1
|
James MR, Doss KE, Cramer RA. New developments in Aspergillus fumigatus and host reactive oxygen species responses. Curr Opin Microbiol 2024; 80:102521. [PMID: 39079399 PMCID: PMC11475146 DOI: 10.1016/j.mib.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Aspergillus fumigatus is a filamentous fungus abundant in the environment and the most common causative agent of a spectrum of human diseases collectively termed aspergillosis. Invasive pulmonary aspergillosis is caused by deficiencies in innate immune function that result in the inability of the host to clear inhaled Aspergillus conidia that then germinate and form invasive hyphae. Myeloid cells, and their ability to generate reactive oxygen species (ROS), are essential for conidia clearance from the host. To combat ROS, A. fumigatus employs an expansive antioxidant system, though how these canonical antioxidant mechanisms contribute to infection initiation and disease progression remain to be fully defined. Recent research has identified noncanonical pathways in the A. fumigatus ROS response and new host populations with ROS deficiencies that are at-risk for invasive aspergillosis. Here, we highlight recent developments in the understanding of ROS at the interface of the dynamic A. fumigatus-host interaction.
Collapse
Affiliation(s)
- Matthew R James
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA
| | - Katherine E Doss
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA.
| |
Collapse
|
2
|
Bucknor EMV, Johnson E, Efthymiou S, Alvi JR, Sultan T, Houlden H, Maroofian R, Karimiani EG, Finelli MJ, Oliver PL. Neuroinflammation and Lysosomal Abnormalities Characterise the Essential Role for Oxidation Resistance 1 in the Developing and Adult Cerebellum. Antioxidants (Basel) 2024; 13:685. [PMID: 38929124 PMCID: PMC11201099 DOI: 10.3390/antiox13060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Loss-of-function mutations in the TLDc family of proteins cause a range of severe childhood-onset neurological disorders with common clinical features that include cerebellar neurodegeneration, ataxia and epilepsy. Of these proteins, oxidation resistance 1 (OXR1) has been implicated in multiple cellular pathways related to antioxidant function, transcriptional regulation and cellular survival; yet how this relates to the specific neuropathological features in disease remains unclear. Here, we investigate a range of loss-of-function mouse model systems and reveal that constitutive deletion of Oxr1 leads to a rapid and striking neuroinflammatory response prior to neurodegeneration that is associated with lysosomal pathology. We go on to show that neuroinflammation and cell death in Oxr1 knockouts can be completely rescued by the neuronal expression of Oxr1, suggesting that the phenotype is driven by the cell-intrinsic defects of neuronal cells lacking the gene. Next, we generate a ubiquitous, adult inducible knockout of Oxr1 that surprisingly displays rapid-onset ataxia and cerebellar neurodegeneration, establishing for the first time that the distinctive pathology associated with the loss of Oxr1 occurs irrespective of developmental stage. Finally, we describe two new homozygous human pathogenic variants in OXR1 that cause neurodevelopmental delay, including a novel stop-gain mutation. We also compare functionally two missense human pathogenic mutations in OXR1, including one newly described here, that cause different clinical phenotypes but demonstrate partially retained neuroprotective activity against oxidative stress. Together, these data highlight the essential role of Oxr1 in modulating neuroinflammatory and lysosomal pathways in the mammalian brain and support the hypothesis that OXR1 protein dosage may be critical for pathological outcomes in disease.
Collapse
Affiliation(s)
- Eboni M. V. Bucknor
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Errin Johnson
- The Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Javeria R. Alvi
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore 54660, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore 54660, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1B 5EE, UK
| | - Ehsan G. Karimiani
- Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW18 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 009851, Iran
| | - Mattéa J. Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
3
|
Wilson KA, Bar S, Dammer EB, Carrera EM, Hodge BA, Hilsabeck TAU, Bons J, Brownridge GW, Beck JN, Rose J, Granath-Panelo M, Nelson CS, Qi G, Gerencser AA, Lan J, Afenjar A, Chawla G, Brem RB, Campeau PM, Bellen HJ, Schilling B, Seyfried NT, Ellerby LM, Kapahi P. OXR1 maintains the retromer to delay brain aging under dietary restriction. Nat Commun 2024; 15:467. [PMID: 38212606 PMCID: PMC10784588 DOI: 10.1038/s41467-023-44343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Brian A Hodge
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Tyler A U Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jennifer N Beck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | - Grace Qi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jianfeng Lan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Guanxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Afilliated Hospital of Guilin Medican University, Guilin, 541001, Guanxi, China
| | - Alexandra Afenjar
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire, Paris, 75012, France
- Département de Génétique et Embryologie Médicale, CRMR des Malformations et Maladies Congénitales du Cervelet, GRC ConCer-LD, Sorbonne Universités, Hôpital Trousseau, Paris, 75012, France
| | - Geetanjali Chawla
- RNA Biology Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence, NH91, Tehsil Dadri, G. B. Nagar, 201314, Uttar Pradesh, India
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC, H3T 1J4, Canada
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
5
|
Peng C, Luo J, Wang K, Li J, Ma Y, Li J, Yang H, Chen T, Zhang G, Ji X, Liao Y, Lin H, Ji Z. Iridium metal complex targeting oxidation resistance 1 protein attenuates spinal cord injury by inhibiting oxidative stress-associated reactive oxygen species. Redox Biol 2023; 67:102913. [PMID: 37857001 PMCID: PMC10587759 DOI: 10.1016/j.redox.2023.102913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Oxidative stress is a key factor leading to profound neurological deficits following spinal cord injury (SCI). In this study, we present the development and potential application of an iridium (iii) complex, (CpxbiPh) Ir (N^N) Cl, where CpxbiPh represents 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl, and N^N denotes 2-(3-(4-nitrophenyl)-1H-1,2,4-triazol-5-yl) pyridine chelating agents, to address this challenge through a mechanism governed by the regulation of an antioxidant protein. This iridium complex, IrPHtz, can modulate the Oxidation Resistance 1 (OXR1) protein levels within spinal cord tissues, thus showcasing its antioxidative potential. By eliminating reactive oxygen species (ROS) and preventing apoptosis, the IrPHtz demonstrated neuroprotective and neural healing characteristics on injured neurons. Our molecular docking analysis unveiled the presence of π stacking within the IrPHtz-OXR1 complex, an interaction that enhanced OXR1 expression, subsequently diminishing oxidative stress, thwarting neuroinflammation, and averting neuronal apoptosis. Furthermore, in in vivo experimentation with SCI-afflicted mice, IrPHtz was efficacious in shielding spinal cord neurons, promoting their regrowth, restoring electrical signaling, and improving motor performance. Collectively, these findings underscore the potential of employing the iridium metal complex in a novel, protein-regulated antioxidant strategy, presenting a promising avenue for therapeutic intervention in SCI.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianxian Luo
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianping Li
- Department of Anatomy, Shaoyang University Puai Medical College, Shaoyang, Hunan, 422099, China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Juanjuan Li
- Guangdong Key Laboratory of Urology and Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tianjun Chen
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
6
|
Lin X, Wang W, Yang M, Damseh N, de Sousa MML, Jacob F, Lång A, Kristiansen E, Pannone M, Kissova M, Almaas R, Kuśnierczyk A, Siller R, Shahrour M, Al-Ashhab M, Abu-Libdeh B, Tang W, Slupphaug G, Elpeleg O, Bøe SO, Eide L, Sullivan GJ, Rinholm JE, Song H, Ming GL, van Loon B, Edvardson S, Ye J, Bjørås M. A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial-temporal regulation of histone arginine methylation in neurodevelopment. Genome Biol 2023; 24:216. [PMID: 37773136 PMCID: PMC10540402 DOI: 10.1186/s13059-023-03037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nadirah Damseh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Lång
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elise Kristiansen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway
| | - Marco Pannone
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Miroslava Kissova
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Richard Siller
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Maher Shahrour
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
- Department of Newborn and Developmental Paediatrics, Toronto, ON, Canada
| | - Motee Al-Ashhab
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, East Jerusalem, Palestine
| | - Wannan Tang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Orly Elpeleg
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johanne Egge Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- The Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Simon Edvardson
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel.
| | - Jing Ye
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway.
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
- Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, 0373, Oslo, Norway.
- Norwegian Centre for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
8
|
Li Y, Ning G, Kang B, Zhu J, Wang XY, Wang Q, Cai T. A novel recessive mutation in OXR1 is identified in patient with hearing loss recapitulated by the knockdown zebrafish. Hum Mol Genet 2023; 32:764-772. [PMID: 36130215 PMCID: PMC10365843 DOI: 10.1093/hmg/ddac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/14/2022] Open
Abstract
Hereditary hearing loss is a highly genetically heterogeneous disorder. More than 150 genes have been identified to link to human non-syndromic hearing impairment. To identify genetic mutations and underlying molecular mechanisms in affected individuals and families with congenital hearing loss, we recruited a cohort of 389 affected individuals in 354 families for whole-exome sequencing analysis. In this study, we report a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in the OXR1 gene, which was identified in a 4-year-old girl with sensorineural hearing loss. OXR1 encodes Oxidation Resistance 1 and is evolutionarily conserved from zebrafish to human. We found that the ortholog oxr1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL) in zebrafish. Knockdown of oxr1b in zebrafish resulted in a significant developmental defect of SAG and pLL. This phenotype can be rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs. OXR1-associated pathway analysis revealed that mutations of TBC1D24, a TLDc-domain-containing homolog gene of OXR1, have previously been identified in patients with hearing loss. Interestingly, mutations or knockout of OXR1 interacting molecules such as ATP6V1B1 and ESR1 are also associated with hearing loss in patients or animal models, hinting an important role of OXR1 and associated partners in cochlear development and hearing function.
Collapse
Affiliation(s)
- Yuan Li
- Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing 1000292, China
| | - Guozhu Ning
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 5100063, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 1001014, China
| | - Baoling Kang
- Bioinformatics Section, Angen Gene Medicine Technology, Beijing 1001765, China
| | - Jinwen Zhu
- Bioinformatics Section, Angen Gene Medicine Technology, Beijing 1001765, China
| | | | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 5100063, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 208927, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Cuanalo-Contreras K, Schulz J, Mukherjee A, Park KW, Armijo E, Soto C. Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Front Aging Neurosci 2023; 14:1090109. [PMID: 36778589 PMCID: PMC9909609 DOI: 10.3389/fnagi.2022.1090109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Accumulation of misfolded protein aggregates is a hallmark event in many age-related protein misfolding disorders, including some of the most prevalent and insidious neurodegenerative diseases. Misfolded protein aggregates produce progressive cell damage, organ dysfunction, and clinical changes, which are common also in natural aging. Thus, we hypothesized that aging is associated to the widespread and progressive misfolding and aggregation of many proteins in various tissues. In this study, we analyzed whether proteins misfold, aggregate, and accumulate during normal aging in three different biological systems, namely senescent cells, Caenorhabditis elegans, and mouse tissues collected at different times from youth to old age. Our results show a significant accumulation of misfolded protein aggregates in aged samples as compared to young materials. Indeed, aged samples have between 1.3 and 2.5-fold (depending on the biological system) higher amount of insoluble proteins than young samples. These insoluble proteins exhibit the typical characteristics of disease-associated aggregates, including insolubility in detergents, protease resistance, and staining with amyloid-binding dye as well as accumulation in aggresomes. We identified the main proteins accumulating in the aging brain using proteomic studies. These results show that the aged brain contain large amounts of misfolded and likely non-functional species of many proteins, whose soluble versions participate in cellular pathways that play fundamental roles in preserving basic functions, such as protein quality control, synapsis, and metabolism. Our findings reveal a putative role for protein misfolding and aggregation in aging.
Collapse
Affiliation(s)
- Karina Cuanalo-Contreras
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jonathan Schulz
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abhisek Mukherjee
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kyung-Won Park
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Enrique Armijo
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States,Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States,Facultad de Medicina, Universidad de los Andes, Santiago, Chile,*Correspondence: Claudio Soto,
| |
Collapse
|
10
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteome changes in a human retinal pigment epithelial cell line during oxidative stress and following antioxidant treatment. Front Immunol 2023; 14:1138519. [PMID: 37153596 PMCID: PMC10154683 DOI: 10.3389/fimmu.2023.1138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common cause of blindness in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE) dysfunction and cell death thereby leading to AMD. Using improved RPE cell model systems, such as human telomerase transcriptase-overexpressing (hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during oxidative stress can be better understood. Using this model system, we identified changes in the expression of proteins involved in the cellular antioxidant responses after induction of oxidative stress. Some antioxidants such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that can reduce oxidative damage in cells. Alpha-tocopherol (α-Toc or αT) and gamma-tocopherol (γ-Toc or γT) are well-studied tocopherols, but signaling mechanisms underlying their respective cytoprotective properties may be distinct. Here, we determined what effect oxidative stress, induced by extracellularly applied tBHP in the presence and absence of αT and/or γT, has on the expression of antioxidant proteins and related signaling networks. Using proteomics approaches, we identified differential protein expression in cellular antioxidant response pathways during oxidative stress and after tocopherol treatment. We identified three groups of proteins based on biochemical function: glutathione metabolism/transfer, peroxidases and redox-sensitive proteins involved in cytoprotective signaling. We found that oxidative stress and tocopherol treatment resulted in unique changes in these three groups of antioxidant proteins indicate that αT and γT independently and by themselves can induce the expression of antioxidant proteins in RPE cells. These results provide novel rationales for potential therapeutic strategies to protect RPE cells from oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
11
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
12
|
Qiao X, Li Y, Jin Y, Wang S, Hou L, Wang L, Song L. The involvement of an interferon-induced protein 44-like (CgIFI44L) in the antiviral immune response of Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 129:96-105. [PMID: 36055558 DOI: 10.1016/j.fsi.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Interferon-stimulated genes (ISGs) encoding proteins are the essential executors of interferon (IFN) mediated antiviral defense. In the present study, an ISG member, interferon-induced protein 44-like (IFI44L) gene (designed as CgIFI44L-1) was identified from the Pacific oyster Crassostrea gigas. The ORF of CgIFI44L-1 cDNA was of 1437 bp encoding a polypeptide of 479 amino acids with a TLDc domain and an MMR_HSR1 domain. The mRNA transcripts of CgIFI44L-1 were detected in all the tested tissues with highest level in haemocytes, which was 15.78-fold of that in gonad (p < 0.001). Among the haemocytes, the CgIFI44L-1 protein was detected to be highly expressed in granulocytes with dominant distribution in cytoplasm. The mRNA expression level of CgIFI44L-1 in haemocytes was significantly induced by poly (I:C) stimulation, and the expression level peaked at 24 h, which was 24.24-fold (p < 0.0001) of that in control group. After the treatment with the recombinant protein of an oyster IFN-like protein (rCgIFNLP), the mRNA expression level of CgIFI44L-1 was significantly enhanced at 6 h, 12 h and 24 h, which was 2.67-fold (p < 0.001), 5.44-fold (p < 0.001) and 5.16-fold (p < 0.001) of that in control group, respectively. When the expressions of CgSTAT and CgIFNLP were knocked down by RNA interference (RNAi), the mRNA transcripts of CgIFI44L-1 were significantly down-regulated after poly (I:C) stimulation, which was 0.09-fold (p < 0.001) and 0.06-fold (p < 0.001) of those in EGFP group, respectively. These results suggested that CgIFI44L-1 was a conserved ISG in oyster, which was regulated by CgIFNLP and CgSTAT, and involved in the oyster antiviral immune response.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Bayati V, Radan M, Dianat M, Mansouri Z, Souhrabi F. OXR1 signaling pathway as a possible mechanism of elastase-induced oxidative damage in pulmonary cells: the protective role of ellagic acid. Mol Biol Rep 2022; 49:8259-8271. [PMID: 35841468 DOI: 10.1007/s11033-022-07542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Oxidative stress is a process that occurs through free radicals on the cell membranes which causes damage to the cell and intracellular organelles, especially mitochondria membranes. H2O2 induced oxidative stress in human cells is of interest in toxicological research since oxidative stress plays a main role in the etiology of several pathological conditions. Neutrophil Elastase (Serine proteinase) is involved in the pathology process of emphysema as a respiratory disease through lung inflammation, and destruction of alveolar walls. The present study investigated the direct oxidative stress effects of Elastase in comparison with H2O2 on human lung epithelial cells (A549 cells) concerning the generation of reactive oxygen species (ROS) and modulation of oxidation resistance 1 (OXR1) and its downstream pathway using the well-known antioxidant Ellagic acid as an activator of antioxidant genes. MATERIALS AND METHODS The human pulmonary epithelial cells (A549) were divided into the nine groups including Negative control, Positive control (H2O2), Elastase (15, 30, and 60 mU/mL), Ellagic acid (10 μmol/L), and Elastase + Ellagic acid. Cytotoxicity, ROS generation, oxidative stress profile, level of reactive metabolites, and gene expression of OXR1 and its downstream genes were measured in all groups. RESULTS The obtained data demonstrated that Elastase exposure caused oxidative stress damage in a dose-depended manner which was associated with decreases in antioxidant defense system genes. Conversely, treatment with Ellagic acid as a potent antioxidant showed improved antioxidant enzyme activity and content which was in line with the upregulation of OXR1 signaling pathway genes. CONCLUSIONS The present findings can highlight the novel mechanism underlying the oxidative stress induced by Neutrophil Elastase through OXR1 and related genes. Moreover, the benefit of Ellagic acid on cytoprotection, resulting from its antioxidant properties was documented.
Collapse
Affiliation(s)
- Vahid Bayati
- Cellular and Molecular Research Center & Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Cellular and Molecular Research Center & Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mahin Dianat
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzaneh Souhrabi
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Lučiūnaitė A, Dalgėdienė I, Žilionis R, Mašalaitė K, Norkienė M, Šinkūnas A, Gedvilaitė A, Kučinskaitė-Kodzė I, Žvirblienė A. Activation of NLRP3 Inflammasome by Virus-Like Particles of Human Polyomaviruses in Macrophages. Front Immunol 2022; 13:831815. [PMID: 35355981 PMCID: PMC8959312 DOI: 10.3389/fimmu.2022.831815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Viral antigens can activate phagocytes, inducing inflammation, but the mechanisms are barely explored. The aim of this study is to investigate how viral oligomeric proteins of different structures induce inflammatory response in macrophages. Human THP-1 cell line was used to prepare macrophages that were treated with filamentous nucleocapsid-like particles (NLPs) of paramyxoviruses and spherical virus-like particles (VLPs) of human polyomaviruses. The effects of viral proteins on cell viability, pro-inflammatory cytokines’ production, and NLRP3 inflammasome activation were investigated. Filamentous NLPs did not induce inflammation while spherical VLPs mediated inflammatory response followed by NLRP3 inflammasome activation. Inhibitors of cathepsins and K+ efflux decreased IL-1β release and cell death, indicating a complex inflammasome activation process. A similar activation pattern was observed in primary human macrophages. Single-cell RNAseq analysis of THP-1 cells revealed several cell activation states different in inflammation-related genes. This study provides new insights into the interaction of viral proteins with immune cells and suggests that structural properties of oligomeric proteins may define cell activation pathways.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rapolas Žilionis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,R&D Department, Droplet Genomics, Vilnius, Lithuania
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
16
|
Khan MM, Lee S, Couoh‐Cardel S, Oot RA, Kim H, Wilkens S, Roh S. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 2022; 41:e109360. [PMID: 34918374 PMCID: PMC8804929 DOI: 10.15252/embj.2021109360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) is a rotary motor proton pump that is regulated by an assembly equilibrium between active holoenzyme and autoinhibited V1 -ATPase and Vo proton channel subcomplexes. Here, we report cryo-EM structures of yeast V-ATPase assembled in vitro from lipid nanodisc reconstituted Vo and mutant V1 . Our analysis identified holoenzymes in three active rotary states, indicating that binding of V1 to Vo provides sufficient free energy to overcome Vo autoinhibition. Moreover, the structures suggest that the unequal spacing of Vo 's proton-carrying glutamic acid residues serves to alleviate the symmetry mismatch between V1 and Vo motors, a notion that is supported by mutagenesis experiments. We also uncover a structure of free V1 bound to Oxr1, a conserved but poorly characterized factor involved in the oxidative stress response. Biochemical experiments show that Oxr1 inhibits V1 -ATPase and causes disassembly of the holoenzyme, suggesting that Oxr1 plays a direct role in V-ATPase regulation.
Collapse
Affiliation(s)
- Md. Murad Khan
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Seowon Lee
- School of Biological ScienceInstitute of Molecular Biology and GeneticsSeoul National UniversitySeoulSouth Korea
| | - Sergio Couoh‐Cardel
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
- Present address:
Department of Molecular and Cellular PhysiologyStanford UniversityStanfordCAUSA
| | - Rebecca A Oot
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Hyunmin Kim
- School of Biological ScienceInstitute of Molecular Biology and GeneticsSeoul National UniversitySeoulSouth Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Soung‐Hun Roh
- School of Biological ScienceInstitute of Molecular Biology and GeneticsSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
17
|
Eaton AF, Brown D, Merkulova M. The evolutionary conserved TLDc domain defines a new class of (H +)V-ATPase interacting proteins. Sci Rep 2021; 11:22654. [PMID: 34811399 PMCID: PMC8608904 DOI: 10.1038/s41598-021-01809-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023] Open
Abstract
We recently found that nuclear receptor coactivator 7 (Ncoa7) and Oxr1 interact with the proton-pumping V-ATPase. Ncoa7 and Oxr1 belong to a group of proteins playing a role in the oxidative stress response, that contain the conserved “TLDc” domain. Here we asked if the three other proteins in this family, i.e., Tbc1d24, Tldc1 and Tldc2 also interact with the V-ATPase and if the TLDc domains are involved in all these interactions. By co-immunoprecipitation, endogenous kidney Tbc1d24 (and Ncoa7 and Oxr1) and overexpressed Tldc1 and Tldc2, all interacted with the V-ATPase. In addition, purified TLDc domains of Ncoa7, Oxr1 and Tldc2 (but not Tbc1d24 or Tldc1) interacted with V-ATPase in GST pull-downs. At the amino acid level, point mutations G815A, G845A and G896A in conserved regions of the Ncoa7 TLDc domain abolished interaction with the V-ATPase, and S817A, L926A and E938A mutations resulted in decreased interaction. Furthermore, poly-E motifs upstream of the TLDc domain in Ncoa7 and Tldc2 show a (nonsignificant) trend towards enhancing the interaction with V-ATPase. Our principal finding is that all five members of the TLDc family of proteins interact with the V-ATPase. We conclude that the TLDc motif defines a new class of V-ATPase interacting regulatory proteins.
Collapse
Affiliation(s)
- A F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - D Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - M Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA. .,Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Simches Research Center, 128 Cambridge St., Boston, MA, 02114, USA.
| |
Collapse
|
18
|
The OxrA Protein of Aspergillus fumigatus Is Required for the Oxidative Stress Response and Fungal Pathogenesis. Appl Environ Microbiol 2021; 87:e0112021. [PMID: 34524893 DOI: 10.1128/aem.01120-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient reactive oxygen species (ROS) detoxification system is vital for the survival of the pathogenic fungus Aspergillus fumigatus within the host high-ROS environment of the host. Therefore, identifying and targeting factors essential for oxidative stress response is one approach to developing novel treatments for fungal infections. The oxidation resistance 1 (Oxr1) protein is essential for protection against oxidative stress in mammals, but its functions in pathogenic fungi remain unknown. The present study aimed to characterize the role of an Oxr1 homolog in A. fumigatus. The results indicated that the OxrA protein plays an important role in oxidative stress resistance by regulating the catalase function in A. fumigatus, and overexpression of catalase can rescue the phenotype associated with OxrA deficiency. Importantly, the deficiency of oxrA decreased the virulence of A. fumigatus and altered the host immune response. Using the Aspergillus-induced lung infection model, we demonstrated that the ΔoxrA mutant strain induced less tissue damage along with decreased levels of lactate dehydrogenase (LDH) and albumin release. Additionally, the ΔoxrA mutant caused inflammation at a lower degree, along with a markedly reduced influx of neutrophils to the lungs and a decreased secretion of cytokine usually associated with recruitment of neutrophils in mice. These results characterize the role of OxrA in A. fumigatus as a core regulator of oxidative stress resistance and fungal pathogenesis. IMPORTANCE Knowledge of ROS detoxification in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of oxidative stress resistance mechanisms. In this study, we demonstrate that OxrA protein localizes to the mitochondria and functions to protect against oxidative damage. We demonstrate that OxrA contributes to oxidative stress resistance by regulating catalase function, and overexpression of catalase (CatA or CatB) can rescue the phenotype that is associated with OxrA deficiency. Remarkably, a loss of OxrA attenuated the fungal virulence in a mouse model of invasive pulmonary aspergillosis and altered the host immune response. Therefore, our finding indicates that inhibition of OxrA might be an effective approach for alleviating A. fumigatus infection. The present study is, to the best of our knowledge, a pioneer in reporting the vital role of Oxr1 protein in pathogenic fungi.
Collapse
|
19
|
Zhang T, Chen J, Zhang J, Guo YT, Zhou X, Li MW, Zheng ZZ, Zhang TZ, Murphy RW, Nevo E, Shi P. Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (Myospalax baileyi). Mol Ecol 2021; 30:5765-5779. [PMID: 34510615 DOI: 10.1111/mec.16174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The evolutionary outcomes of high elevation adaptation have been extensively described. However, whether widely distributed high elevation endemic animals adopt uniform mechanisms during adaptation to different elevational environments remains unknown, especially with respect to extreme high elevation environments. To explore this, we analysed the phenotypic and genomic data of seven populations of plateau zokor (Myospalax baileyi) along elevations ranging from 2,700 to 4,300 m. Based on whole-genome sequencing data and demographic reconstruction of the evolutionary history, we show that two populations of plateau zokor living at elevations exceeding 3,700 m diverged from other populations nearly 10,000 years ago. Further, phenotypic comparisons reveal stress-dependent adaptation, as two populations living at elevations exceeding 3,700 m have elevated ratios of heart mass to body mass relative to other populations, and the highest population (4,300 m) displays alterations in erythrocytes. Correspondingly, genomic analysis of selective sweeps indicates that positive selection might contribute to the observed phenotypic alterations in these two extremely high elevation populations, with the adaptive cardiovascular phenotypes of both populations possibly evolving under the functional constrains of their common ancestral population. Taken together, phenotypic and genomic evidence demonstrates that heterogeneous stressors impact adaptations to extreme elevations and reveals stress-dependent and genetically constrained adaptation to hypoxia, collectively providing new insights into the high elevation adaptation.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jia Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Zhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Tong-Zuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Lai CC, Chen TJ, Chan TC, Li WS, He HL. Prognostic significance of OXR1 in urothelial carcinoma: low OXR1 expression is associated with worse survival. Future Oncol 2021; 17:4145-4156. [PMID: 34467778 DOI: 10.2217/fon-2021-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Bioinformatic analysis has revealed that OXR1 is significantly downregulated in muscle-invasive bladder cancer. Patients & methods: The expression of OXR1 in patients with urothelial carcinoma was evaluated by immunohistochemistry, including 340 cases with urothelial carcinoma in the upper urinary tract and 295 in the urinary bladder. Results: Low expression of OXR1 was significantly correlated with adverse pathological parameters including high primary tumor (pT) stage, high node stage, high histological grade, high mitotic activity and increased vascular or perineural invasion (all p < 0.05). Low expression of OXR1 independently predicted worse metastasis-free survival (p = 0.033) in urothelial carcinoma of the upper urinary tract and worse disease-specific survival (p = 0.022) and metastasis-free survival (p < 0.001) in urothelial carcinoma of the urinary bladder. Conclusion: Low expression of OXR1 is an adverse prognostic factor in urothelial carcinoma.
Collapse
Affiliation(s)
- Chien-Cheng Lai
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ti-Chun Chan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan 704016, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Department of Pathology, E-DA Hospital & E-DA Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
21
|
Arnaud-Arnould M, Tauziet M, Moncorgé O, Goujon C, Blaise M. Crystal structure of the TLDc domain of human NCOA7-AS. Acta Crystallogr F Struct Biol Commun 2021; 77:230-237. [PMID: 34341188 PMCID: PMC8329711 DOI: 10.1107/s2053230x21006853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 11/15/2022] Open
Abstract
The TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is associated with oxidation-resistance related functions and is well conserved among eukaryotes. Seven proteins possess a TLDc domain in humans, notably proteins belonging to the oxidation resistance protein (OXR), nuclear receptor coactivator 7 (NCOA7) and TBC1 domain family member 24 (TBC1D24) families. Although the mechanism is unknown, a protective role of TLDc proteins against oxidative stress, notably in the brain, has been demonstrated. Neurobiological disorders caused by mutations in the TLDc domain have also been reported. The human NCOA7 gene encodes several mRNA isoforms; among these, isoform 4, named NCOA7-AS, is up-regulated by type 1 interferon in response to viral infection. NCOA7 and NCOA7-AS both interact with several subunits of the vacuolar proton pump V-ATPase, which leads to increased acidification of the endolysosomal system and consequently impairs infection by viruses that enter their host cells through the endosomal pathway, such as influenza A virus and hepatitis C virus. Similarly to full-length NCOA7, NCOA7-AS possesses a TLDc domain in its C-terminus. Structures of TLDc domains have been reported from zebrafish and fly but not from humans. Here, the expression, purification and crystallization of the TLDc domain from NCOA7 and NCOA7-AS is reported. The crystal structure solved at 1.8 Å resolution is compared with previously solved three-dimensional structures of TLDc domains.
Collapse
|
22
|
Xu H, Wang G, Chi YY, Kou YX, Li Y. Expression profiling and functional characterization of the duplicated Oxr1b gene in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100857. [PMID: 34111665 DOI: 10.1016/j.cbd.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Oxidation Resistance Gene 1 (OXR1) is a conserved gene family involved in protecting various species against oxidative stress. The zebrafish expresses a pair of OXR1 paralogs (i.e., oxr1a and oxr1b). Our previous work has revealed the importance of oxr1a in regulating antioxidant defenses during oxidative stress, but the role of oxr1b is remains unknown. Herein we reported the spatial-temporal expression of oxr1b and revealed its function through reverse genetics. The results showed that, as with oxr1a, oxr1b is a typical maternal-zygotic gene. Its mRNA is mainly distributed in the eye, brain and nervous system (e.g., anterior/posterior lateral line ganglion, neuromasts and spinal cord neuron). Although oxr1a and oxr1b genes have similar expression patterns during embryonic development, the latter have higher levels at the corresponding stages. Subsequently, a viable oxr1b-/- mutant was generated by the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Oxr1b knockout caused multiple antioxidant genes (i.e., gpx4a, gpx4b, sod1 and sod3b) to be downregulated, resulting in hypersensitive to oxidative stress. Furthermore, by comparative transcriptome analysis, we found that oxr1b knockout inhibits multiple signal transduction pathways (e.g., MAPK signaling pathway, calcium signaling pathway, cAMP signaling pathway and ErbB signaling pathway) during oxidative stress, thereby suppressing early stress response and ultimately impairing the anti-apoptosis pathway. In conclusion, our findings demonstrate that the duplicated oxr1b gene has an important role in regulating the antioxidant defenses by modulating signaling transduction and early stress response during oxidative stress.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Guo Wang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yu-Yu Chi
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ya-Xin Kou
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Castroflorio E, den Hoed J, Svistunova D, Finelli MJ, Cebrian-Serrano A, Corrochano S, Bassett AR, Davies B, Oliver PL. The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cell Mol Life Sci 2021; 78:3503-3524. [PMID: 33340069 PMCID: PMC8038996 DOI: 10.1007/s00018-020-03721-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment.
Collapse
Affiliation(s)
| | - Joery den Hoed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Daria Svistunova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Silvia Corrochano
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Calle del Prof Martín Lagos s/n, 28040, Madrid, Spain
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Peter L Oliver
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
25
|
Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC PLANT BIOLOGY 2021; 21:38. [PMID: 33430784 PMCID: PMC7802178 DOI: 10.1186/s12870-020-02796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.
Collapse
Affiliation(s)
- Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Indrani K Baruah
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
26
|
Volkert MR, Crowley DJ. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front Neurosci 2020; 14:611904. [PMID: 33384581 PMCID: PMC7770112 DOI: 10.3389/fnins.2020.611904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.
Collapse
Affiliation(s)
- Michael R Volkert
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - David J Crowley
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA, United States
| |
Collapse
|
27
|
Matsui A, Hashiguchi K, Suzuki M, Zhang-Akiyama QM. Oxidation resistance 1 functions in the maintenance of cellular survival and genome stability in response to oxidative stress-independent DNA damage. Genes Environ 2020; 42:29. [PMID: 33292791 PMCID: PMC7653821 DOI: 10.1186/s41021-020-00168-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/29/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND DNA damage is generated by various intrinsic and extrinsic sources such as reactive oxygen species (ROS) and environmental mutagens, and causes genomic alterations. DNA damage response (DDR) is activated to induce cell cycle arrest and DNA repair. Oxidation resistance 1 (OXR1) is a protein that defends cells against oxidative stress. We previously reported that OXR1 protein functions in the regulation of G2-phase cell cycle arrest in cells irradiated with gamma-rays, suggesting that OXR1 directly responds to DNA damage. PURPOSE To clarify the functions of OXR1 against ROS-independent DNA damage, HeLa and OXR1-depleted HeLa cells were treated with heavy-ion beams and the ROS-independent DNA-damaging agent methyl methanesulfonate (MMS). RESULTS First, OXR1-depleted cells exhibited higher sensitivity to MMS and heavy-ion beams than control cells. Next, OXR1 depletion increased micronucleus formation and shortened the duration of G2-phase arrest after treatment with MMS or heavy-ion beams. These results suggest that OXR1 functions in the maintenance of cell survival and genome stability in response to DNA damage. Furthermore, the OXR1 protein level was increased by MMS and heavy-ion beams in HeLa cells. CONCLUSIONS Together with our previous study, the present study suggests that OXR1 plays an important role in the response to DNA damage, not only when DNA damage is generated by ROS.
Collapse
Affiliation(s)
- Ako Matsui
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunari Hashiguchi
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Biochemistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
28
|
Torti P, Raineri J, Mencia R, Campi M, Gonzalez DH, Welchen E. The sunflower TLDc-containing protein HaOXR2 confers tolerance to oxidative stress and waterlogging when expressed in maize plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110626. [PMID: 33180706 DOI: 10.1016/j.plantsci.2020.110626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus L.) genome encodes six proteins containing a TLDc domain, typical of the eukaryotic OXidation Resistance (OXR) protein family. Expression of sunflower HaOXR2 in Arabidopsis generated plants with increased rosette diameter, higher number of leaves and increased seed production. Maize inbred lines expressing HaOXR2 also showed increased total leaf area per plant. In addition, heterologous expression of HaOXR2 induced an increase in the oxidative stress tolerance in Arabidopsis and maize. Maize transgenic plants expressing HaOXR2 experienced less oxidative damage and exhibited increased photosynthetic performance and efficiency than non-transgenic segregant plants after treatment of leaves with the reactive oxygen species generating compound Paraquat. Expression of HaOXR2 in maize also improved tolerance to waterlogging. The number of expanded leaves, aerial biomass, and stem height and cross-section area were less affected by waterlogging in HaOXR2 expressing plants, which also displayed less aerial tissue damage under these conditions. Transgenic plants also showed an increased production of roots, a typical adaptive stress response. The results show the existence of functional conservation of OXR proteins in dicot and monocot plants and indicate that HaOXR2 could be useful to improve plant performance under conditions that increase oxidative stress.
Collapse
Affiliation(s)
- Pablo Torti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Mabel Campi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| |
Collapse
|
29
|
Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2020; 184:1112-1127. [PMID: 32727912 PMCID: PMC7536703 DOI: 10.1104/pp.19.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Gabriel Céccoli
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Pablo Torti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
30
|
Xu H, Jiang Y, Li S, Xie L, Tao YX, Li Y. Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant Defenses and Aging. Genes (Basel) 2020; 11:genes11101118. [PMID: 32987694 PMCID: PMC7598701 DOI: 10.3390/genes11101118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with wild-type (WT) zebrafish, oxr1a−/− mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a−/− mutant zebrafish were strongly induced. More importantly, we only observed the activation of the p53 signaling and apoptosis pathway in oxr1a−/− mutant zebrafish, revealing an important role of oxr1a in regulating apoptosis via the p53 signaling pathway. Additionally, we found that oxr1a mutation displayed a shortened lifespan and premature ovarian failure in prolonged observation, which may be caused by the loss of oxr1a impaired antioxidant defenses, thereby increasing pro-apoptotic events. Altogether, our findings demonstrate that oxr1a is vital for antioxidant defenses and anti-aging in zebrafish.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yu Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Sheng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
- Correspondence: ; Tel.: +86-2368-2519-62
| |
Collapse
|
31
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
32
|
Matsui A, Kobayashi J, Kanno SI, Hashiguchi K, Miyaji M, Yoshikawa Y, Yasui A, Zhang-Akiyama QM. Oxidation resistance 1 prevents genome instability through maintenance of G2/M arrest in gamma-ray-irradiated cells. JOURNAL OF RADIATION RESEARCH 2020; 61:1-13. [PMID: 31845986 PMCID: PMC6976731 DOI: 10.1093/jrr/rrz080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Human oxidation resistance 1 (OXR1) was identified as a protein that decreases genomic mutations in Escherichia coli caused by oxidative DNA damage. However, the mechanism by which OXR1 defends against genome instability has not been elucidated. To clarify how OXR1 maintains genome stability, the effects of OXR1-depletion on genome stability were investigated in OXR1-depleted HeLa cells using gamma-rays (γ-rays). The OXR1-depleted cells had higher levels of superoxide and micronucleus (MN) formation than control cells after irradiation. OXR1-overexpression alleviated the increases in reactive oxygen species (ROS) level and MN formation after irradiation. The increased MN formation in irradiated OXR1-depleted cells was partially attenuated by the ROS inhibitor N-acetyl-L-cysteine, suggesting that OXR1-depeletion increases ROS-dependent genome instability. We also found that OXR1-depletion shortened the duration of γ-ray-induced G2/M arrest. In the presence of the cell cycle checkpoint inhibitor caffeine, the level of MN formed after irradiation was similar between control and OXR1-depleted cells, demonstrating that OXR1-depletion accelerates MN formation through abrogation of G2/M arrest. In OXR1-depleted cells, the level of cyclin D1 protein expression was increased. Here we report that OXR1 prevents genome instability by cell cycle regulation as well as oxidative stress defense.
Collapse
Affiliation(s)
- Ako Matsui
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junya Kobayashi
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shin-ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Kazunari Hashiguchi
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Biochemistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masahiro Miyaji
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshikawa
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
Wang J, Rousseau J, Kim E, Ehresmann S, Cheng YT, Duraine L, Zuo Z, Park YJ, Li-Kroeger D, Bi W, Wong LJ, Rosenfeld J, Gleeson J, Faqeih E, Alkuraya FS, Wierenga KJ, Chen J, Afenjar A, Nava C, Doummar D, Keren B, Juusola J, Grompe M, Bellen HJ, Campeau PM. Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. Am J Hum Genet 2019; 105:1237-1253. [PMID: 31785787 PMCID: PMC6904826 DOI: 10.1016/j.ajhg.2019.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.
Collapse
Affiliation(s)
- Julia Wang
- Program in Developmental Biology, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine Rousseau
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada
| | - Emily Kim
- Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sophie Ehresmann
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada
| | - Yi-Ting Cheng
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lita Duraine
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph Gleeson
- Rady Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eissa Faqeih
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11525, Saudi Arabia
| | - Klaas J Wierenga
- Department of Pediatrics, Oklahoma University Health Sciences Center (OUHSC), Oklahoma City, OK 26901, USA; Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jiani Chen
- Department of Pediatrics, Oklahoma University Health Sciences Center (OUHSC), Oklahoma City, OK 26901, USA; Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra Afenjar
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire Paris, 75012, France; Département de Génétique et Embryologie Médicale, CRMR des Malformations et Maladies Congénitales du Cervelet, GRC ConCer-LD, Sorbonne Universités, Hôpital Trousseau, Paris, 75012 France
| | - Caroline Nava
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire Paris, 75012, France
| | - Diane Doummar
- Assistance Publique des Hôpitaux de Paris, Service de Neuropédiatrie, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire Paris, 75012 France
| | - Boris Keren
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire Paris, 75012, France
| | | | - Markus Grompe
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97201, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97201, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute and Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
34
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
35
|
Zhang R, Miao J, Song Y, Zhang W, Xu L, Chen Y, Zhang L, Gao H, Zhu B, Li J, Gao X. Genome-wide association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat yield in cattle. Physiol Genomics 2019; 51:137-144. [DOI: 10.1152/physiolgenomics.00112.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carcass meat yield is an important carcass trait that contributes to the production efficiency and economic benefits in beef cattle. It is therefore critical to identify quantitative trait loci associated with carcass traits to enable selection. Our previous studies have identified several causal variants within the pleomorphic adenoma gene 1 ( PLAG1) and coiled-coil-helix-coiled-coil-helix domain-containing 7 ( CHCHD7) genes on BTA14 for carcass traits in Chinese Simmental. In the current study, we carried out a genome-wide association study for carcass meat yield in 472 Wagyu cattle with Bovine HD SNP array. Our results showed that 27 single nucleotide polymorphisms (SNPs) were identified for tenderloin weight (TDW), striploin weight (SPW), chuck roll weight (CRW), bicep weight (BPW), knuckle weight (KCW), and flank steak weight (FSW) in Wagyu cattle. Of these SNPs, 10 distinct SNPs were detected within the oxidation resistance 1 ( OXR1), fatty acid binding protein 5 ( FABP5), TNF receptor superfamily member 11b ( TNFRSF11B), and zinc finger CCCH-type containing 3 ( ZC3H3) genes on BTA14. Notably, three significant SNPs, BovineHD1400016738, BovineHD1400016743, and BovineHD1400016665 within OXR1, were shown strong linkage disequilibrium (r2 > 0.8) and significantly associated with CRW ( P = 1.37 × 10−8 ~ 1.94 × 10−8). Moreover, Ingenuity Pathway Analysis showed that OXR1, FABP5, and CAP1A genes were involved in a single network and FABP5 may regulate the expression of OXR1 gene via node gene, peroxisome proliferator-activated receptor gamma ( PPARG). Overall, this study suggests that OXR1 and FABP5 are candidate genes affecting carcass traits in Wagyu and the PLAG1-OXR1 region on BTA14 as a putative susceptibility locus for carcass meat yield for both Chinese Simmental and Wagyu.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Song
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Pomatto LCD, Sun PY, Yu K, Gullapalli S, Bwiza CP, Sisliyan C, Wong S, Zhang H, Forman HJ, Oliver PL, Davies KE, Davies KJA. Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biol 2019; 24:101194. [PMID: 31022673 PMCID: PMC6479762 DOI: 10.1016/j.redox.2019.101194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2 signal transduction pathway plays a major role in adaptive responses to oxidative stress and in maintaining adaptive homeostasis, yet Nrf2 signaling undergoes a significant age-dependent decline that is still poorly understood. We used mouse embryonic fibroblasts (MEFs) cultured under hyperoxic conditions of 40% O2, as a model of accelerated ageing. Hyperoxia increased baseline levels of Nrf2 and multiple transcriptional targets (20S Proteasome, Immunoproteasome, Lon protease, NQO1, and HO-1), but resulted in loss of cellular ability to adapt to signaling levels (1.0 μM) of H2O2. In contrast, MEFs cultured at physiologically relevant conditions of 5% O2 exhibited a transient induction of Nrf2 Phase II target genes and stress-protective enzymes (the Lon protease and OXR1) following H2O2 treatment. Importantly, all of these effects have been seen in older cells and organisms. Levels of Two major Nrf2 inhibitors, Bach1 and c-Myc, were strongly elevated by hyperoxia and appeared to exert a ceiling on Nrf2 signaling. Bach1 and c-Myc also increase during ageing and may thus be the mechanism by which adaptive homeostasis is compromised with age.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelsi Yu
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sandhyarani Gullapalli
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Christina Sisliyan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Peter L Oliver
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Kay E Davies
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
37
|
MicroRNA-365 Knockdown Prevents Ischemic Neuronal Injury by Activating Oxidation Resistance 1-Mediated Antioxidant Signals. Neurosci Bull 2019; 35:815-825. [PMID: 30977043 DOI: 10.1007/s12264-019-00371-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-365 (miR-365) is upregulated in the ischemic brain and is involved in oxidative damage in the diabetic rat. However, it is unclear whether miR-365 regulates oxidative stress (OS)-mediated neuronal damage after ischemia. Here, we used a transient middle cerebral artery occlusion model in rats and the hydrogen peroxide-induced OS model in primary cultured neurons to assess the roles of miR-365 in neuronal damage. We found that miR-365 exacerbated ischemic brain injury and OS-induced neuronal damage and was associated with a reduced expression of OXR1 (Oxidation Resistance 1). In contrast, miR-365 antagomir alleviated both the brain injury and OXR1 reduction. Luciferase assays indicated that miR-365 inhibited OXR1 expression by directly targeting the 3'-untranslated region of Oxr1. Furthermore, knockdown of OXR1 abolished the neuroprotective and antioxidant effects of the miR-365 antagomir. Our results suggest that miR-365 upregulation increases oxidative injury by inhibiting OXR1 expression, while its downregulation protects neurons from oxidative death by enhancing OXR1-mediated antioxidant signals.
Collapse
|
38
|
Svistunova DM, Simon JN, Rembeza E, Crabtree M, Yue WW, Oliver PL, Finelli MJ. Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum. Free Radic Biol Med 2019; 130:151-162. [PMID: 30389497 PMCID: PMC6339520 DOI: 10.1016/j.freeradbiomed.2018.10.447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Protein aggregation, oxidative and nitrosative stress are etiological factors common to all major neurodegenerative disorders. Therefore, identifying proteins that function at the crossroads of these essential pathways may provide novel targets for therapy. Oxidation resistance 1 (Oxr1) is a protein proven to be neuroprotective against oxidative stress, although the molecular mechanisms involved remain unclear. Here, we demonstrate that Oxr1 interacts with the multifunctional protein, peroxiredoxin 2 (Prdx2), a potent antioxidant enzyme highly expressed in the brain that can also act as a molecular chaperone. Using a combination of in vitro assays and two animal models, we discovered that expression levels of Oxr1 regulate the degree of oligomerization of Prdx2 and also its post-translational modifications (PTMs), specifically suggesting that Oxr1 acts as a functional switch between the antioxidant and chaperone functions of Prdx2. Furthermore, we showed in the Oxr1 knockout mouse that Prdx2 is aberrantly modified by overoxidation and S-nitrosylation in the cerebellum at the presymptomatic stage; this in-turn affected the oligomerization of Prdx2, potentially impeding its normal functions and contributing to the specific cerebellar neurodegeneration in this mouse model.
Collapse
Affiliation(s)
- Daria M Svistunova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Elzbieta Rembeza
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Mark Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
39
|
Danzi MC, Mehta ST, Dulla K, Zunino G, Cooper DJ, Bixby JL, Lemmon VP. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol Cell Neurosci 2018; 92:114-127. [PMID: 30077771 DOI: 10.1016/j.mcn.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Axon regeneration is a necessary step toward functional recovery after spinal cord injury. The AP-1 transcription factor c-Jun has long been known to play an important role in directing the transcriptional response of Dorsal Root Ganglion (DRG) neurons to peripheral axotomy that results in successful axon regeneration. Here we performed ChIPseq for Jun in mouse DRG neurons after a sciatic nerve crush or sham surgery in order to measure the changes in Jun's DNA binding in response to peripheral axotomy. We found that the majority of Jun's injury-responsive changes in DNA binding occur at putative enhancer elements, rather than proximal to transcription start sites. We also used a series of single polypeptide chain tandem transcription factors to test the effects of different Jun-containing dimers on neurite outgrowth in DRG, cortical and hippocampal neurons. These experiments demonstrated that dimers composed of Jun and Atf3 promoted neurite outgrowth in rat CNS neurons as well as mouse DRG neurons. Our work provides new insight into the mechanisms underlying Jun's role in axon regeneration.
Collapse
Affiliation(s)
- Matt C Danzi
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Computational Science, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Saloni T Mehta
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kireeti Dulla
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giulia Zunino
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Cooper
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Computational Science, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Finelli MJ, Paramo T, Pires E, Ryan BJ, Wade-Martins R, Biggin PC, McCullagh J, Oliver PL. Oxidation Resistance 1 Modulates Glycolytic Pathways in the Cerebellum via an Interaction with Glucose-6-Phosphate Isomerase. Mol Neurobiol 2018; 56:1558-1577. [PMID: 29905912 PMCID: PMC6368252 DOI: 10.1007/s12035-018-1174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Glucose metabolism is essential for the brain: it not only provides the required energy for cellular function and communication but also participates in balancing the levels of oxidative stress in neurons. Defects in glucose metabolism have been described in neurodegenerative disease; however, it remains unclear how this fundamental process contributes to neuronal cell death in these disorders. Here, we investigated the molecular mechanisms driving the selective neurodegeneration in an ataxic mouse model lacking oxidation resistance 1 (Oxr1) and discovered an unexpected function for this protein as a regulator of the glycolytic enzyme, glucose-6-phosphate isomerase (GPI/Gpi1). Initially, we present a dysregulation of metabolites of glucose metabolism at the pre-symptomatic stage in the Oxr1 knockout cerebellum. We then demonstrate that Oxr1 and Gpi1 physically and functionally interact and that the level of Gpi1 oligomerisation is disrupted when Oxr1 is deleted in vivo. Furthermore, we show that Oxr1 modulates the additional and less well-understood roles of Gpi1 as a cytokine and neuroprotective factor. Overall, our data identify a new molecular function for Oxr1, establishing this protein as important player in neuronal survival, regulating both oxidative stress and glucose metabolism in the brain.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Brent J Ryan
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Richard Wade-Martins
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK. .,MRC Harwell Institute, Harwell Campus, South Parks Road, Oxford, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
41
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
42
|
Zhang C, Lu Y, Feng Q, Wang X, Lou H, Liu J, Ning Z, Yuan K, Wang Y, Zhou Y, Deng L, Liu L, Yang Y, Li S, Ma L, Zhang Z, Jin L, Su B, Kang L, Xu S. Differentiated demographic histories and local adaptations between Sherpas and Tibetans. Genome Biol 2017; 18:115. [PMID: 28619099 PMCID: PMC5472941 DOI: 10.1186/s13059-017-1242-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The genetic relationships reported by recent studies between Sherpas and Tibetans are controversial. To gain insights into the population history and the genetic basis of high-altitude adaptation of the two groups, we analyzed genome-wide data in 111 Sherpas (Tibet and Nepal) and 177 Tibetans (Tibet and Qinghai), together with available data from present-day human populations. RESULTS Sherpas and Tibetans show considerable genetic differences and can be distinguished as two distinct groups, even though the divergence between them (~3200-11,300 years ago) is much later than that between Han Chinese and either of the two groups (~6200-16,000 years ago). Sub-population structures exist in both Sherpas and Tibetans, corresponding to geographical or linguistic groups. Differentiation of genetic variants between Sherpas and Tibetans associated with adaptation to either high-altitude or ultraviolet radiation were identified and validated by genotyping additional Sherpa and Tibetan samples. CONCLUSIONS Our analyses indicate that both Sherpas and Tibetans are admixed populations, but the findings do not support the previous hypothesis that Tibetans derive their ancestry from Sherpas and Han Chinese. Compared to Tibetans, Sherpas show higher levels of South Asian ancestry, while Tibetans show higher levels of East Asian and Central Asian/Siberian ancestry. We propose a new model to elucidate the differentiated demographic histories and local adaptations of Sherpas and Tibetans.
Collapse
Affiliation(s)
- Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Qidi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoji Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haiyi Lou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Jiaojiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhilin Ning
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchen Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
43
|
Powell TR, Murphy T, Lee SH, Price J, Thuret S, Breen G. Transcriptomic profiling of human hippocampal progenitor cells treated with antidepressants and its application in drug repositioning. J Psychopharmacol 2017; 31:338-345. [PMID: 28208023 PMCID: PMC5349314 DOI: 10.1177/0269881117691467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current pharmacological treatments for major depressive disorder (MDD) are ineffective in a significant proportion of patients, and the identification of new antidepressant compounds has been difficult. 'Connectivity mapping' is a method that can be used to identify drugs that elicit similar downstream effects on mRNA levels when compared to current treatments, and thus may point towards possible repositioning opportunities. We investigated genome-wide transcriptomic changes to human hippocampal progenitor cells treated with therapeutically relevant concentrations of a tricyclic antidepressant (nortriptyline) and a selective serotonin reuptake inhibitor (escitalopram). We identified mRNA changes common to both drugs to create an 'antidepressant mRNA signature'. We used this signature to probe the Library of Integrated Network-based Cellular Signatures (LINCS) and to identify other compounds that elicit similar changes to mRNA in neural progenitor cells. Results from LINCS revealed that the tricyclic antidepressant clomipramine elicited mRNA changes most similar to our mRNA signature, and we identified W-7 and vorinostat as functionally relevant drug candidates, which may have repositioning potential. Our results are encouraging and represent the first attempt to use connectivity mapping for drug repositioning in MDD.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sang H Lee
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| |
Collapse
|
44
|
Su LD, Zhang QL, Lu Z. Oxidation resistance 1 (OXR1) participates in silkworm defense against bacterial infection through the JNK pathway. INSECT SCIENCE 2017; 24:17-26. [PMID: 26507465 DOI: 10.1111/1744-7917.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Bacterial infection causes enhanced reactive oxygen species (ROS) levels in insects. Oxidation resistance 1 (OXR1) plays an antioxidant role in eukaryotic organisms, including insects. In this report, we demonstrated that Pseudomonas aeruginosa and Staphylococcus aureus infection and hydrogen peroxide (H2 O2 ) injection induced the expression of specific transcriptional isoforms of OXR1 in larval silkworms. We further showed that a Jun kinase (JNK) pathway inhibitor, SP600125, down-regulated expression of OXR1 during infection, leading to elevated H2 O2 levels in the hemolymph, resulting in lower viability of the injected bacteria inside the silkworm larvae. Our study suggests that OXR1 participates in protecting larval silkworms from oxidative stress and bacterial infection through the JNK pathway.
Collapse
Affiliation(s)
- Li-De Su
- Department of Entomology, College of Plant Protection
| | | | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
45
|
Rodor J, FitzPatrick DR, Eyras E, Cáceres JF. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development. RNA Biol 2016; 14:45-57. [PMID: 27763814 PMCID: PMC5270529 DOI: 10.1080/15476286.2016.1247148] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease.
Collapse
Affiliation(s)
- Julie Rodor
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| | - David R FitzPatrick
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| | - Eduardo Eyras
- b Computational Genomics Group, Universitat Pompeu Fabra , E08003 , Barcelona , Spain.,c Catalan Institution for Research and Advanced Studies (ICREA) , E08010 , Barcelona , Spain
| | - Javier F Cáceres
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| |
Collapse
|
46
|
Yoshino A, Polouliakh N, Meguro A, Takeuchi M, Kawagoe T, Mizuki N. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures. Clin Interv Aging 2016; 11:1159-68. [PMID: 27621603 PMCID: PMC5010078 DOI: 10.2147/cia.s102092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients.
Collapse
Affiliation(s)
- Atsushi Yoshino
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Natalia Polouliakh
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa; Sony Computer Science Laboratories Inc., Fundamental Research Laboratories; Systems Biology Institute, Tokyo, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa
| |
Collapse
|
47
|
Wu Y, Davies KE, Oliver PL. The antioxidant protein Oxr1 influences aspects of mitochondrial morphology. Free Radic Biol Med 2016; 95:255-67. [PMID: 27036366 PMCID: PMC4891067 DOI: 10.1016/j.freeradbiomed.2016.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
Abstract
Oxidative stress (OS) and mitochondrial dysfunction are implicated in neurodegenerative disease, suggesting that antioxidant defence systems are critical for cell survival in the central nervous system (CNS). Oxidation resistance 1 (OXR1) can protect against OS in cellular and mouse models of amyotrophic lateral sclerosis (ALS) when over-expressed, whereas deletion of Oxr1 in mice causes neurodegeneration. OXR1 has emerged therefore as an essential antioxidant protein that controls the susceptibility of neurons to OS. It has been suggested that OXR1 is localised to mitochondria, yet the functional significance of this has not been investigated in the context of neuronal cell death. In order to characterise the role of Oxr1 in mitochondria, we investigated its sub-mitochondrial localisation and demonstrate that specific isoforms are associated with the outer mitochondrial membrane, while the full-length Oxr1 protein is predominately cytoplasmic. Interestingly, cytoplamsic over-expression of these mitochondrially-localised isoforms was still able to protect against OS-induced cell death and prevent rotenone-induced mitochondrial morphological changes. To study the consequences of Oxr1 deletion in vivo, we utilised the bella ataxic mouse mutant. We were unable to identify defects in mitochondrial metabolism in primary cerebellar granule cells (GCs) from bella mice, however a reduction in mitochondrial length was observed in mutant GCs compared to those from wild-type. Furthermore, screening a panel of proteins that regulate mitochondrial morphology in bella GCs revealed de-regulation of phospho-Drp1(Ser616), a key mitochondrial fission regulatory factor. Our data provide new insights into the function of Oxr1, revealing that specific isoforms of this novel antioxidant protein are associated with mitochondria and that the modulation of mitochondrial morphology may be an important feature of its protective function. These results have important implications for the potential use of OXR1 in future antioxidant therapies.
Collapse
Affiliation(s)
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L. Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
48
|
Finelli MJ, Sanchez-Pulido L, Liu KX, Davies KE, Oliver PL. The Evolutionarily Conserved Tre2/Bub2/Cdc16 (TBC), Lysin Motif (LysM), Domain Catalytic (TLDc) Domain Is Neuroprotective against Oxidative Stress. J Biol Chem 2016; 291:2751-63. [PMID: 26668325 PMCID: PMC4742741 DOI: 10.1074/jbc.m115.685222] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is a pathological feature of many neurological disorders; therefore, utilizing proteins that are protective against such cellular insults is a potentially valuable therapeutic approach. Oxidation resistance 1 (OXR1) has been shown previously to be critical for oxidative stress resistance in neuronal cells; deletion of this gene causes neurodegeneration in mice, yet conversely, overexpression of OXR1 is protective in cellular and mouse models of amyotrophic lateral sclerosis. However, the molecular mechanisms involved are unclear. OXR1 contains the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) domain, a motif present in a family of proteins including TBC1 domain family member 24 (TBC1D24), a protein mutated in a range of disorders characterized by seizures, hearing loss, and neurodegeneration. The TLDc domain is highly conserved across species, although the structure-function relationship is unknown. To understand the role of this domain in the stress response, we carried out systematic analysis of all mammalian TLDc domain-containing proteins, investigating their expression and neuroprotective properties in parallel. In addition, we performed a detailed structural and functional study of this domain in which we identified key residues required for its activity. Finally, we present a new mouse insertional mutant of Oxr1, confirming that specific disruption of the TLDc domain in vivo is sufficient to cause neurodegeneration. Our data demonstrate that the integrity of the TLDc domain is essential for conferring neuroprotection, an important step in understanding the functional significance of all TLDc domain-containing proteins in the cellular stress response and disease.
Collapse
Affiliation(s)
- Mattéa J Finelli
- From the MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Luis Sanchez-Pulido
- From the MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Kevin X Liu
- From the MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Kay E Davies
- From the MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Peter L Oliver
- From the MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
49
|
Yang M, Lin X, Rowe A, Rognes T, Eide L, Bjørås M. Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling pathway. Sci Rep 2015; 5:17409. [PMID: 26616534 PMCID: PMC4663793 DOI: 10.1038/srep17409] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
The oxidation resistance gene 1 (OXR1) is crucial for protecting against oxidative stress; however, its molecular function is unknown. We employed RNA sequencing to examine the role of human OXR1 for genome wide transcription regulation. In total, in non-treated and hydrogen peroxide exposed HeLa cells, OXR1 depletion resulted in down-regulation of 554 genes and up-regulation of 253 genes. These differentially expressed genes include transcription factors (i.e. HIF1A, SP6, E2F8 and TCF3), antioxidant genes (PRDX4, PTGS1 and CYGB) and numerous genes of the p53 signaling pathway involved in cell-cycle arrest (i.e. cyclin D, CDK6 and RPRM) and apoptosis (i.e. CytC and CASP9). We demonstrated that OXR1 depleted cells undergo cell cycle arrest in G2/M phase during oxidative stress and increase protein expression of the apoptosis initiator protease CASP9. In summary, OXR1 may act as a sensor of cellular oxidative stress to regulate the transcriptional networks required to detoxify reactive oxygen species and modulate cell cycle and apoptosis.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Norway
| | - Xiaolin Lin
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Norway.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Alexander Rowe
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital and University of Oslo, Norway.,Department of Informatics, University of Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
50
|
Merkulova M, Păunescu TG, Azroyan A, Marshansky V, Breton S, Brown D. Mapping the H(+) (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci Rep 2015; 5:14827. [PMID: 26442671 PMCID: PMC4595830 DOI: 10.1038/srep14827] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology.
Collapse
Affiliation(s)
- Maria Merkulova
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Teodor G Păunescu
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Anie Azroyan
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Vladimir Marshansky
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvie Breton
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|