms. In addition, one cat inoculated with wild type showed persistent virus secretion in feces for over 28 days post-inoculation (dpi). The titer of virus-neutralizing (VN) antibodies against SARS-CoV-2 increased from 11 dpi, reaching a peak at 14 dpi. However, the omicron variant could not replicate well in cat tissues and induced a lower titer of VN antibodies. It is concluded that cats were highly susceptible to SARS-CoV-2 infection, but not to the Omicron Variant, which caused the attenuated pathogenicity.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yusuke Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Yasushi Ami
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masayuki Shirakura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, 208-0011, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, 208-0011, Japan
| | - Yasushi Suzuki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, 208-0011, Japan
| | - Toshihiko Harada
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Nozomi Shiwa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, 208-0011, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
- Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
7
|
Herbert C, Antar AA, Broach J, Wright C, Stamegna P, Luzuriaga K, Hafer N, McManus DD, Manabe YC, Soni A. Relationship between acute SARS-CoV-2 viral clearance with Long COVID Symptoms: a cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309953. [PMID: 39006428 PMCID: PMC11245049 DOI: 10.1101/2024.07.04.24309953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Introduction The relationship between SARS-CoV-2 viral dynamics during acute infection and the development of long COVID is largely unknown. Methods A total of 7361 asymptomatic community-dwelling people enrolled in the Test Us at Home parent study between October 2021 and February 2022. Participants self-collected anterior nasal swabs for SARS-CoV-2 RT-PCR testing every 24-48 hours for 10-14 days, regardless of symptom or infection status. Participants who had no history of COVID-19 at enrollment and who were subsequently found to have ≥1 positive SARS-CoV-2 RT-PCR test during the parent study were recontacted in August 2023 and asked whether they had experienced long COVID, defined as the development of new symptoms lasting 3 months or longer following SARS-CoV-2 infection. Participant's cycle threshold values were converted into viral loads, and slopes of viral clearance were modeled using post-nadir viral loads. Using a log binomial model with the modeled slopes as the exposure, we calculated the relative risk of subsequently developing long COVID with 1-2 symptoms, 3-4 symptoms, or 5+ symptoms, adjusting for age, number of symptoms, and SARS-CoV-2 variant. Adjusted relative risk (aRR) of individual long COVID symptoms based on viral clearance was also calculated. Results 172 participants were eligible for analyses, and 59 (34.3%) reported experiencing long COVID. The risk of long COVID with 3-4 symptoms and 5+ symptoms increased by 2.44 times (aRR: 2.44; 95% CI: 0.88-6.82) and 4.97 times (aRR: 4.97; 95% CI: 1.90-13.0) per viral load slope-unit increase, respectively. Participants who developed long COVID had significantly longer times from peak viral load to viral clearance during acute disease than those who never developed long COVID (8.65 [95% CI: 8.28-9.01] vs. 10.0 [95% CI: 9.25-10.8]). The slope of viral clearance was significantly positively associated with long COVID symptoms of fatigue (aRR: 2.86; 95% CI: 1.22-6.69), brain fog (aRR: 4.94; 95% CI: 2.21-11.0), shortness of breath (aRR: 5.05; 95% CI: 1.24-20.6), and gastrointestinal symptoms (aRR: 5.46; 95% CI: 1.54-19.3). Discussion We observed that longer time from peak viral load to viral RNA clearance during acute COVID-19 was associated with an increased risk of developing long COVID. Further, slower clearance rates were associated with greater number of symptoms of long COVID. These findings suggest that early viral-host dynamics are mechanistically important in the subsequent development of long COVID.
Collapse
Affiliation(s)
- Carly Herbert
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Annukka A.R. Antar
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Broach
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Colton Wright
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pamela Stamegna
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine Luzuriaga
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nathaniel Hafer
- University of Massachusetts Center for Clinical and Translational Science, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David D McManus
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Health System Science, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yukari C Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Apurv Soni
- Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Health System Science, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Medzhitov R, Iwasaki A. Exploring new perspectives in immunology. Cell 2024; 187:2079-2094. [PMID: 38670066 DOI: 10.1016/j.cell.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Several conceptual pillars form the foundation of modern immunology, including the clonal selection theory, antigen receptor diversity, immune memory, and innate control of adaptive immunity. However, some immunological phenomena cannot be explained by the current framework. Thus, we still do not know how to design vaccines that would provide long-lasting protective immunity against certain pathogens, why autoimmune responses target some antigens and not others, or why the immune response to infection sometimes does more harm than good. Understanding some of these mysteries may require that we question existing assumptions to develop and test alternative explanations. Immunology is increasingly at a point when, once again, exploring new perspectives becomes a necessity.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
10
|
Zhang X, Zhang J, Chen S, He Q, Bai Y, Liu J, Wang Z, Liang Z, Chen L, Mao Q, Xu M. Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines. Expert Rev Vaccines 2024; 23:362-370. [PMID: 38444382 DOI: 10.1080/14760584.2024.2326094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Qian He
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Zhenglun Liang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ling Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qunying Mao
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|