1
|
Ribatti D. Microbiota and angiogenesis in the intestinal vasculature. Tissue Cell 2024; 89:102466. [PMID: 38986346 DOI: 10.1016/j.tice.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
2
|
Cheng Y, Watanabe C, Ando Y, Kitaoka S, Egawa Y, Takashima T, Matsumoto A, Murakami M. Caco-2 Cell Sheet Partially Laminated with HT29-MTX Cells as a Novel In Vitro Model of Gut Epithelium Drug Permeability. Pharmaceutics 2023; 15:2338. [PMID: 37765306 PMCID: PMC10535880 DOI: 10.3390/pharmaceutics15092338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal epithelial Caco-2 cell monolayer is a well-established in vitro model useful for predicting intestinal drug absorption in humans. Coculture models of Caco-2 and goblet-cell-like HT29-MTX cells have been developed to overcome the lack of a mucus layer; however, those models are much leakier compared to the intestinal epithelium. Here, we developed a partially laminated culture model where HT29-MTX cells were superimposed onto a Caco-2 monolayer to overcome this issue. A morphological study showed that the piled HT29-MTX cells were voluntarily incorporated into the Caco-2 monolayer, and mucus production was confirmed via periodic acid-Schiff and mucin protein 2 staining. Permeability was evaluated in terms of transepithelial electrical resistance (TEER) and the apparent permeability of paracellular markers with different molecular sizes. The partially laminated model maintained the high barrier function of the Caco-2 monolayer, whose permeability appeared adjustable according to the HT29-MTX/Caco-2 cell ratio. In contrast, the coculture models showed abnormally high permeability of those markers, correlated with low TEER. Thus, the partially laminated model enabled in vitro recapitulation of effective mucosal barrier function. Consequently, this novel model may be useful as an in vitro high-throughput evaluation system for enteral mucosal permeability and mucus-penetrating efficiency of drugs and nanocarriers.
Collapse
Affiliation(s)
- Yi Cheng
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-kita, Tondabayashi 584-0854, Osaka, Japan (C.W.); (A.M.)
| | - Chie Watanabe
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-kita, Tondabayashi 584-0854, Osaka, Japan (C.W.); (A.M.)
- Laboratory of Clinical Pathology, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, 1-1, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, 1-1, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Satoshi Kitaoka
- Laboratory of Physical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, 1-1, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yuya Egawa
- Laboratory of Physical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, 1-1, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Tomoya Takashima
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-kita, Tondabayashi 584-0854, Osaka, Japan (C.W.); (A.M.)
| | - Akihiro Matsumoto
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-kita, Tondabayashi 584-0854, Osaka, Japan (C.W.); (A.M.)
| | - Masahiro Murakami
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikori-kita, Tondabayashi 584-0854, Osaka, Japan (C.W.); (A.M.)
| |
Collapse
|
3
|
Morphological Adaptation in the Jejunal Mucosa after Iso-Caloric High-Fat versus High-Carbohydrate Diets in Healthy Volunteers: Data from a Randomized Crossover Study. Nutrients 2022; 14:nu14194123. [PMID: 36235775 PMCID: PMC9572503 DOI: 10.3390/nu14194123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS The conditions for jejunal glucose absorption in healthy subjects have not been thoroughly studied. In this study we investigated differences in the jejunal villi enlargement factor, as well as ultrastructural aspects of the surface enterocytes and mitochondria, comparing 2 weeks of high-carbohydrate (HCD) versus high-fat diets (HFD). We also measured the ketogenesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) in relation to jejunal mitochondria. METHODS A single-centre, randomized, unblinded crossover study in 15 healthy volunteers ingesting strictly controlled equicaloric diets (either HCD or HFD), with 60% energy from the respective source. An enteroscopy was carried out after 2 weeks of each diet and jejunal mucosal biopsies were acquired. Conventional histology, immunofluorescent staining, transmission electron microscopy and confocal microscopy were used. RESULTS The villi did not demonstrate any change in the epithelial enlargement factor. Despite an increased mitosis, there were no changes in apoptotic indices. However, the ultrastructural analysis demonstrated a significant increase in the enlargement factor at the bases of the villi. The mitochondria demonstrated increased amounts of cristae after the HFD. The confocal microscopy revealed increased HMGCS2 per mitochondrial marker at the top of the villi after the HFD compared to the HCD. CONCLUSION There is a morphometric adaption in the jejunal mucosa following the 2-week diets, not only on a histological level, but rather on the ultrastructural level. This study supports the notion that mitochondrial HMGCS2 is regulated by the fat content of the diet and is involved in the expression of monosaccharide transporters.
Collapse
|
4
|
Leibowitz BJ, Zhao G, Wei L, Ruan H, Epperly M, Chen L, Lu X, Greenberger JS, Zhang L, Yu J. Interferon b drives intestinal regeneration after radiation. SCIENCE ADVANCES 2021; 7:eabi5253. [PMID: 34613772 PMCID: PMC8494436 DOI: 10.1126/sciadv.abi5253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
The cGAS-STING cytosolic DNA sensing pathway is critical for host defense. Here, we report that cGAS-STING–dependent type 1 interferon (IFN) response drives intestinal regeneration and animal recovery from radiation injury. STING deficiency has no effect on radiation-induced DNA damage or crypt apoptosis but abrogates epithelial IFN-β production, local inflammation, innate transcriptional response, and subsequent crypt regeneration. cGAS KO, IFNAR1 KO, or CCR2 KO also abrogates radiation-induced acute crypt inflammation and regeneration. Impaired intestinal regeneration and survival in STING-deficient mice are fully rescued by a single IFN-β treatment given 48 hours after irradiation but not by wild-type (WT) bone marrow. IFN-β treatment remarkably improves the survival of WT mice and Lgr5+ stem cell regeneration through elevated compensatory proliferation and more rapid DNA damage removal. Our findings support that inducible IFN-β production in the niche couples ISC injury and regeneration and its potential use to treat acute radiation injury.
Collapse
Affiliation(s)
- Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guangyi Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Liang Wei
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lujia Chen
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Xinghua Lu
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Antfolk M, Jensen KB. A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat Commun 2020; 11:6244. [PMID: 33288759 PMCID: PMC7721730 DOI: 10.1038/s41467-020-20052-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The small intestine is a specialised organ, essential for nutrient digestion and absorption. It is lined with a complex epithelial cell layer. Intestinal epithelial cells can be cultured in three-dimensional (3D) scaffolds as self-organising entities with distinct domains containing stem cells and differentiated cells. Recent developments in bioengineering provide new possibilities for directing the organisation of cells in vitro. In this Perspective, focusing on the small intestine, we discuss how studies at the interface between bioengineering and intestinal biology provide new insights into organ function. Specifically, we focus on engineered biomaterials, complex 3D structures resembling the intestinal architecture, and micro-physiological systems.
Collapse
Affiliation(s)
- Maria Antfolk
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling. Sci Rep 2020; 10:20715. [PMID: 33244068 PMCID: PMC7693326 DOI: 10.1038/s41598-020-77817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
In the Xenopus laevis intestine during metamorphosis, stem cells appear and generate the adult epithelium analogous to the mammalian one. We have previously shown that connective tissue cells surrounding the epithelium are essential for the stem cell development. To clarify whether such cells correspond to mammalian Foxl1-expressing mesenchymal cells, which have recently been shown to be a critical component of intestinal stem cell niche, we here examined the expression profile of Foxl1 in the X. laevis intestine by using RT-PCR and immunohistochemistry. Foxl1 expression was transiently upregulated only in connective tissue cells during the early period of metamorphic climax and was the highest just beneath the proliferating stem/progenitor cells. In addition, electron microscopic analysis showed that these subepithelial cells are ultrastructurally identified as telocytes like the mammalian Foxl1-expressing cells. Furthermore, we experimentally showed that Foxl1 expression is indirectly upregulated by thyroid hormone (TH) through Shh signaling and that TH organ-autonomously induces the Foxl1-expressing cells concomitantly with appearance of the stem cells in the tadpole intestine in vitro. The present results suggest that intestinal niche cells expressing Foxl1 are evolutionally conserved among terrestrial vertebrates and can be induced by TH/Shh signaling during amphibian metamorphosis for stem cell development.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
7
|
Moran A, Al-Rammahi MA, Daly K, Grand E, Ionescu C, Bravo DM, Wall EH, Shirazi-Beechey SP. Consumption of a Natural High-Intensity Sweetener Enhances Activity and Expression of Rabbit Intestinal Na +/Glucose Cotransporter 1 (SGLT1) and Improves Colibacillosis-Induced Enteric Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:441-450. [PMID: 31736308 PMCID: PMC7007240 DOI: 10.1021/acs.jafc.9b04995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Absorption of glucose, via intestinal Na+/glucose cotransporter 1 (SGLT1), activates salt and water absorption and is an effective route for treating Escherichia coli (E. coli)-induced diarrhea. Activity and expression of SGLT1 is regulated by sensing of sugars and artificial/natural sweeteners by the intestinal sweet receptor T1R2-T1R3 expressed in enteroendocrine cells. Diarrhea, caused by the bacterial pathogen E. coli, is the most common post-weaning clinical feature in rabbits, leading to mortality. We demonstrate here that, in rabbits with experimentally E. coli-induced diarrhea, inclusion of a supplement containing stevia leaf extract (SL) in the feed decreases cumulative morbidity, improving clinical signs of disease (p < 0.01). We show that the rabbit intestine expresses T1R2-T1R3. Furthermore, intake of SL enhances activity and expression of SGLT1 and the intestinal capacity to absorb glucose (1.8-fold increase, p < 0.05). Thus, a natural plant extract sweetener can act as an effective feed additive for lessening the negative impact of enteric diseases in animals.
Collapse
Affiliation(s)
- Andrew
W. Moran
- Epithelial
Function and Development Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Miran A. Al-Rammahi
- Epithelial
Function and Development Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- Zoonotic
Disease Research Unit, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Kristian Daly
- Epithelial
Function and Development Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | | | | | | | - Emma H. Wall
- Pancosma/ADM, Z. A. La Pièce 3, 1180 Rolle, Switzerland
| | - Soraya P. Shirazi-Beechey
- Epithelial
Function and Development Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
8
|
Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun 2019; 10:2538. [PMID: 31182708 PMCID: PMC6557849 DOI: 10.1038/s41467-019-10386-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The pathological mechanisms of radiation ulcer remain unsolved and there is currently no effective medicine. Here, we demonstrate that persistent DNA damage foci and cell senescence are involved in radiation ulcer development. Further more, we identify cordycepin, a natural nucleoside analogue, as a potent drug to block radiation ulcer (skin, intestine, tongue) in rats/mice by preventing cell senescence through the increase of NRF2 nuclear expression (the assay used is mainly on skin). Finally, cordycepin is also revealed to activate AMPK by binding with the α1 and γ1 subunit near the autoinhibitory domain of AMPK, then promotes p62-dependent autophagic degradation of Keap1, to induce NRF2 dissociate from Keap1 and translocate to the nucleus. Taken together, our findings identify cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents, and activation of AMPK or NRF2 may thus represent therapeutic targets for preventing cell senescence and radiation ulcer.
Collapse
Affiliation(s)
- Ziwen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zelin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lang Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025, Guiyang, China
| | - Yu Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025, Guiyang, China
| | - Huilan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Institute of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yu Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lei Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xu Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Dengqun Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Taotao Jin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fengying Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yibo Gan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fan Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunji Huang
- College of Basic Medical Sciences, Third Military Medical University, 400038, Chongqing, China
| | - Hongming Miao
- College of Basic Medical Sciences, Third Military Medical University, 400038, Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, 40038, Chongqing, China
| | - Tianmin Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College, 100000, Beijing, China.
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
9
|
Moran AW, Al-Rammahi MA, Batchelor DJ, Bravo DM, Shirazi-Beechey SP. Glucagon-Like Peptide-2 and the Enteric Nervous System Are Components of Cell-Cell Communication Pathway Regulating Intestinal Na +/Glucose Co-transport. Front Nutr 2018; 5:101. [PMID: 30416998 PMCID: PMC6212479 DOI: 10.3389/fnut.2018.00101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
The Na+/glucose cotransporter 1, SGLT1 is the major route for transport of dietary glucose from the lumen of the intestine into absorptive enterocytes. Sensing of dietary sugars and artificial sweeteners by the sweet taste receptor, T1R2-T1R3, expressed in the enteroendocrine L-cell regulates SGLT1 expression in neighboring absorptive enterocytes. However, the mechanism by which sugar sensing by the enteroendocrine cell is communicated to the absorptive enterocytes is not known. Here, we show that glucagon-like peptide-2 (GLP-2) secreted from the enteroendocrine cell in response to luminal sugars regulates SGLT1 mRNA and protein expression in absorptive enterocytes, via the enteric neurons. Glucose and artificial sweeteners induced secretion of GLP-2 from mouse small intestine, which was inhibited by the sweet-taste receptor inhibitor, gurmarin. In wild type mice there was an increase in sugar-induced SGLT1 mRNA and protein abundance that was not observed in GLP-2 receptor knockout mice. GLP-2 receptor is expressed in enteric neurons, and not in absorptive enterocytes ruling out a paracrine effect of GLP-2. Electric field stimulation of the intestine resulted in upregulation of SGLT1 expression that was abolished by the nerve blocking agent tetrodotoxin. We conclude that GLP-2 and the enteric nervous system are components of the enteroendocrine-absorptive enterocyte communication pathway regulating intestinal glucose transport.
Collapse
Affiliation(s)
- Andrew W Moran
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Miran A Al-Rammahi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Department of Medical Biotechnology, College of Biotechnology, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Daniel J Batchelor
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Soraya P Shirazi-Beechey
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice. Sci Rep 2018; 8:2072. [PMID: 29391546 PMCID: PMC5794877 DOI: 10.1038/s41598-018-20370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
Total body irradiation (TBI) leads to dose- and tissue-specific lethality. In the current study, we demonstrate that a mitochondrion-targeted nitroxide JP4-039 given once 24 hours after 9–10 Gy TBI significantly improves mouse survival, and the recovery of intestinal barrier, differentiation and stem cell functions. The GI-protective effects are associated with rapid and selective induction of tight junction proteins and cytokines including TGF-β, IL-10, IL-17a, IL-22 and Notch signaling long before bone marrow depletion. However, no change was observed in crypt death or the expression of prototypic pro-inflammatory cytokines such as TNF-α, IL-6 or IL-1β. Surprisingly, bone marrow transplantation (BMT) performed 24 hours after TBI improves intestinal barrier and stem cell recovery with induction of IL-10, IL-17a, IL-22, and Notch signaling. Further, BMT-rescued TBI survivors display increased intestinal permeability, impaired ISC function and proliferation, but not obvious intestinal inflammation or increased epithelial death. These findings identify intestinal epithelium as a novel target of radiation mitigation, and potential strategies to enhance ISC recovery and regeneration after accidental or medical exposures.
Collapse
|
11
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
12
|
Sailaja BS, He XC, Li L. The regulatory niche of intestinal stem cells. J Physiol 2016; 594:4827-36. [PMID: 27060879 DOI: 10.1113/jp271931] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.
Collapse
Affiliation(s)
- Badi Sri Sailaja
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66101, USA
| |
Collapse
|
13
|
Dorn DC, Dorn A. Stem cell autotomy and niche interaction in different systems. World J Stem Cells 2015; 7:922-944. [PMID: 26240680 PMCID: PMC4515436 DOI: 10.4252/wjsc.v7.i6.922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon pruning and dying-back degeneration in neurodegenerative diseases. Especially the hypothesis of an existing evolutionary conserved “autodestruction program” in axons that might also be active in GSC projections appears attractive. Investigations on the underlying signaling pathways have to be carried out. There are two other well known cases of programmed cell autotomy: the enucleation of erythroblasts in the process of erythrocyte maturation and the segregation of thousands of thrombocytes (platelets) from one megakaryocyte. Both progenitor cell types - erythroblasts and megakaryocytes - are associated with a niche in the bone marrow, erythroblasts with a macrophage, which they surround, and the megakaryocytes with the endothelial cells of sinusoids and their extracellular matrix. Although the regulatory mechanisms may be specific in each case, there is one aspect that connects all described processes of programmed cell autotomy and neuronal autodestruction: apoptotic pathways play always a prominent role. Studies on the role of male GSC autotomy in stem cell-niche interaction have just started but are expected to reveal hitherto unknown ways of signal exchange. Spermatogenesis in mammals advance our understanding of insect spermatogenesis. Mammal and insect spermatogenesis share some broad principles, but a comparison of the signaling pathways is difficult. We have intimate knowledge from Drosophila, but of almost no other insect, and we have only limited knowledge from mammals. The discovery of stem cell autotomy as part of the interaction with the niche promises new general insights into the complicated stem cell-niche interdependence.
Collapse
|
14
|
Wan PX, Wang BW, Wang ZC. Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J Stem Cells 2015; 7:448-460. [PMID: 25815128 PMCID: PMC4369500 DOI: 10.4252/wjsc.v7.i2.448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/17/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases.
Collapse
|
15
|
Abstract
This review discusses quantitative modeling studies of stem and non-stem cancer cell interactions and the fraction of cancer stem cells.
Collapse
Affiliation(s)
- Heiko Enderling
- Department of Integrated Mathematical Oncology
- H. Lee Moffitt Cancer Center & Research Institute
- Tampa
- USA
| |
Collapse
|
16
|
Cao M, Chan RWS, Yeung WSB. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev 2014; 24:768-80. [PMID: 25386902 DOI: 10.1089/scd.2014.0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human and mouse endometrium undergo dramatic cellular reorganization during pregnancy and postpartum. Somatic stem cells maintain homeostasis of the tissue by providing a cell reservoir for regeneration. We hypothesized that endometrial cells with quiescent properties (stem/progenitor cells) were involved in the regeneration of the endometrial tissue. Given that stem cells divide infrequently, they can retain the DNA synthesis label [bromodeoxyuridine (BrdU)] after a prolonged chase period. In this study, prepubertal mice were pulsed with BrdU and after a 6-week chase a small population of label-retaining stromal cells (LRSC) was located primarily beneath the luminal epithelium, adjacent to blood vessels, and near the endometrial-myometrial junction. Marker analyses suggested that they were of mesenchymal origin expressing CD44(+), CD90(+), CD140b(+), CD146(+), and Sca-1(+). During pregnancy, nonproliferating LRSC predominately resided at the interimplantation/placental loci of the gestational endometrium. Immediately after parturition, a significant portion of the LRSC underwent proliferation (BrdU(+)/Ki-67(+)) and expressed total and active β-catenin. The β-catenin expression in the LRSC was transiently elevated at postpartum day (PPD) 1. The proliferation of LRSC resulted in a significant decline in the proportion of LRSC in the postpartum uterus. The LRSC returned to dormancy at PPD7, and the percentage of LRSC remained stable thereafter until 11 weeks. This study demonstrated that LRSC can respond efficiently to physiological stimuli upon initiation of uterine involution and return to its quiescent state after postpartum repair.
Collapse
Affiliation(s)
- Mingzhu Cao
- 1 Department of Obstetrics and Gynaecology, University of Hong Kong , Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
17
|
Spurrier RG, Speer AL, Grant CN, Levin DE, Grikscheit TC. Vitrification preserves murine and human donor cells for generation of tissue-engineered intestine. J Surg Res 2014; 190:399-406. [PMID: 24857678 DOI: 10.1016/j.jss.2014.04.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/20/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Short bowel syndrome causes significant morbidity and mortality. Tissue-engineered intestine may serve as a viable replacement. Tissue-engineered small intestine (TESI) has previously been generated in the mouse model from donor cells that were harvested and immediately reimplanted; however, this technique may prove impossible in children who are critically ill, hemodynamically unstable, or septic. We hypothesized that organoid units (OU), multicellular clusters containing epithelium and mesenchyme, could be cryopreserved for delayed production of TESI. METHODS OU were isolated from <3 wk-old mouse or human ileum. OU were then cryopreserved by either standard snap freezing or vitrification. In the snap freezing protocol, OU were suspended in cryoprotectant and transferred directly to -80°C for storage. The vitrification protocol began with a stepwise increase in cryoprotectant concentration followed by liquid supercooling of the OU solution to -13°C and nucleation with a metal rod to induce vitrification. Samples were then cooled to -80°C at a controlled rate of -1°C/min and subsequently plunged into liquid nitrogen for long-term storage. OU from both groups were maintained in cryostorage for at least 72 h and thawed in a 37°C water bath. Cryoprotectant was removed with serial sucrose dilutions and OU were assessed by Trypan blue assay for post-cryopreservation viability. Via techniques previously described by our laboratory, the thawed murine or human OU were either cultured in vitro or implanted on a scaffold into the omentum of a syngeneic or irradiated Nonobese Diabetic/Severe Combined Immunodeficiency, gamma chain deficient adult mouse. The resultant TESI was analyzed by histology and immunofluorescence. RESULTS After cryopreservation, the viability of murine OU was significantly higher in the vitrification group (93 ± 2%, mean ± standard error of the mean) compared with standard freezing (56 ± 6%) (P < 0.001, unpaired t-test, n = 25). Human OU demonstrated similar viability after vitrification (89 ± 2%). In vitro culture of thawed OU produced expanding epithelial spheres supported by a layer of mesenchyme. TESI was successfully generated from the preserved OU. Hematoxylin and eosin staining demonstrated a mucosa composed of a simple columnar epithelium whereas immunofluorescence staining confirmed the presence of both progenitor and differentiated epithelial cells. Furthermore, beta-2-microglobulin confirmed that the human TESI epithelium originated from human cells. CONCLUSIONS We demonstrated improved multicellular viability after vitrification over conventional cryopreservation techniques and the first successful vitrification of murine and human OU with subsequent TESI generation. Clinical application of this method may allow for delayed autologous implantation of TESI for children in extremis.
Collapse
Affiliation(s)
- Ryan G Spurrier
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Allison L Speer
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Christa N Grant
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Daniel E Levin
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Tracy C Grikscheit
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA.
| |
Collapse
|
18
|
Ionizing irradiation induces acute haematopoietic syndrome and gastrointestinal syndrome independently in mice. Nat Commun 2014; 5:3494. [PMID: 24637717 DOI: 10.1038/ncomms4494] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 01/17/2023] Open
Abstract
The role of bone marrow (BM) and BM-derived cells in radiation-induced acute gastrointestinal (GI) syndrome is controversial. Here we use bone marrow transplantation (BMT), total body irradiation (TBI) and abdominal irradiation (ABI) models to demonstrate a very limited, if any, role of BM-derived cells in acute GI injury and recovery. Compared with WT BM recipients, mice receiving BM from radiation-resistant PUMA KO mice show no protection from crypt and villus injury or recovery after 15 or 12 Gy TBI, but have a significant survival benefit at 12 Gy TBI. PUMA KO BM significantly protects donor-derived pan-intestinal haematopoietic (CD45+) and endothelial (CD105+) cells after IR. We further show that PUMA KO BM fails to enhance animal survival or crypt regeneration in radiosensitive p21 KO-recipient mice. These findings clearly separate the effects of radiation on the intestinal epithelium from those on the BM and endothelial cells in dose-dependent acute radiation toxicity.
Collapse
|
19
|
Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 2014; 111 Suppl 1:S8-15. [DOI: 10.1017/s0007114513002286] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2–T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2–T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1–T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of l-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and l-amino acid sensing. The impact of exploiting T1R2–T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.
Collapse
|
20
|
Yu J. Intestinal stem cell injury and protection during cancer therapy. Transl Cancer Res 2013; 2:384-396. [PMID: 24683536 PMCID: PMC3966653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Radiation and chemotherapy remain the most effective and widely used cancer treatments. These treatments cause DNA damage and selectively target rapidly proliferating cells such as cancer cells, as well as inevitably cause damage to normal tissues, particularly those undergoing rapid self renewal. The side effects associated with radiation and chemotherapy are most pronounced in the hematopoietic (HP) system and gastrointestinal (GI) tract. These tissues are fast renewing and have a well-defined stem cell compartment that plays an essential role in homeostasis, and in treatment-induced acute injury that is dose limiting. Using recently defined intestinal stem cell markers and mouse models, a great deal of insight has been gained in the biology of intestinal stem cells (ISCs), which will undoubtedly help further mechanistic understanding of their injury. This review will cover historic discoveries and recent advances in the identification and characterization of intestinal stem cells, their responses to genotoxic stress, and a new crypt and intestinal stem cell culture system. The discussion will include key pathways regulating intestinal crypt and stem cell injury and regeneration caused by cancer treatments, and strategies for their protection. The focus will be on the acute phase of cell killing in mouse radiation models, where our understanding of the mechanisms in relation to intestinal stem cells is most advanced and interventions appear most effective.
Collapse
Affiliation(s)
- Jian Yu
- Departments of Pathology and Radiation Oncology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Pittsburgh, PA 15213, USA
| |
Collapse
|
21
|
Zhang Z, Huang J. Intestinal stem cells - types and markers. Cell Biol Int 2013; 37:406-14. [PMID: 23471862 DOI: 10.1002/cbin.10049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/31/2012] [Indexed: 01/12/2023]
Abstract
Intestinal epithelium is a rapidly cycling tissue, always renewing every 4-5 days under normal conditions, which is maintained by intestinal stem cells (ISCs). Using the fluorescence labelling trace, ISCs can be divided into two different types: active intestinal stem cells (A-ISCs) located in bottom of the intestinal crypt and the quiescent intestinal stem cells (Q-ISCs) in the +4 position of the crypt. There is a complex signal regulation net between the ISCs and other intestinal cells, such as Wnt and Notch pathways. ISCs have an intimate relationship with the colorectal cancer (CRC). However, a deficiency of stem cells markers severely limits research on the biological characteristics of ISCs. We have reviewed several ISCs markers, including Lgr5, PHLDA1, Bmi1 and Lrig1. These markers have widely different biological functions, but also have a close relationship with cancers, especially CRC. Our hypothesis concerns the reasons for ISCs having two distinct types and why endless ISCs markers have emerged.
Collapse
Affiliation(s)
- Zhigang Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | |
Collapse
|
22
|
Bu Z, Zheng Z, Zhang L, Li Z, Sun Y, Dong B, Wu A, Wu X, Wang X, Cheng X, Xing X, Li Y, Du H, Ji J. LGR5 is a promising biomarker for patients with stage I and II gastric cancer. Chin J Cancer Res 2013; 25:79-89. [PMID: 23372345 DOI: 10.3978/j.issn.1000-9604.2013.01.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/11/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To investigate Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) expressions in gastric cancer and to evaluate its clinical significance. METHODS LGR5 expression was assessed by immunohistochemistry in 257 gastric cancer patients after surgery. The relationships between LGR5 expression and clinicopathological features and patients prognosis were statistically analyzed. RESULTS The expression of LGR5 was significantly higher in gastric cancers as a cancer stem cell marker than in adjacent normal tissues (P<0.001), and more frequently in patients with intestinal type, well-moderate differentiation and stage I and II (P<0.05). Although we found gastric cancer patients with LGR5 positive expression had a poorer prognosis, it didn't meet statistical significance (P>0.05). LGR5 negative expression was significantly related to the favorable overall survival in stage I and II gastric cancer patients (P<0.05). Furthermore, patients with high LGR5 expression tended to be more likely to get progression and have poorer progress-free survival (P<0.05). Multivariate Cox regression analysis revealed that LGR5 expression was an independent factor of overall survival for the patients with stage I and II gastric cancer (P<0.05). CONCLUSIONS Our results show that LGR5 may play an important role in tumorigenesis and progression and would be a powerful marker to predict the prognosis of patients with stage I and II gastric cancer.
Collapse
Affiliation(s)
- Zhaode Bu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.
Collapse
Affiliation(s)
- Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
24
|
Wilhelm A, Jahns F, Böcker S, Mothes H, Greulich K, Glei M. Culturing explanted colon crypts highly improves viability of primary non-transformed human colon epithelial cells. Toxicol In Vitro 2012; 26:133-41. [DOI: 10.1016/j.tiv.2011.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022]
|
25
|
Asada R, Saito A, Kawasaki N, Kanemoto S, Iwamoto H, Oki M, Miyagi H, Izumi S, Imaizumi K. The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J Biol Chem 2012; 287:8144-53. [PMID: 22262831 DOI: 10.1074/jbc.m111.332593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OASIS is a basic leucine zipper transmembrane transcription factor localized in the endoplasmic reticulum (ER) that is cleaved in its transmembrane region in response to ER stress. This novel ER stress transducer has been demonstrated to express in osteoblasts and astrocytes and promote terminal maturation of these cells. Additionally, OASIS is highly expressed in goblet cells of the large intestine. In this study, we investigated the roles of OASIS in goblet cell differentiation in the large intestine. To analyze the functions of OASIS in goblet cells, we examined morphological changes and the expression of goblet cell differentiation markers in the large intestine of Oasis(-/-) mice. By disrupting the Oasis gene, the number of goblet cells and production of mucus were decreased in the large intestine. Oasis(-/-) goblet cells showed abnormal morphology of mucous vesicles and rough ER. The expression levels of mature goblet cell markers were lower, and conversely those of early goblet cell markers were higher in Oasis(-/-) mice, indicating that differentiation from early to mature goblet cells is impaired in Oasis(-/-) mice. To determine the association of OASIS with other factors involved in goblet cell differentiation, in vitro experiments using a cell culture model were performed. We found that OASIS was activated in response to mild ER stress that is induced in differentiating goblet cells. Knockdown of the Oasis transcript perturbed goblet cell terminal differentiation. Together, our data indicate that OASIS plays crucial roles in promoting the differentiation of early goblet cells to mature goblet cells in the large intestine.
Collapse
Affiliation(s)
- Rie Asada
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 2011; 6:e24072. [PMID: 21935373 PMCID: PMC3174150 DOI: 10.1371/journal.pone.0024072] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/29/2011] [Indexed: 12/11/2022] Open
Abstract
Background Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome. Methodology/Principal Findings Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16–20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated. Conclusion/Significance Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies.
Collapse
Affiliation(s)
- Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Rafi Kabarriti
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Alan A. Alfieri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Hasebe T, Buchholz DR, Shi YB, Ishizuya-Oka A. Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells 2011; 29:154-61. [PMID: 21280164 DOI: 10.1002/stem.560] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the amphibian intestine during metamorphosis, stem cells appear and generate the adult absorptive epithelium, analogous to the mammalian one, under the control of thyroid hormone (TH). We have previously shown that the adult stem cells originate from differentiated larval epithelial cells in the Xenopus laevis intestine. To clarify whether TH signaling in the epithelium alone is sufficient for inducing the stem cells, we have now performed tissue recombinant culture experiments using transgenic X. laevis tadpoles that express a dominant-positive TH receptor (dpTR) under a control of heat shock promoter. Wild-type (Wt) or dpTR transgenic (Tg) larval epithelium (Ep) was isolated from the tadpole intestine, recombined with homologous or heterologous nonepithelial tissues (non-Ep), and then cultivated in the absence of TH with daily heat shocks to induce transgenic dpTR expression. Adult epithelial progenitor cells expressing sonic hedgehog became detectable on day 5 in both the recombinant intestine of Tg Ep and Tg non-Ep (Tg/Tg) and that of Tg Ep and Wt non-Ep (Tg/Wt). However, in Tg/Wt intestine, they did not express other stem cell markers such as Musashi-1 and never generated the adult epithelium expressing a marker for absorptive epithelial cells. Our results indicate that, while it is unclear why some larval epithelial cells dedifferentiate into adult progenitor/stem cells, TR-mediated gene expression in the surrounding tissues other than the epithelium is required for them to develop into adult stem cells, suggesting the importance of TH-inducible epithelial-connective tissue interactions in establishment of the stem cell niche in the amphibian intestine.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in micein vivoby deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.
Collapse
|
29
|
Payne CJ, Gallagher SJ, Foreman O, Dannenberg JH, Depinho RA, Braun RE. Sin3a is required by sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells 2011; 28:1424-34. [PMID: 20572009 DOI: 10.1002/stem.464] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microenvironments support the maintenance of stem cells and the growth of tumors through largely unknown mechanisms. While cell-autonomous chromatin modifications have emerged as important determinants for self-renewal and differentiation of stem cells, a role for non-cell autonomous epigenetic contributions is not well established. Here, we genetically ablated the chromatin modifier Swi-independent 3a (Sin3a) in fetal Sertoli cells, which partly comprise the niche for male germline stem cells, and investigated its impact on spermatogenic cell fate and teratoma formation in vivo. Sertoli cell-specific Sin3a deletion resulted in the formation of few undifferentiated spermatogonia after birth while initially maintaining spermatogenic differentiation. Stem cell-associated markers Plzf, Gfra1, and Oct4 were downregulated in the mutant fetal gonad, while Sertoli cell markers Steel and Gdnf, which support germ cells, were not diminished. Following birth, markers of differentiating spermatogonia, Kit and Sohlh2, exhibited normal levels, but chemokine-signaling molecules chemokine (C-X-C motif) ligand 12 (CXCL12)/stromal cell-derived factor 1 (SDF1) and chemokine (C-X-C motif) receptor 4 (CXCR4), expressed in Sertoli cells and germ cells, respectively, were not detected. In the juvenile, mutant testes exhibited a progressive loss of differentiating spermatogonia and a block in spermatid elongation, followed by extensive germ cell degeneration. Sertoli cell-specific Sin3a deletion also suppressed teratoma formation by fetal germ cells in an in vivo transplantation assay. We conclude that the epigenome of Sertoli cells influences the establishment of a niche for germline stem cells as well as for tumor initiating cells.
Collapse
|
30
|
Wang Z, Matsudaira P, Gong Z. STORM: a general model to determine the number and adaptive changes of epithelial stem cells in teleost, murine and human intestinal tracts. PLoS One 2010; 5:e14063. [PMID: 21124758 PMCID: PMC2993223 DOI: 10.1371/journal.pone.0014063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/29/2010] [Indexed: 01/27/2023] Open
Abstract
Intestinal stem cells play a pivotal role in the epithelial tissue renewal, homeostasis and cancer development. The lack of a general marker for intestinal stem cells across species has hampered analysis of stem cell number in different species and their adaptive changes upon intestinal lesions or during development of cancer. Here a two-dimensional model, named STORM, has been developed to address this issue. By optimizing epithelium renewal dynamics, the model examines the epithelial stem cell number by taking experimental input information regarding epithelium proliferation and differentiation. As the results suggest, there are 2.0-4.1 epithelial stem cells on each pocket section of zebrafish intestine, 2.0-4.1 stem cells on each crypt section of murine small intestine and 1.8-3.5 stem cells on each crypt section of human duodenum. The model is able to provide quick results for stem cell number and its adaptive changes, which is not easy to measure through experiments. Its general applicability to different species makes it a valuable tool for analysis of intestinal stem cells under various pathological conditions.
Collapse
Affiliation(s)
- Zhengyuan Wang
- Computation and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore.
| | | | | |
Collapse
|
31
|
Khalek FJA, Gallicano GI, Mishra L. Colon cancer stem cells. GASTROINTESTINAL CANCER RESEARCH : GCR 2010:S16-S23. [PMID: 21472043 PMCID: PMC3047031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/19/2010] [Indexed: 05/30/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of death from cancer in the United States. Aggressive research in the last decade has led to a wealth of information about this disease; for example, we now know that more than 80% of sporadic colon tumors contain mutations in the Wnt and TGFβ signaling pathways. The latest avenue of research is revealing the existence of and role for the cancer stem cell (CSC) model, which promotes the idea that malignancies originate from a small fraction of cancer cells that show self-renewal and multi- or pluripotency. The model also endorses that CSCs are capable of initiating and sustaining tumor growth. The body of evidence in favor of the CSC model is rapidly growing and includes analyses from flow cytometry of numerous CSC biomarkers, abnormal signaling pathways, symmetric division, dietary augmentation, and analysis of the behavior of these cells in spheroid culture formation. Although the incidence of death from CRC remains high, fervent research, both basic and translational, is beginning to improve patient outcomes. This paper focuses on stem cell biology in the context of CRC to help understand the mechanisms leading to tumor development and therapy resistance, with possible therapeutic indications.
Collapse
Affiliation(s)
- Feras J. Abdul Khalek
- Department of Gastroenterology, Hepatology, and Nutrition Division of Internal Medicine The University of Texas MD Anderson Cancer Center Houston, TX
| | - G. Ian Gallicano
- Department of Biochemistry and Molecular & Cellular Biology Georgetown University Medical School Washington, DC
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology, and Nutrition Division of Internal Medicine The University of Texas MD Anderson Cancer Center Houston, TX
| |
Collapse
|
32
|
Shaker A, Rubin DC. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 2010; 156:180-7. [PMID: 20801415 PMCID: PMC3019104 DOI: 10.1016/j.trsl.2010.06.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium contains a rapidly proliferating and perpetually differentiating epithelium. The principal functional unit of the small intestine is the crypt-villus axis. Stem cells located in the crypts of Lieberkühn give rise to proliferating progenitor or transit amplifying cells that differentiate into the 4 major epithelial cell types. The study of adult gastrointestinal tract stem cells has progressed rapidly with the recent discovery of several putative stem cell markers. Substantial evidence suggests 2 populations of stem cells: long-term quiescent (reserved) and actively cycling (primed) stem cells. These cells are in adjoining locations and are presumably maintained by the secretion of specific proteins generated in a unique microenvironment or stem cell niche surrounding each population. The relationship between these 2 populations, as well as the cellular sources and composition of the surrounding environment, remains to be defined, and is an active area of research. In this review, we will outline progress in identifying stem cells and in defining epithelial-mesenchymal interactions in the crypt. We will summarize early advances using stem cells for therapy of gastrointestinal disorders.
Collapse
Affiliation(s)
- Anisa Shaker
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Abstract
The primary function of the gastrointestinal tract is water, electrolyte, and nutrient transport. To perform this function, the epithelium lining the gastrointestinal tract is in close contact with the gastrointestinal lumen. Because the lumen is connected to the external environment and, depending on the site, has a high bacterial and antigen load, the epithelium must also prevent pathogenic agents within the gastrointestinal lumen from gaining access to internal tissues. This creates a unique challenge for the gastrointestinal tract to balance the requirements of forming a barrier to separate the intestinal lumen from underlying tissue while simultaneously setting up a system for moving water, electrolytes, and nutrients across the barrier. In the face of this, the epithelial cells of the gastrointestinal tract form a selectively permeable barrier that is tightly regulated. In addition, the intestinal mucosa actively participates in host defense by engaging the mucosal immune system. Complex tissue organization and diverse cellular composition are necessary to achieve such a broad range of functions. In this chapter, the structure and function of the gastrointestinal tract and their relevance to infectious diseases are discussed.
Collapse
|
34
|
Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:155-68. [PMID: 21222205 DOI: 10.1007/978-1-4419-7037-4_11] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging.
Collapse
|
35
|
Kwon MC, Koo BK, Kim YY, Lee SH, Kim NS, Kim JH, Kong YY. Essential role of CR6-interacting factor 1 (Crif1) in E74-like factor 3 (ELF3)-mediated intestinal development. J Biol Chem 2009; 284:33634-41. [PMID: 19801644 DOI: 10.1074/jbc.m109.059840] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although terminal differentiation of intestinal epithelium is essential for the efficient digestion and absorption of nutrients, little is known about the molecular mechanisms underlying this process. Recent studies have shown that Elf3 (E74-like factor 3), a member of the ETS transcription factor family, has an essential role in the terminal differentiation of absorptive enterocytes and mucus-secreting goblet cells. Here, we demonstrated that Crif1 (CR6-interacting factor 1) functions as transcriptional coactivator of Elf3 in intestinal epithelium differentiation. The intestinal epithelium-specific Crif1-deficient mice died soon after birth and displayed severe alterations of tissue architecture in the small intestine, including poor microvillus formation and abnormal differentiation of absorptive enterocytes. Strikingly, these phenotypes are largely similar to that of Elf3-deficient mice, suggesting that Elf3 signaling in the intestinal epithelium depends on the Crif1 expression. We dissected this relationship further and found that Crif1 indeed interacted with Elf3 through its ETS DNA binding domain and enhanced the transcriptional activity of Elf3 by regulating the DNA binding activity. Knockdown of Crif1 by RNA interference conversely attenuated the transcriptional activity of Elf3. Consistently, the expression level of Tgf-betaRII (transforming growth factor beta type II receptor), a critical target gene of Elf3, was dramatically reduced in the Crif1-deficient mice. Our results reveal that Crif1 is a novel and essential transcriptional coactivator of Elf3 for the terminal differentiation of absorptive enterocytes.
Collapse
Affiliation(s)
- Min-Chul Kwon
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1, Silim-dong, Gwanak-gu, Seoul 151-747, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71:241-60. [PMID: 18808327 DOI: 10.1146/annurev.physiol.010908.163145] [Citation(s) in RCA: 1247] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian intestine is covered by a single layer of epithelial cells that is renewed every 4-5 days. This high cell turnover makes it a very attractive and comprehensive adult organ system for the study of cell proliferation and differentiation. The intestine is composed of proliferative crypts, which contain intestinal stem cells, and villi, which contain differentiated specialized cell types. Through the recent identification of Lgr5, an intestinal stem cell marker, it is now possible to visualize stem cells and study their behavior and differentiation in a much broader context. In this review we describe the identification of intestinal stem cells. We also discuss genetic studies that have helped to elucidate those signals important for progenitor cells to differentiate into one of the specialized intestinal epithelial cell types. These studies describe a genetic hierarchy responsible for cell fate commitment in normal gut physiology. Where relevant we also mention aberrant deregulation of these molecular pathways that results in colon cancer.
Collapse
Affiliation(s)
- Laurens G van der Flier
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands.
| | | |
Collapse
|
37
|
|
38
|
Ishizuya-Oka A, Hasebe T, Buchholz DR, Kajita M, Fu L, Shi YB. Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J 2009; 23:2568-75. [PMID: 19299481 DOI: 10.1096/fj.08-128124] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the amphibian intestine during metamorphosis, de novo stem cells generate the adult epithelium analogous to the mammalian counterpart. Interestingly, to date the exact origin of these stem cells remains to be determined, making intestinal metamorphosis a unique model to study development of adult organ-specific stem cells. Here, to determine their origin, we made use of transgenic Xenopus tadpoles expressing green fluorescent protein (GFP) for recombinant organ cultures. The larval epithelium separated from the wild-type (Wt) or GFP transgenic (Tg) intestine before metamorphic climax was recombined with homologous and heterologous nonepithelial tissues and was cultivated in the presence of thyroid hormone, the causative agent of metamorphosis. In all kinds of recombinant intestine, adult progenitor cells expressing markers for intestinal stem cells such as sonic hedgehog became detectable and then differentiated into the adult epithelium expressing intestinal fatty acid binding-protein, a marker for absorptive cells. Notably, whenever the epithelium was derived from Tg intestine, both the adult progenitor/stem cells and their differentiated cells expressed GFP, whereas neither of them expressed GFP in the Wt-derived epithelium. Our results provide direct evidence that stem cells that generate the adult intestinal epithelium originate from the larval epithelium, through thyroid hormone-induced dedifferentiation.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Samuel S, Walsh R, Webb J, Robins A, Potten C, Mahida YR. Characterization of putative stem cells in isolated human colonic crypt epithelial cells and their interactions with myofibroblasts. Am J Physiol Cell Physiol 2008; 296:C296-305. [PMID: 19073897 DOI: 10.1152/ajpcell.00383.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Colonic epithelial stem cells are believed to be located at the crypt base where they have previously been shown to express musashi-1. The colonic stem cell niche, which includes extracellular matrix and myofibroblasts (together with other cell types), is likely to be important in maintaining the function of the progenitor cells. The aims of our studies were to characterize stem cells in isolated and disaggregated human colonic crypt epithelial cells and investigate their interactions with monolayers of primary human colonic myofibroblasts. In unfractionated preparations of disaggregated colonic crypts, musashi-1 positive cells preferentially adhered to colonic myofibroblasts, despite the presence of excess blocking anti-beta(1)-integrin antibody. These adherent epithelial cells remained viable for a number of days and developed slender processes. Cells with side population characteristics (as demonstrated by ability to expel the dye Hoechst 33342) were consistently seen in the isolated colonic crypt epithelial cells. These side population cells expressed musashi-1, beta(1)-integrin, BerEP4, and CD133. Sorted side population crypt epithelial cells also rapidly adhered to primary colonic myofibroblasts. In conclusion, in preparation of isolated and disaggregated human colonic crypts, cells with stem cell characteristics preferentially adhere to primary human colonic myofibroblasts in a beta(1)-integrin-independent fashion.
Collapse
Affiliation(s)
- S Samuel
- Institute of Infection, Immunity and Inflammation, C Floor, West Block, Queen's Medical Centre, Nottingham NG72UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Guo J, Longshore S, Nair R, Warner BW. Retinoblastoma protein (pRb), but not p107 or p130, is required for maintenance of enterocyte quiescence and differentiation in small intestine. J Biol Chem 2008; 284:134-140. [PMID: 18981186 DOI: 10.1074/jbc.m806133200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The function of retinoblastoma protein (pRb) in the regulation of small intestine epithelial cell homeostasis has been challenged by several groups using various promoter-based Cre transgenic mouse lines. Interestingly, different pRb deletion systems yield dramatically disparate small intestinal phenotypes. These findings confound the function of pRb in this dynamic tissue. In this study, Villin-Cre transgenic mice were crossed with Rb (flox/flox) mice to conditionally delete pRb protein in small intestine enterocytes. We discovered a novel hyperplasia phenotype as well as ectopic cell cycle reentry within villus enterocytes in the small intestine. This phenotype was not seen in other pRb family member (p107 or p130) null mice. Using a newly developed crypt/villus isolation method, we uncovered that expression of pRb was undetectable, whereas proliferating cell nuclear antigen, p107, cyclin E, cyclin D3, Cdk2, and Cdc2 were dramatically increased in pRb-deficient villus cells. Cyclin A, cyclin D1, cyclin D2, and Cdk4/6 expression was not affected by absent pRb expression. pRb-deficient villus cells appeared capable of progressing to mitosis but with higher rates of apoptosis. However, the cycling villus enterocytes were not completely differentiated as gauged by significant reduction of intestinal fatty acid-binding protein expression. In summary, pRb, but not p107 or p130, is required for maintaining the postmitotic villus cell in quiescence, governing the expression of cell cycle regulatory proteins, and completing of absorptive enterocyte differentiation in the small intestine.
Collapse
Affiliation(s)
- Jun Guo
- Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Shannon Longshore
- Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Rajalakshmi Nair
- Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Brad W Warner
- Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
41
|
Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol 2008; 288:71-8. [PMID: 18400374 DOI: 10.1016/j.mce.2008.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/28/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022]
Abstract
During amphibian metamorphosis the small intestine is remodeled from larval to adult form, analogous to the mammalian intestine. The larval epithelium mostly undergoes apoptosis, while a small number of stem cells appear, actively proliferate, and differentiate into the adult epithelium possessing a cell-renewal system. Because amphibian intestinal remodeling is completely controlled by thyroid hormone (T3) through T3 receptors (TRs), it serves as an excellent model for studying the molecular mechanism of the mammalian intestinal development. TRs bind T3 response elements in target genes and have dual functions by interacting with coactivators or corepressors in a T3-dependent manner. A number of T3 response genes have been isolated from the Xenopus laevis intestine. They include signaling molecules, matrix metalloproteinases, and transcription factors. Functional studies have been carried out on many such genes in vitro and in vivo by using transgenic and culture technologies. Here we will review recent findings from such studies with a special emphasis on the adult intestinal stem cells, and discuss the evolutionarily conserved roles of T3 in the epithelial cell-renewal in the vertebrate intestine.
Collapse
|
42
|
Abstract
Endometriosis is a common gynecological disorder that is defined by the presence of endometrial tissue outside the uterine cavity. This disease often results in extensive morbidity, including chronic pelvic pain and infertility. The pathogenesis of endometriosis is likely multifactorial, and extensive investigation has explored the role of genetics, environmental factors, and the immune system in predisposing patients to developing endometriosis. A series of recent publications have described the identification of endometrial stem/progenitor cells. Such cells have long been speculated to function in the cyclic regeneration of the endometrium during the menstrual cycle and in the pathogenesis of several gynecological disorders. This narrative review will (i) examine the evidence for endometrial stem cells, (ii) examine their potential role in the pathogenesis of endometriosis, and (iii) identify important unanswered questions with suggestions for future investigation.
Collapse
Affiliation(s)
- Isaac E. Sasson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
43
|
Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134:849-64. [PMID: 18325394 DOI: 10.1053/j.gastro.2008.01.079] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 12/13/2022]
Abstract
Studies using mice have yielded significant amounts of information regarding signaling pathways, such as Wnt, bone morphogenic protein, PtdIns(3,4,5) kinase, and Notch, involved in intestinal development and homeostasis, including stem cell regulation and lineage specification and maturation. However, attempts to model signals definitively that control intestinal stem cells have been difficult because of a long-standing and recently reenergized debate surrounding their location. Although crypt-based columnar cells have been recently shown to display self-renewal and multipotential capacity, a large body of evidence supports long-term label-retaining cells, located on average at the +4 position just above the Paneth cells, as putative stem cells. Herein, we propose that both these cell types represent true intestinal stem cells maintained in different states (quiescent vs actively cycling), presumably via interactions with different microenvironments. Finally, we review current findings regarding the roles of Wnt, bone morphogenic protein, PtdIns(3,4,5) kinase, and Notch pathways within the intestine.
Collapse
Affiliation(s)
- David H Scoville
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
44
|
Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H, de Crombrugghe B. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology 2007; 133:539-46. [PMID: 17681175 DOI: 10.1053/j.gastro.2007.05.020] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/03/2007] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS The transcription factor SOX9 has been shown previously to have an essential role in the differentiation of a small number of discrete cell lineages. In the intestine, Sox9 is expressed in the epithelial cells of the crypts and is a target of Wnt signaling. METHODS To examine the function of SOX9 in the intestine, we inactivated the Sox9 gene in intestinal epithelial cells by generating mice that harbored a conditional Sox9 gene and a Villin-Cre transgene. RESULTS In the absence of SOX9, Paneth cells were not formed, but the differentiation of other intestinal epithelial cell types was unaffected. The lack of SOX9 also lead to crypt enlargement, to a marked increase in cell proliferation throughout the crypts, and to replacement of the Paneth cells by proliferating epithelial cells. CONCLUSIONS We conclude that SOX9 is required for the differentiation of Paneth cells. Our results elucidate an essential step in the differentiation of gut epithelium.
Collapse
Affiliation(s)
- Yuko Mori-Akiyama
- Department of Molecular Geneticsm, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ishizuya-Oka A. Regeneration of the amphibian intestinal epithelium under the control of stem cell niche. Dev Growth Differ 2007; 49:99-107. [PMID: 17335431 DOI: 10.1111/j.1440-169x.2007.00913.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The epithelium of the mammalian digestive tract originates from stem cells and undergoes rapid cell-renewal throughout adulthood. It has been proposed that the microenvironment around the stem cells, called 'niche', plays an important role in epithelial cell-renewal through cell-cell and cell-extracellular matrix interactions. The amphibian intestine, which establishes epithelial cell-renewal during metamorphosis, serves as a unique and good model for studying molecular mechanisms of the stem cell niche. By using the organ culture of the Xenopus laevis intestine, we have previously shown that larval-to-adult epithelial remodeling can be organ-autonomously induced by thyroid hormone (TH) and needs interactions with the surrounding connective tissue. Thus, in this animal model, the functional analysis of TH response genes is useful for clarifying the epithelial-connective tissue interactions essential for intestinal remodeling at the molecular level. Recent progress in culture and transgenic technology now enables us to investigate functions of such TH response genes in the X. laevis intestine and sheds light on molecular aspects of the stem cell niche that are common to the mammalian intestine.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan.
| |
Collapse
|
46
|
Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, Teixeira J. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells 2007; 25:1317-25. [PMID: 17289934 DOI: 10.1634/stemcells.2006-0204] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conditional deletion of beta-catenin in the Müllerian duct mesenchyme results in a degenerative uterus characterized by replacement of the myometrial smooth muscle with adipose tissue. We hypothesized that the mouse myometrium houses somatic smooth muscle progenitor cells that are hormonally responsive and necessary for remodeling and regeneration during estrous cycling and pregnancy. We surmise that the phenotype observed in beta-catenin conditionally deleted mice is the result of dysregulation of these progenitor cells. The objective of this study was to identify the mouse myometrial smooth muscle progenitor cell and its niche, define the surface marker phenotype, and show a functional response of these cells to normal myometrial cycling. Uteri were labeled with 5-bromo-2'-deoxyuridine (BrdU) and chased for up to 14 weeks. Myometrial label-retaining cells (LRCs) were observed in the myometrium and stroma throughout the chase period. After 12 weeks, phenotypic analysis of the LRCs by immunofluorescence demonstrated that the majority of LRCs colocalized with alpha-smooth muscle actin, estrogen receptor-alpha, and beta-catenin. Flow cytometry of myometrial cells identified a myometrial Hoechst 33342 effluxing "side population" that expresses MISRII-Cre-driven YFP. Functional response of LRCs was investigated by human chorionic gonadotropin stimulation of week 12 chase mice and demonstrated sequential proliferation of LRCs in the endometrial stroma, followed by the myometrium. These results suggest that conventional myometrial regeneration and repair is executed by hormonally responsive stem or progenitor cells derived from the Müllerian duct mesenchyme. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Paul P Szotek
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ishizuya-Oka A, Shi YB. Regulation of adult intestinal epithelial stem cell development by thyroid hormone duringXenopus laevis metamorphosis. Dev Dyn 2007; 236:3358-68. [PMID: 17705305 DOI: 10.1002/dvdy.21291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During amphibian metamorphosis, most or all of the larval intestinal epithelial cells undergo apoptosis. In contrast, stem cells of yet-unknown origin actively proliferate and, under the influence of the connective tissue, differentiate into the adult epithelium analogous to the mammalian counterpart. Thus, amphibian intestinal remodeling is useful for studying the stem cell niche, the clarification of which is urgently needed for regenerative therapies. This review highlights the molecular aspects of the niche using the Xenopus laevis intestine as a model. Because amphibian metamorphosis is completely controlled by thyroid hormone (TH), the analysis of TH response genes serves as a powerful means for clarifying its molecular mechanisms. Although functional analysis of the genes is still on the way, recent progresses in organ culture and transgenic studies have gradually uncovered important roles of cell-cell and cell-extracellular matrix interactions through stromelysin-3 and sonic hedgehog/bone morphogenetic protein-4 signaling pathway in the epithelial stem cell development.
Collapse
|
48
|
Abstract
The mucosal lining (endometrium) of the human uterus undergoes cyclical processes of regeneration, differentiation and shedding as part of the menstrual cycle. Endometrial regeneration also follows parturition, almost complete resection and in post-menopausal women taking estrogen replacement therapy. In non-menstruating species, there are cycles of endometrial growth and apoptosis rather than physical shedding. The concept that endometrial stem/progenitor cells are responsible for the remarkable regenerative capacity of endometrium was proposed many years ago. However, attempts to isolate, characterize and locate endometrial stem cells have only been undertaken in the last few years as experimental approaches to identify adult stem/progenitor cells in other tissues have been developed. Adult stem cells are defined by their functional properties rather than by marker expression. Evidence for the existence of adult stem/progenitor cells in human and mouse endometrium is now emerging because functional stem cell assays are being applied to uterine cells and tissues. These fundamental studies on endometrial stem/progenitor cells will provide new insights into the pathophysiology of various gynaecological disorders associated with abnormal endometrial proliferation, including endometrial cancer, endometrial hyperplasia, endometriosis and adenomyosis.
Collapse
Affiliation(s)
- C E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Illa-Bochaca I, Montuenga LM. The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. ACTA ACUST UNITED AC 2006; 209:2215-23. [PMID: 16709922 DOI: 10.1242/jeb.02249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A better knowledge of the regulatory mechanisms involved in stem cell proliferation and/or differentiation could reveal new methods for the treatment of some diseases. Most previous studies in the field of stem cell biology have been carried out on cultured isolated cells. In the case of adult tissue stem cells, mesenchymal bone marrow derived cells have been most widely studied, while the undifferentiated stem cells present in the epithelial tissues are less known. In order to advance further our understanding of epithelial tissue stem cells, new in vivo models are required. The present study focuses on the dynamics of a new and simple model of intestinal epithelial regeneration found in the midgut of the migratory locust, Locusta migratoria (Linnaeus 1758). The locust midgut consists of three cell types: columnar cells, endocrine cells and undifferentiated regenerative clustered cells. The undifferentiated epithelial midgut cells give rise to two other cell types and are located in a nest of regenerative cells known as regenerative niche. We have performed single and continuous bromodeoxyuridine (BrdU) administration experiments to study regeneration niches and their cellular dynamics. Immunocytochemistry and immunofluorescence techniques were used to detect the incorporation of BrdU into regenerative niches and the presence of FMRFamide-like immunoreactivity, as a marker for endocrine cell differentiation. Some isolated label retaining cells (LRC) were observed at the niche base 10-15 days after the final BrdU administration. We propose that these cells are the stem cells of this epithelial tissue. We also calculated the length of the cell cycle phases for a subpopulation of transit amplifying cells within the regenerative niche: G1, 2.5+/-0.5 h; S, 5.5+/-0.5 h; G2, 0.75+/-0.25 h; M, 2.5+/-0.5 h. These amplifying cells will give rise to the columnar epithelial non-endocrine lineage. The differentiation of an endocrine cell from a niche stem cell occurs less frequently and thus leads to a lower proportion of endocrine cells as compared with epithelial columnar digestive cells (up to three endocrine cells per niche). Endocrine cell commitment seems to occur very early in the differentiation process within the niche, as double-labelled BrdU and FMRF endocrine cells have never been found. The only exception is the endocrine cells located in the ampullar region of the midgut, some of which show double immunostaining after long-term chronic BrdU injection. In summary, we have characterized a new and simple animal model of epithelial stem cell regeneration that may be useful for understanding the complex biological process that drives tissue renewal from undifferentiated and uncommitted progenitor cells.
Collapse
Affiliation(s)
- Irineu Illa-Bochaca
- Department of Histology and Pathology, Schools of Sciences and Medicine, University of Navarra, E-31080 Pamplona, Spain
| | | |
Collapse
|
50
|
Crivellato E, Finato N, Isola M, Pandolfi M, Ribatti D, Beltrami CA. Number of pericryptal fibroblasts correlates with density of distinct mast cell phenotypes in the crypt lamina propria of human duodenum: implications for the homeostasis of villous architecture. ACTA ACUST UNITED AC 2006; 288:593-600. [PMID: 16652353 DOI: 10.1002/ar.a.20325] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pericryptal fibroblasts (PFs), a class of myofibroblasts, have strongly been implicated in the regulation of villous structure because of their location close to crypts and their ability to secrete cytokines affecting intestinal epithelial cell proliferation and differentiation. Recently, mast cells (MCs) have also been involved in the homeostasis of villous architecture. As myofibroblasts arise in a wide variety of settings concurrently with a local increase in the number of tissue MCs, we calculated in this study the density of both PF and distinct pericryptal MC phenotypes in the mucosa of human duodenum showing normal, defective, or atrophic villous profiles. In addition, we evaluated the statistical association between PF-MC densities and each pattern of villous architecture. Finally, we correlated the density of PF with the density of pericryptal MC phenotypes. For this purpose, samples taken by endoscopy from 30 patients complaining of inflammatory bowel disorders were studied by immunohistochemistry. The densities of alpha-smooth muscle actin-positive PFs as well as tryptase-, chymase-, and c-kit-positive MCs were determined in the crypt lamina propria. Villous architecture was found to be significantly associated with the number of PFs and tryptase-, chymase-, c-kit-positive MCs in the lamina propria (ANOVA group effect P < 0.001). High density of both PFs and MCs was found in intestinal samples with normal villous morphology while lower densities were associated with defective or atrophic villous profiles (Tukey's test for multiple comparison P < 0.001). In addition, a significant correlation was found between PF density and the density of each pericryptal MC phenotype (vs. tryptase-positive MCs, r = 0.913; vs. chymase-positive MC, r = 0.905; vs. c-kit-positive MC, r = 0.927; P < 0.001 in all cases). This study provides morphological support for an important cooperation between PFs and MCs in maintaining normal villous architecture.
Collapse
Affiliation(s)
- Enrico Crivellato
- Section of Anatomy, Department of Medical and Morphological Research, University of Udine School of Medicine, Udine, Italy.
| | | | | | | | | | | |
Collapse
|