1
|
Nikolic I, Mitrovic M, Zelen I, Zaric M, Kastratovic T, Stanojevic M, Nenadovic M, Stojanovic T. Inhibitory role of monovalent ions on rat brain cortex adenylyl cyclase activity. J Enzyme Inhib Med Chem 2012; 28:1061-6. [PMID: 22994585 DOI: 10.3109/14756366.2012.712517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenylyl cyclases, comprise of a large family of enzymes that catalyze synthesis of the cyclic AMP from ATP. The aim of our study was to determine the effect of monovalent ions on both basal, stimulated adenylate cyclase EC 4.6.1.1 (AC) activity and C unit of AC and on GTPase active G-protein in the synaptic membranes of rat brain cortex. The effect of ion concentration from 30 to 200 mM (1 mM MgCl2) showed dose-dependent and significant inhibition of the basal AC activity, stimulated and unstimulated C unit activity. Stimulation of AC with 5 μM GTPγS in the presence of 50-200 mM of tested salts showed inhibitory effect on the AC activity. From our results it could be postulated that the investigated monovalent ions exert inhibitory effect on the AC complex activity by affecting the intermolecular interaction of the activated α subunit of G/F protein and the C unit of AC complex an inhibitory influence of tested monovalent ions on these molecular interaction.
Collapse
Affiliation(s)
- Ivana Nikolic
- Department of Biochemistry, Faculty of medical sciences, University of Kragujevac , Kragujevac , Serbia
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Abraham G, Kottke C, Dhein S, Ungemach FR. Agonist-independent alteration in beta-adrenoceptor-G-protein-adenylate cyclase system in an equine model of recurrent airway obstruction. Pulm Pharmacol Ther 2005; 19:218-29. [PMID: 16084121 DOI: 10.1016/j.pupt.2005.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/25/2005] [Accepted: 05/31/2005] [Indexed: 11/23/2022]
Abstract
We examined the inhibitory sympathetic beta-adrenergic mechanisms in peripheral lung, bronchi and trachea of an equine model of recurrent airway obstruction (RAO), to support the hypothesis that the beta-adrenergic receptor dysfunction is not only restricted to cell surface receptor density but rather encompasses a mechanistic defect apart from the receptor, to the intracellular signaling components. The non-asthmatic lung possessed 3.2-fold more beta-adrenergic receptors than bronchi (496 +/- 19.4 vs. 155.1+/- 19.6 fmol/mg protein; P < 0.01) and 6.2-fold higher than in the trachea (79.8 +/- 12.6 fmol/mg protein; P < 0.001) (assessed by radioligand binding assays using (-)-[(125)I]-iodocyanopindolol, ICYP) and in all tissues a greater proportion of the beta(2)- than the beta(1)-subtype (75-80%). The receptor density (B(max)) in lung parenchyma and bronchial membranes was 33 and 42%, respectively, lower (P < 0.001) in RAO than in control animals, attributable to a decrease in the beta(2)-subtype. This receptor down-regulation was accompanied with an attenuated coupling efficiency of the receptor to the stimulatory G(S)-protein (P < 0.05 vs. control). Concomitantly, activation of adenylate cyclase evoked by isoproterenol was significantly reduced in lung and bronchial membranes of animals with RAO, whereas effects of 10 microM GTP, 10mM NaF, 10 microM forskolin and 10 mM Mn(2+) were not altered. There was no difference in beta-adrenergic receptor density, G(S)-protein or adenylate cyclase coupling in the trachea between asthmatic and control animals. In conclusion, in stable asthma the pulmonary beta-adrenergic receptor-G(S)-protein-adenylate cyclase system is impaired, thus the pathologic process involves all signaling components, and due to its close similarity, this animal model seems to serve as a suitable model, at least partly, of chronic asthmatic patients.
Collapse
Affiliation(s)
- Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Germany.
| | | | | | | |
Collapse
|
3
|
Hirshman CA, Zhu D, Panettieri RA, Emala CW. Actin depolymerization via the beta-adrenoceptor in airway smooth muscle cells: a novel PKA-independent pathway. Am J Physiol Cell Physiol 2001; 281:C1468-76. [PMID: 11600409 DOI: 10.1152/ajpcell.2001.281.5.c1468] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin is a major functional and structural cytoskeletal protein that mediates such diverse processes as motility, cytokinesis, contraction, and control of cell shape and polarity. While many extracellular signals are known to mediate actin filament polymerization, considerably less is known about signals that mediate depolymerization of the actin cytoskeleton. Human airway smooth muscle cells were briefly exposed to isoproterenol, forskolin, or the cAMP-dependent protein kinase A (PKA) agonist stimulatory diastereoisomer of adenosine 3',5'-cyclic monophosphate (Sp-cAMPS). Actin polymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, forskolin, or Sp-cAMPS induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. The PKA inhibitor Rp diastereomer of adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) completely inhibited forskolin-stimulated depolymerization, whereas it only partially inhibited isoproterenol-induced depolymerization. The protein tyrosine kinase inhibitors genistein or tyrphostin A23 also partially inhibited isoproterenol-induced actin depolymerization. In contrast, the combination of Rp-cAMPS and either tyrosine kinase inhibitor had an additive effect at inhibiting isoproterenol-induced actin depolymerization. These results suggest that both PKA-dependent and -independent pathways mediate actin depolymerization in human airway smooth muscle cells.
Collapse
Affiliation(s)
- C A Hirshman
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
4
|
7-O
-hemisuccinyl-deacetyl forskolin-sepharose: a novel affinity support for purification of adenylate cyclase. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80955-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Yamatani K, Saito K, Takahashi K, Ohnuma H, Manaka H, Sasaki H. Hormone-specific combinations of isoforms of adenylyl cyclase and phosphodiesterase in the rat liver. REGULATORY PEPTIDES 2001; 99:45-52. [PMID: 11257314 DOI: 10.1016/s0167-0115(01)00228-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone. These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.
Collapse
Affiliation(s)
- K Yamatani
- The Third Department of Internal Medicine, Yamagata University School of Medicine, 2-2-2 Iidanishi, 990-9585, Yamagata, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Seyfarth T, Gerbershagen HP, Giessler C, Leineweber K, Heinroth-Hoffmann I, Pönicke K, Brodde OE. The cardiac beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in monocrotaline-treated rats. J Mol Cell Cardiol 2000; 32:2315-26. [PMID: 11113007 DOI: 10.1006/jmcc.2000.1262] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rats, injection of the alkaloid monocrotaline (MCT) causes right ventricular hypertrophy and cardiac failure. In order to study whether, in MCT-treated rats, changes in the cardiac beta -adrenoceptor-G-protein(s)-adenylyl cyclase system might be comparable to those found in human primary pulmonary hypertension, we assessed in right and left ventricles from MCT-treated rats the components of the beta -adrenoceptor system: the receptor number and subtype distribution (by (-)-[(125)I]iodocyanopindolol binding), the G-proteins (by quantitative Western blotting), and the activity of adenylyl cyclase. A single injection of 60 mg/kg i.p. MCT caused in rats right ventricular hypertrophy (RVH); part of the rats developed cardiac failure (RVF). In these rats the cardiac beta -adrenoceptor-G-protein(s)-adenylyl cyclase system was markedly changed beta -adrenoceptors were desensitized due to a decrease in receptor number, an uncoupling of the receptor from the G(s)-adenylyl cyclase system, a decrease in G(s)and a decrease in the activity of the catalytic unit of adenylyl cyclase. In general, these changes were more pronounced in right ventricles v left ventricles, and in rats with RVF v rats with RVH. On the other hand, cardiac muscarinic receptors and G(i)appeared not to be altered. We conclude that in MCT-treated rats changes in the cardiac beta -adrenoceptor-G-protein(s)-adenylyl cyclase system occur that resemble those observed in human primary pulmonary hypertension. Thus, MCT-treated rat appears to be a suitable animal model to study in more detail the pathophysiology of the development of right heart failure, and to identify new therapeutic possibilities.
Collapse
Affiliation(s)
- T Seyfarth
- Institute of Pharmacology, Martin-Luther-University of Halle-Wittenberg, Halle, D-06097, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Emala CW, Clancy-Keen J, Hirshman CA. Decreased adenylyl cyclase protein and function in airway smooth muscle by chronic carbachol pretreatment. Am J Physiol Cell Physiol 2000; 279:C1008-15. [PMID: 11003581 DOI: 10.1152/ajpcell.2000.279.4.c1008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular levels of cAMP are an important determinant of airway smooth muscle tone. We have previously shown that chronic (18 h) but not acute (30 min or 2 h) pretreatment with the muscarinic receptor agonist carbachol resulted in decreased adenylyl cyclase activity in response to GTP, isoproterenol, or forskolin via a pathway blocked by the protein kinase C inhibitor staurosporine. The present study was designed to determine if carbachol-induced decreases in adenylyl cyclase activity were due to regulatory events at the level of either G(s)alpha or adenylyl cyclase. Detergent-solubilized G(s)alpha from control or carbachol-pretreated bovine airway smooth muscle had similar adenylyl cyclase activity in response to either NaF or guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) when reconstituted into S49 cyc(-) membranes that lack endogenous G(s)alpha (carbachol pretreated: GTPgammaS, 93 +/- 13% of control; NaF/AlCl(3), 99 +/- 8.6% of control; n = 4). Exogenous G(s)alpha solubilized from red blood cells failed to restore normal adenylyl cyclase activity when reconstituted into carbachol-pretreated bovine airway smooth muscle (carbachol pretreated: GTP, 36 +/- 10% of control; NaF/AlCl(3), 54 +/- 11% of control; n = 4). [(3)H]forskolin radioligand saturation binding assays revealed a decreased quantity of total adenylyl cyclase protein after carbachol pretreatment (maximal binding: 152 +/- 40 and 107 +/- 31 fmol/mg protein in control and carbachol-pretreated airway smooth muscle, respectively). These results suggest that chronic activation of muscarinic receptors downregulates the expression of adenylyl cyclase protein in bovine airway smooth muscle.
Collapse
Affiliation(s)
- C W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
8
|
Dhein S, Röhnert P, Markau S, Kotchi-Kotchi E, Becker K, Poller U, Osten B, Brodde OE. Cardiac beta-adrenoceptors in chronic uremia: studies in humans and rats. J Am Coll Cardiol 2000; 36:608-17. [PMID: 10933378 DOI: 10.1016/s0735-1097(00)00731-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The purpose of this study was to elucidate whether cardiac beta-adrenergic effects may be blunted in patients on maintenance hemodialysis (HD) and may help to explain autonomic dysfunction. BACKGROUND Patients on HD often suffer from autonomic dysfunction. METHODS We investigated the cardiovascular response of five HD patients (age: 46.1+/-7.9 years) and six healthy volunteers (age: 48.2+/-7.5 years) to isoprenaline, pirenzepine and phenylephrine. For analysis of underlying mechanisms of beta-adrenoceptor hyporesponsiveness, six-week-old male Wistar rats were rendered uremic by 5/6-nephrectomy (n = 9; SNX) and were killed for removal of the heart after six to seven weeks. Sham-operated rats (n = 15) served as controls. RESULTS In the patient study, isoprenaline (3.5, 7, 17, 35 ng/kg/min, i.v.) led to an increase in heart rate, and shortening of the heart rate corrected duration of the electromechanical systole (QS2c), both of which were significantly reduced in HD patients. Baroreflex sensitivity was significantly reduced in HD patients. The response to low parasympathomimetic doses of pirenzepine was unchanged. In the rat study, left ventricular strips were placed in an organ bath, electrically driven and exposed to isoprenaline (10(-11) to 10(-6) mol/liter). While pD2 values were unchanged, maximum effect at the highest concentration was significantly reduced in SNX rats. The response to carbachol was not altered, nor was the M2-cholinoceptor density. There was no difference in beta-adrenoceptor density, or in immunodetectable amount of Gs and Gi protein. Activation of adenylyl cyclase evoked by isoprenaline was significantly reduced in left ventricular membranes of SNX rats, whereas effects of 10 micromol/liter GTP, 10 mmol/liter NaF, 10 micromol/liter forskolin and 10 mmol/liter Mn2+ were not altered. CONCLUSIONS Cardiac beta-adrenergic responses are blunted in chronic uremia due to reduced isoprenaline-dependent activation of adenylyl cyclase. This might be caused by an "uncoupling" of the receptor or by an inhibition of the receptor by uremic toxins.
Collapse
Affiliation(s)
- S Dhein
- Institute of Pharmacology and Toxicology, Martin-Luther-University of Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lindeman KS, Forrester DJ, Hirshman CA, Emala CW. Myometrial adenylyl cyclase protein decreases on the last day of pregnancy in the rat. Biol Reprod 2000; 62:1422-6. [PMID: 10775196 DOI: 10.1095/biolreprod62.5.1422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To determine whether gestation-related changes in responsiveness of the rat uterus to beta-adrenergic agonists are mediated at the level of adenylyl cyclase, we measured myometrial adenylyl cyclase activity and protein quantities during pregnancy and labor. In rat myometrial membranes, basal adenylyl cyclase activity increased from the nonpregnant state to mid (Days 12-14) and then late (Days 18-20) gestation and then decreased intrapartum (Day 22). Stimulated adenylyl cyclase activity, at the level of the beta-adrenergic receptor (isoproterenol, 10(-4) M), the G protein (GTP, 10(-5) M), or the adenylyl cyclase enzyme (MnCl(2), 20 mM), was similarly altered during gestation. Total adenylyl cyclase protein was quantified by [(3)H]forskolin binding assay in myometrial membranes from nonpregnant and pregnant (Day 14, Day 20, Day 21, and intrapartum Day 22) rats. Adenylyl cyclase protein increased progressively from nonpregnant rats to pregnant rats at mid (Day 14) and late (Day 20) gestation, but it decreased abruptly to nonpregnant levels on Day 21, the day before parturition, and remained at similar levels on Day 22 (intrapartum). The gestation-related increase in expression of myometrial adenylyl cyclase protein may facilitate uterine quiescence during pregnancy, and the abrupt decrease of adenylyl cyclase protein on the last day of pregnancy may be a contributing mechanism for the initiation of labor.
Collapse
Affiliation(s)
- K S Lindeman
- The Johns Hopkins Medical Institutions, Departments of Anesthesiology/Critical Care Medicine and Environmental Health Sciences, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
10
|
Brodde OE, Vogelsang M, Broede A, Michel-Reher M, Beisenbusch-Schäfer E, Hakim K, Zerkowski HR. Diminished responsiveness of Gs-coupled receptors in severely failing human hearts: no difference in dilated versus ischemic cardiomyopathy. J Cardiovasc Pharmacol 1998; 31:585-94. [PMID: 9554809 DOI: 10.1097/00005344-199804000-00018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In end-stage heart failure, cardiac beta-adrenoceptors are decreased and cardiac Gi protein is increased. We assessed beta-adrenoceptors, G proteins, and effects of several beta-adrenoceptor agonists, histamine, and 5-HT on adenylyl cyclase activity in right and left atria and left ventricles and on left ventricular contractility in six potential heart transplant donors (nonfailing hearts; NFHs) and in nine patients with end-stage dilated cardiomyopathy (DCM) and 11 patients with end-stage ischemic cardiomyopathy (ICM) to establish whether the functional responsiveness of all cardiac Gs-coupled receptors is reduced. Beta-adrenoceptors were reduced in all three tissues; in DCM, beta1-adrenoceptors were more markedly downregulated; in ICM, both beta1- and beta2-adrenoceptors were diminished. In all three tissues, isoprenaline-, terbutaline-, histamine- and 5-HT-induced adenylyl cyclase activation was reduced similarly in DCM and ICM. Moreover, in DCM and ICM, guanosine triphosphate (GTP)- (involving Gs and Gi) activated adenylyl cyclase was significantly diminished, whereas NaF-activated (involving only Gs) and Mn2+-activated (acting at the catalytic unit of the enzyme) adenylyl cyclase was unaltered. Left ventricular positive inotropic responses to beta1- (noradrenaline, dopamine, and dobutamine), beta2- (terbutaline), and beta1- and beta2-adrenoceptors (isoprenaline, adrenaline, and epinine), as well as H2-receptor (histamine) stimulation were significantly reduced. The extent of reduction was not different for each agonist in ICM and DCM. We conclude that in DCM and ICM, functional responsiveness of all cardiac Gs-coupled receptors is similarly reduced.
Collapse
Affiliation(s)
- O E Brodde
- Department of Internal Medicine, University of Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Mhaouty-Kodja S, Bouet-Alard R, Limon-Boulez I, Maltier JP, Legrand C. Molecular diversity of adenylyl cyclases in human and rat myometrium. Correlation with global adenylyl cyclase activity during mid- and term pregnancy. J Biol Chem 1997; 272:31100-6. [PMID: 9388262 DOI: 10.1074/jbc.272.49.31100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression and regulation of myometrial adenylyl cyclases (AC) were studied during pregnancy. Hybridization of poly(A)+ RNA with specific cDNA probes for enzyme types I-IX indicated 1) the presence of transcripts encoding types II-VI and type IX in rat and human, and type VII in rat and 2) the absence of detectable mRNA for types I and VIII in both species. No substantial change was observed in the amount of specific mRNA and basal AC activity from mid-pregnancy to term. However, activation of the alpha2-adrenergic receptor/Gi protein pathway resulted in potentiation of Gs-stimulated AC activity at mid-pregnancy but not at term (Mhaouty, S., Cohen-Tannoudji, J., Bouet-Alard, R., Limon-Boulez, I., Maltier, J. P., and Legrand, C. (1995) J. Biol. Chem. 270, 11012-11016). We demonstrate in the present work that betagamma scavengers transducin-alpha and QEHA peptide abolished this positive input. On the other hand, increasing submicromolar concentrations of free Ca2+, a situation that mimics late term, reduced the forskolin-stimulated AC activity with an IC50 of 3.9 microM. Thus, the presence in myometrium of AC II family (types II, IV, VII) confers ability to G inhibitory proteins to stimulate enzyme activity via betagamma complexes at mid-pregnancy, whereas expression of AC III, V, and VI isoforms confers to the myometrial AC system a high sensitivity to inhibition by Ca2+-dependent processes at term. These data suggest that in the pregnant myometrium, the expression of different species of AC with distinct regulatory properties provides a mechanism for integrating positively or negatively the responses to various hormonal inputs existing either during pregnancy or in late term.
Collapse
Affiliation(s)
- S Mhaouty-Kodja
- Laboratoire de Physiologie de la Reproduction, CNRS URA 1449, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
12
|
Rebois RV, Warner DR, Basi NS. Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell Signal 1997; 9:141-51. [PMID: 9113413 DOI: 10.1016/s0898-6568(96)00133-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterotrimeric (alpha beta gamma) G proteins mediate a variety of signal transduction events in virtually every cell of every eukaryotic organism. The predominant hypothesis is that dissociation of the alpha-subunit from the G beta gamma-subunit complex necessarily accompanies the activation of these proteins, and that the alpha-subunit is primarily responsible for regulating the response of effector molecules. However, there is increasing evidence that both the alpha-subunit and the beta gamma-subunit complex function in regulating effector activity. Furthermore, data for some G proteins suggest that they function as activated heterotrimers rather than as dissociated subunits.
Collapse
Affiliation(s)
- R V Rebois
- Membrane Biochemistry Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Fan GF, Yang XY, Huang YG, Yang FY. Effect of transmembrane Ca2+ gradient on the coupling of beta-adrenergic receptors and adenylyl cyclase. Biosci Rep 1996; 16:327-41. [PMID: 8896791 DOI: 10.1007/bf01855016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to investigate the effect of transmembrane Ca2+ gradient on Gs mediated coupling of beta-AR and adenylyl cyclase, beta-AR from duck erythrocytes and Gs and adenylyl cyclase from bovine brain cortices were co-reconstituted into asolectin liposomes with different transmembrane Ca2+ gradient. These proteoliposomes were proven to be impermeable to water-soluble substances. The results obtained indicate that a physiological transmembrane Ca2+ gradient (1000-fold) is essential for higher stimulation of adenylyl cyclase by hormone-activated beta-AR via coupling to Gs and can be further enhanced by the decrease of such Ca2+ gradient within certain range (100 fold) following Ca2+ influx into cells during signal transduction. Fluorescence polarization of DPH revealed that transmembrane Ca2+ gradient modulates adenylyl cyclase and its stimulation by hormones through mediating a change in lipid fluidity. Correspondent conformational changes of beta-AR were also detected from the fluorescence spectra and quenching of Acrylodan-labelled beta-AR in those proteoliposomes. It is suggested that a proper transmembrane Ca2+ gradient is essential for the optimal fluidity of the phospholipid bilayer in the proteoliposomes, which favors the formation of a suitable conformation of the reconstituted beta-AR and thus promotes the stimulation of adenylyl cyclase activities by hormone-activated beta-AR via Gs.
Collapse
Affiliation(s)
- G F Fan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
14
|
White M, Wiechmann RJ, Roden RL, Hagan MB, Wollmering MM, Port JD, Hammond E, Abraham WT, Wolfel EE, Lindenfeld J. Cardiac beta-adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury. Evidence for catecholamine-mediated myocardial damage. Circulation 1995; 92:2183-9. [PMID: 7554200 DOI: 10.1161/01.cir.92.8.2183] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ten percent to 20% of potential cardiac donors with brain injury and no previous cardiac history have myocardial dysfunction. We assessed components of the beta-receptor-G-protein-adenylyl cyclase complex as well as the contractile response in 10 explanted acutely failing human hearts (donor heart dysfunction [DHD]) and compared the results with 13 age-matched nonfailing (NF) organ donor controls. METHODS AND RESULTS As measured by echocardiography, all DHD hearts exhibited a decreased shortening fraction (16 +/- 2%, mean +/- SEM). Although total and subpopulation beta-receptor densities measured by [125I]iodocyanopindolol (ICYP) were similar in the DHD and NF groups, DHD hearts exhibited a 30% decrease in maximum isoproterenol-stimulated adenylyl cyclase activity and a 50% decrease in the maximal response to zinterol. DHD hearts also exhibited decreases in adenylyl cyclase maximal stimulation by forskolin (211 +/- 25 [DHD] versus 295 +/- 23 [NF] pmol cAMP.min-1.mg-1, P < .05) and 5'-guanylylimidodiphosphate (12.5 +/- 1.8 [DHD] versus 19.6 +/- 3.2 [NF] pmol cAMP.min-1.mg-1, P < .05), but there was no significant decrease in adenylyl cyclase stimulation by Mn2+, a direct activator of adenylyl cyclase. Right ventricular trabeculae removed from DHD hearts exhibited a profound decrease in the contractile response to isoproterenol (8.7 +/- 1 [DHD] versus 22 +/- 2 [NF] mN, P < .001) as well as reduced calcium responses (7.2 +/- 1.6 [DHD] versus 14 +/- 3 [NF] mN, P = .03). Morphological examination of two hearts revealed some ultrastructural evidence suggestive of catecholamine-mediated injury, but there was no difference in tissue creatine kinase activity between the two groups. CONCLUSIONS Compared with NF hearts, DHD hearts exhibit marked uncoupling of beta 1- and beta 2-adrenergic receptors from adenylyl cyclase and contractile response stimulation as well as decreased intrinsic systolic function. Thus, acute myocardial dysfunction accompanying brain injury is characterized by marked alterations in beta-adrenergic signal transduction as well as changes in the contractile apparatus, and this profile is markedly different from what occurs in the chronically failing human heart.
Collapse
Affiliation(s)
- M White
- Division of Cardiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, Port JD, Anderson F, Campbell D, Feldman AM. Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 1994; 90:1225-38. [PMID: 8087932 DOI: 10.1161/01.cir.90.3.1225] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Aging decreases cardiac beta-adrenergic responsiveness in model systems and in humans in vivo. The purpose of this study was to comprehensively evaluate the age-related changes in the beta-receptor-G protein-adenylyl cyclase complex in nonfailing human hearts. METHODS AND RESULTS Twenty-six nonfailing explanted human hearts aged 1 to 71 years were obtained from organ donors and subjected to pharmacological investigation of beta-adrenergic neuroeffector systems. When the population was subdivided into the 13 youngest and 13 oldest subjects, total beta-receptor density assessed by maximum [125I]ICYP binding (beta max) was reduced in older hearts by 37% in left ventricles and 31% in right ventricles (both P < .05), and the downregulation was confined to the beta 1 subtype (r = .78 left ventricle beta 1 density versus donor age). Older donor hearts exhibited a 3- to 4-fold rightward shift of ICYP-isoproterenol (ISO) competition curves and demonstrated 43% fewer receptors in a high-affinity agonist binding state (P < .05). Older hearts exhibited decreased adenylyl cyclase stimulation by ISO, by zinterol (beta 2-agonist), and by the G protein-sensitive probes forskolin, Gpp(NH)p, and NaF. In contrast, there was no change in response to manganese, a specific activator of the adenylyl cyclase catalytic subunit. Toxin-catalyzed ADP ribosylation in membranes prepared from older versus younger hearts revealed a 29% to 30% reduction (P < .05) with cholera toxin (Gs) but no difference with pertussis toxin (Gi). The systolic contractile response of isolated right ventricular trabeculae to ISO was decreased by 46%, with a 10-fold increase in ISO EC50 in older relative to younger donor hearts. CONCLUSIONS There is a profound decrease in cardiac beta-adrenergic responsiveness with aging. This occurs by multiple mechanisms including downregulation and decreased agonist binding of beta 1-receptors, uncoupling of beta 2-receptors, and abnormal G protein-mediated signal transduction.
Collapse
Affiliation(s)
- M White
- Division of Cardiology, University of Utah Medical Center, Salt Lake City
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang Y, Fan G, Yang F. A proper transmembrane Ca2+ gradient is essential for the stimulation of adenylate cyclase activity by stimulatory GTP-binding protein. Biosci Rep 1994; 14:179-87. [PMID: 7849240 DOI: 10.1007/bf01200247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stimulatory GTP-binding Protein (Gs) and adenylate cyclase prepared from bovine brain cortices were co-reconstituted into asolectin vesicles with or without 1000-fold transmembrane Ca2+ gradient. The results showed that both basal activity and Gs-stimulated activity of adenylate cyclase were highest in proteoliposomes with a transmembrane Ca2+ gradient similar to physiological condition (1 microM Ca2+ outside and 1 mM Ca2+ inside) and lowest when the transmembrane Ca2+ gradient was in the inverse direction. Such a difference could be diminished following dissipation of the transmembrane Ca2+ gradient by A23187. Comparable conformational changes of Gs in proteoliposomes were also observed when Gs was labeled with the fluorescence probe, acrylodan. These results may indicate that a proper transmembrane Ca2+ gradient is essential not only for higher adenylate cyclase activity but also for its stimulation by Gs.
Collapse
Affiliation(s)
- Y Huang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing
| | | | | |
Collapse
|
17
|
Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homcy CJ. Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 1994; 93:2224-9. [PMID: 8182154 PMCID: PMC294370 DOI: 10.1172/jci117219] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have shown that the heart expresses two distinct forms of adenylylcyclase mRNA, types V and VI. In this study we have characterized the expression of these two mRNA species in heart failure generated by overdrive pacing at a rate of 240 beats/min. After 4 wk, left ventricular end-diastolic pressure and heart rate increased significantly with the appearance of signs of heart failure, i.e., edema, ascites, and exercise intolerance. Basal as well as forskolin-stimulated adenylylcyclase activities decreased significantly, which was accompanied by a reduction in the steady state mRNA levels of adenylylcyclase types V and VI. These data suggest that in this model of cardiomyopathy, the downregulation of adenylylcyclase catalytic activity results, at least in part, from a reduction in the steady state levels of types V and VI adenylylcyclase mRNA levels.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York 10032
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mørk A. Actions of lithium on the cyclic AMP signalling system in various regions of the brain--possible relations to its psychotropic actions. A study on the adenylate cyclase in rat cerebral cortex, corpus striatum and hippocampus. PHARMACOLOGY & TOXICOLOGY 1993; 73 Suppl 3:1-47. [PMID: 8146086 DOI: 10.1111/j.1600-0773.1993.tb01704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It has been estimated that in most industrialized countries 1 person out of every 1000 in the population is undergoing lithium treatment to stabilize their episodic mood disturbances due to manic-depressive illness. Lithium may stabilize mood swings by altering the action of certain neurotransmitters at the synaptic level in the brain. Recent research suggests that lithium alters neurotransmission by affecting neurotransmitter-coupled second messenger systems. A major second messenger system is the adenylate cyclase, which generates intracellular cAMP from ATP. The adenylate cyclases (type I-IV) are regulated by stimulatory and inhibitory receptors, which either stimulate or inhibit the adenylate cyclase activity. The stimulatory and inhibitory neurotransmitter-receptor signals are transferred to the catalytic unit of the adenylate cyclase by Gs and Gi, respectively. The activated receptor induces GTP stimulation of the heterotrimeric G protein, leading to a dissociation of the protein into the active alpha*GTP and the beta gamma complex. The former stimulates the catalytic unit of adenylate cyclase. The stimulation is terminated by a GTPase located on the alpha subunit that converts GTP to inactive GDP. At present, G proteins are known to play a central role in coupling receptors to effector proteins. In addition to extracellular regulation due to neurotransmitters, some adenylate cyclases (type I, III) are regulated by CaM as a consequence of enhanced intracellular concentrations of free Ca2+. The Ca(2+)-dependent stimulation of adenylate cyclase by CaM is assumed to occur by a direct effect on the catalytic unit. The catalytic units sensitive to Ca(2+)-CaM are also subjected to regulation by stimulatory and inhibitory neurotransmitter stimuli. Magnesium is essential for adenylate cyclase activity, since MgATP2- is the enzyme substrate. Furthermore, one Mg2+ site located on the G protein regulates both the receptor agonist affinity and the dissociation of the G protein during the activation cycle. A second Mg2+ site on the catalytic unit is responsible for Mg2+ regulation of the catalytic activity. The present work aimed at investigating the mechanisms by which lithium in vitro and after chronic treatment (ex vivo) affects adenylate cyclase activities in various regions of the rat brain. Lithium in vitro and ex vivo inhibited the selective stimulation of adenylate cyclase by Ca(2+)-CaM in the cerebral cortex. Furthermore, lithium in vitro interacted directly with the catalytic unit of adenylate cyclase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Mørk
- Department of Pharmacology, University of Copenhagen
| |
Collapse
|
19
|
Bristow MR, Minobe W, Rasmussen R, Larrabee P, Skerl L, Klein JW, Anderson FL, Murray J, Mestroni L, Karwande SV. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest 1992; 89:803-15. [PMID: 1311717 PMCID: PMC442925 DOI: 10.1172/jci115659] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to investigate the general cause of beta-adrenergic receptor neuroeffector abnormalities in the failing human heart, we measured ventricular myocardial adrenergic receptors, adrenergic neurotransmitters, and beta-adrenergic receptor-effector responses in nonfailing and failing hearts taken from nonfailing organ donors, subjects with endstage biventricular failure due to idiopathic dilated cardiomyopathy (IDC), and subjects with primary pulmonary hypertension (PPH) who exhibited isolated right ventricular failure. Relative to nonfailing PPH left ventricles, failing PPH right ventricles exhibited (a) markedly decreased beta 1-adrenergic receptor density, (b) marked depletion of tissue norepinephrine and neuropeptide Y, (c) decreased adenylate cyclase stimulation in response to the beta agonists isoproterenol and zinterol, and (d) decreased adenylate cyclase stimulation in response to Gpp(NH)p and forskolin. These abnormalities were directionally similar to, but generally more pronounced than, corresponding findings in failing IDC right ventricles, whereas values for these parameters in nonfailing left ventricles of PPH subjects were similar to values in the nonfailing left ventricles of organ donors. Additionally, relative to paired nonfailing PPH left ventricles and nonfailing right ventricles from organ donors, failing right ventricles from PPH subjects exhibited decreased adenylate cyclase stimulation by MnCl2. These data indicate that: (a) Adrenergic neuroeffector abnormalities present in the failing human heart are due to local mechanisms; systemic processes do not produce beta-adrenergic neuroeffector abnormalities. (b) Pressure-overloaded failing right ventricles of PPH subjects exhibit decreased activity of the catalytic subunit of adenylate cyclase, an abnormality not previously described in the failing human heart.
Collapse
MESH Headings
- Adenylyl Cyclases/analysis
- Adult
- Cardiomyopathy, Dilated/physiopathology
- Catecholamines/analysis
- Female
- Heart/physiopathology
- Heart Failure/physiopathology
- Humans
- Hypertension, Pulmonary/physiopathology
- Iodocyanopindolol
- Isoproterenol/metabolism
- Male
- Myocardial Contraction
- Neuropeptide Y/analysis
- Pindolol/analogs & derivatives
- Pindolol/metabolism
- Receptors, Adrenergic, alpha/analysis
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/analysis
- Receptors, Adrenergic, beta/physiology
Collapse
Affiliation(s)
- M R Bristow
- Heart Failure Treatment Program, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O'Connell JB, Renlund DG, Volkman K, Murray J. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991; 84:1024-39. [PMID: 1653120 DOI: 10.1161/01.cir.84.3.1024] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND We measured the content and activities of components of the beta-adrenergic receptor-G protein-adenylate cyclase complex and adrenergic neurotransmitter levels in left and right ventricular myocardial preparations derived from 77 end-stage failing human hearts from patients with idiopathic dilated cardiomyopathy (IDC) or ischemic dilated cardiomyopathy (ISCDC). METHODS AND RESULTS The results were compared with data obtained in 21 nonfailing hearts removed from organ donors. Compared with ISCDC ventricles, IDC left and right ventricles exhibited a greater degree of total beta- or beta 1-receptor downregulation. In contrast, compared with IDC right ventricles, isolated tissue preparations of ISCDC right ventricles exhibited a greater degree of subsensitivity to the inotropic effect of isoproterenol, indicating a relatively greater degree of functional uncoupling of right ventricular ISCDC beta-receptors from mechanical response. In addition, relative to IDC left ventricles, preparations of ISCDC left ventricle exhibited greater subsensitivity to beta-agonist-mediated adenylate cyclase stimulation, indicating functional uncoupling of left ventricular ISCDC beta-receptors from cyclic AMP generation. The uncoupling of beta-receptors in ISCDC left and right ventricles may have been a result of abnormalities in G protein activation of adenylate cyclase; compared with age- and cardiac function-matched respective left or right IDC ventricles, ISCDC left ventricles exhibited less stimulation of adenylate cyclase by NaF or forskolin but no change in Mn2+ stimulation, whereas ISCDC right ventricles exhibited less stimulation by the nonhydrolyzable guanine nucleotide Gpp (NH)p. Also, IDC right ventricles exhibited a "selective" (not present in IDC left ventricles or ISCDC ventricles) decrease in stimulation of adenylate cyclase by Mn2+. Tissue neurotransmitter levels and pertussis toxin-catalyzed ADP ribosylation were altered to similar extents in IDC and ISCDC: CONCLUSIONS These data indicate that potentially important differences exist in the regulatory behavior of components of the beta-adrenergic receptor-G protein-adenylate cyclase complex in IDC versus ISCDC, differences that presumably relate to the distinct pathophysiologies of these two types of heart muscle disease.
Collapse
Affiliation(s)
- M R Bristow
- Heart Failure Treatment Program, University of Utah, Salt Lake City
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wolfman A, Moscucci A, Macara IG. Evidence for Multiple, ras-like, Guanine Nucleotide-binding Proteins in Swiss 3T3 Plasma Membranes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81694-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
22
|
Tamir A, Gill DM. ADP-ribosylation by cholera toxin of membranes derived from brain modifies the interaction of adenylate cyclase with guanine nucleotides and NaF. J Neurochem 1988; 50:1791-7. [PMID: 2836559 DOI: 10.1111/j.1471-4159.1988.tb02480.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed a method to ADP-ribosylate the stimulatory guanine nucleotide-binding protein of adenylate cyclase (GS) in brain membranes by using cholera toxin. In particular, we used isonicotinic acid hydrazide and 3-acetylpyridine adenine dinucleotide to inhibit the potent NAD-glycohydrolase activity of brain membranes, and we used the detergent Triton X-100 (at 0.1%) to improve the accessibility of the toxin and guanine nucleotides used for supporting the ADP-ribosylation. This method reveals that GS is a very abundant protein in membranes derived from calf brain (approximately 30 pmol/mg of protein). In brain, GS exists in large excess over the previously reported amount of the adenylate cyclase catalytic subunit. The modification of GS with an ADP-ribosyl residue (a) elicits a four- to fivefold activation of adenylate cyclase by GTP, (b) increases the stabilization of adenylate cyclase by GTP, and (c) reduces adenylate cyclase activation by fluoride but does not change basal activity, activation by guanosine 5'-(beta, gamma-imido)triphosphate, or the sensitivity of adenylate cyclase to heat-induced denaturation. A correlation between ADP-ribosylation and the alterations in the activation of adenylate cyclase by guanine nucleotides and by fluoride is presented.
Collapse
Affiliation(s)
- A Tamir
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
23
|
Abstract
A family of proteins called G proteins couples cell surface receptors to a variety of enzymes and ion channels. Since many cells contain several very similar G proteins, an important question is how signals remain specific as they cross the cell membrane.
Collapse
Affiliation(s)
- E J Neer
- Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
24
|
Benovic JL, Staniszewski C, Mayor F, Caron MG, Lefkowitz RJ. beta-Adrenergic receptor kinase. Activity of partial agonists for stimulation of adenylate cyclase correlates with ability to promote receptor phosphorylation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69009-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Chapter 1 G proteins and transmembrane signalling. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/s0167-7306(08)60656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Pfeuffer T, Helmreich EJ. Structural and functional relationships of guanosine triphosphate binding proteins. CURRENT TOPICS IN CELLULAR REGULATION 1988; 29:129-216. [PMID: 3135154 DOI: 10.1016/b978-0-12-152829-4.50006-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Information available at present documents the existence of three well-defined classes of guanine nucleotide binding proteins functioning as signal transducers: Gs and Gi which stimulate and inhibit adenylate cyclase, respectively, and transducin which transmits and amplifies the signal from light-activated rhodopsin to cGMP-dependent phosphodiesterase in ROS membranes. Go is a fourth member of this family. Its function is the least known among GTP binding signal transducing proteins. The family of G proteins has a number of properties in common. All are heterotrimers consisting of three subunits, alpha, beta, and gamma. Each of the subunits may be heterogeneous depending on species and tissue of origin and may be posttranslationally modified covalently. The alpha subunits vary in size from 39 to 52 kDa. The sequences for Gs alpha and transducin alpha have 42% overall homology and those of Gi alpha and Gs alpha 43%, whereas those of Gi alpha and transducin alpha have a higher degree (68%) of homology. All alpha subunits bind guanine nucleotides and are ADP-ribosylated by either pertussis toxin (Gi, transducin, Go) or cholera toxin (Gs, Gi, transducin). Thus, transducin and Gi, which have the highest degree of sequence homology, are also ADP-ribosylated by both toxins. The beta subunits have molecular weights of 36 and 35 kDa, respectively. While Gs, Gi, and Go contain a mixture of both, transducin contains only the larger (36-kDa) beta-polypeptide. The relationship of the 36- and the 35-kDa beta subunits is not defined. Although the complete sequence of the 36-kDa beta subunit of transducin has been deduced from the cDNA sequence, complete sequences of other beta subunits are not yet available so that detailed comparisons cannot be made at present. However, the proteolytic profiles of each class of the beta subunits of different G proteins are indistinguishable. The gamma subunit of bovine transducin has been completely sequenced. It has a Mr of 8400. Again complete sequences of other gamma subunits are not yet available. While the gamma subunits of Gs, Gi, and Go have identical electrophoretic mobility in SDS gels, they differ significantly in this respect from the gamma subunit of transducin. Moreover, crossover experiments point to functional differences between gamma subunits from G protein and transducin complexes. In addition, a role for beta, gamma in anchoring guanine nucleotide binding proteins to membranes has been postulated.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Pfeuffer
- Department of Physiological Chemistry, University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|
27
|
Mørk A, Geisler A. Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain. PHARMACOLOGY & TOXICOLOGY 1987; 60:241-8. [PMID: 3588521 DOI: 10.1111/j.1600-0773.1987.tb01745.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The action of lithium on calcium-calmodulin-activated and forskolin-activated catalytic unit of adenylate cyclase has been studied. The catalytic unit was solubilized from rat brain and separated from the guanine nucleotide binding protein by gel filtration. Calcium-calmodulin-stimulated and forskolin-stimulated catalytic unit activities were inhibited in the presence of 2 mM and 1 mM of lithium, respectively. No inhibitory effect was observed on the basal activity. The inhibitory effect of lithium on the stimulated activities was antagonized by magnesium. Lithium did not influence the interaction of the enzyme substrate (ATP) with the catalytic unit. The present results indicate that lithium interacts directly with the catalytic unit of the adenylate cyclase system. In the neuron, lithium might interfere with a divalent cation site on the catalytic unit.
Collapse
|
28
|
Cerione RA, Gierschik P, Staniszewski C, Benovic JL, Codina J, Somers R, Birnbaumer L, Spiegel AM, Lefkowitz RJ, Caron MG. Functional differences in the beta gamma complexes of transducin and the inhibitory guanine nucleotide regulatory protein. Biochemistry 1987; 26:1485-91. [PMID: 3032251 DOI: 10.1021/bi00379a041] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have examined the mechanism of inhibition of adenylate cyclase using the purified alpha and beta gamma subunits of bovine brain inhibitory guanine nucleotide regulatory protein (Ni) (i.e., alpha i and beta gamma N) and bovine retinal transducin (alpha T and beta gamma T) in reconstituted phospholipid vesicle systems. The addition of beta gamma N or beta gamma T to lipid vesicles containing the pure stimulatory guanine nucleotide regulatory protein (Ns) from human erythrocytes as well as a resolved preparation of the catalytic moiety (C) of bovine caudate adenylate cyclase results in significant inhibition of guanine nucleotide stimulated cyclase activity (80-90%). The inhibition by these beta gamma subunit complexes appears to fully account for the inhibitory effects observed with holo-Ni or holotransducin. A variety of structure-function comparisons of the beta gamma N and beta gamma T complexes were performed in order to further probe the molecular mechanisms involved in the inhibitory pathway. Whereas the beta subunits of beta gamma N and beta gamma T appear to be very similar, if not identical, on the basis of comparisons of their gel electrophoretic mobility and immunological cross-reactivity, clear differences exist in the apparent structures of gamma N and gamma T. Interestingly, functional differences are observed in the effectiveness of these two beta gamma complexes to inhibit adenylate cyclase activity. Specifically, while both beta gamma N and beta gamma T are capable of effecting significant levels of inhibition of the guanine nucleotide stimulated activities, the beta gamma N complex is consistently more potent than beta gamma T in inhibiting these activities.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
29
|
Abstract
Over the past few years, it has become apparent that a large number of transmembrane signaling systems operate through heterotrimeric G-proteins [( 1] Gilman, A.G. (1984) Cell 36, 577-579; [2] Baker, P.F. (1986) Nature 320, 395). Adenylate cyclase is regulated by stimulatory hormones through Gs(alpha s beta gamma) and inhibitory hormones through Gi(alpha i beta gamma) [( 2]; Katada, T. et al. (1984) J. Biol. Chem. 259, 3586-3595), whereas the breakdown of phosphatidylinositol bisphosphate (PIP2) to inositol trisphosphate (IP3) and diacylglycerol (DG) by phospholipase C is probably also mediated by a heterotrimeric G-protein (Go or Gi) [1,2]. Similarly, the activation of cGMP phosphodiesterase by light-activated rhodopsin is mediated through the heterotrimeric G-protein transducin (Stryer, L. (1986) Rev. Neurosci. 9, 89-119). Other transmembrane signaling systems may also be found to involve G-proteins similar to those already recognized. Because of the emerging universality of G-proteins as transducers of receptor-triggered signals, it may be useful to evaluate the current models prevailing in the adenylate cyclase field, as these models seem to guide our way in evaluating the role of G-proteins in transmembrane signaling, in general.
Collapse
|
30
|
Neer EJ, Wolf LG, Gill DM. The stimulatory guanine-nucleotide regulatory unit of adenylate cyclase from bovine cerebral cortex. ADP-ribosylation and purification. Biochem J 1987; 241:325-36. [PMID: 3109373 PMCID: PMC1147565 DOI: 10.1042/bj2410325] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.
Collapse
|
31
|
Minin AA, Grigorian GY, Kozlov YP, Tkachuk VA. Hormonal sensitivity of adenylate cyclase incorporated in proteoliposomes. MEMBRANE BIOCHEMISTRY 1987; 7:41-54. [PMID: 2828878 DOI: 10.3109/09687688709029428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteoliposomes containing adenylate cyclase (AC) from rabbit heart ventricles were obtained using a novel reconstitution procedure from solubilized state. The enzyme preparation can be stimulated by 5'guanylylimidodiphosphate (GppNHp) and NaF, but not by isoproterenol. Hormonal responsiveness of AC is restored by either isoproterenol trapped by the proteoliposomes during the reconstitution or pretreatment of proteoliposomes with alamethicin. GTP in the presence of alamethicin decreases the affinity of beta-adrenoceptors to the agonist, thus confirming that the properties of reconstituted AC system do not differ from the native one. It is demonstrated that the degree of AC activation by isoproterenol depends strongly on the beta-adrenoceptors content in the proteoliposomes, which in turn can be changed artificially in the process of reconstitution. The described reconstitution technique might be a useful tool for investigating the role of component stoichiometry in the functioning of hormone-regulated AC-system.
Collapse
Affiliation(s)
- A A Minin
- M. V. Lomonosov State University, School of Biology, Moscow, USSR
| | | | | | | |
Collapse
|
32
|
Cerione RA, Staniszewski C, Gierschik P, Codina J, Somers RL, Birnbaumer L, Spiegel AM, Caron MG, Lefkowitz RJ. Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. Studies with isolated subunits of transducin in a reconstituted system. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67687-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Enomoto K, Asakawa T. Inhibition of catalytic unit of adenylate cyclase and activation of GTPase of Ni protein by beta gamma-subunits of GTP-binding proteins. FEBS Lett 1986; 202:63-8. [PMID: 3013680 DOI: 10.1016/0014-5793(86)80650-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A protein factor which inhibited adenylate cyclase was purified to apparent homogeneity from rat brain and identified as the beta gamma-subunits of the GTP-binding regulatory proteins of adenylate cyclase. (i) The beta gamma-subunits (protein factor) inhibited the partially purified catalytic unit of adenylate cyclase in the presence of an activator, forskolin or the stimulative regulatory protein (Ns), to 60 and 40% of the control, respectively; inhibition of the catalytic unit in the presence of forskolin required no guanine nucleotides. (ii) The subunits enhanced the GTPase activity of the purified alpha-subunit of the inhibitory regulatory protein (Ni alpha) 3.8-fold. (iii) The subunits stimulated ADP-ribosylation of Ni alpha catalyzed by islet-activating protein (pertussis toxin). ADP-ribosylation had no effect on the GTPase activity of Ni alpha in the presence of the beta gamma-subunits. The results suggest that direct inhibition of the catalytic unit by the beta gamma-subunits liberated from Ni is essential for the receptor-mediated inhibition of adenylate cyclase.
Collapse
|
34
|
Active site specificity of the adenylate cyclase catalytic unit from bovine caudate nucleus. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Perez-Reyes E, Cooper DM. Interaction of the inhibitory GTP regulatory component with soluble cerebral cortical adenylate cyclase. J Neurochem 1986; 46:1508-16. [PMID: 3083047 DOI: 10.1111/j.1471-4159.1986.tb01769.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functional interaction of the inhibitory GTP regulatory component (Ni) with the adenylate cyclase catalytic subunit has not previously been demonstrated after detergent solubilization. The present report describes a sodium cholate-solubilized preparation of rat cerebral cortical membrane adenylate cyclase that retains guanine nucleotide-mediated inhibition of activity. Methods of membrane preparation, cholate extraction, and assay conditions were manipulated such that guanosine-5'-(beta-gamma-imido)triphosphate [Gpp(NH)p] inhibited basal activity 40-60%. The rank order of potency among various GTP analogs was similar in cholate extracts and in membranes: guanosine-5'-0-(3-thiotriphosphate) greater than Gpp(NH)p greater than GTP. Inclusion of 0.1 mM EGTA reduced basal activity 70-90% and abolished Gpp(NH)p inhibition of basal activity in both membranes and cholate extracts. Forskolin-stimulated activity was also inhibited by Gpp(NH)p. Treatment of either membranes or cholate extracts with N-ethylmaleimide abolished Gpp(NH)p inhibition. Gel filtration of the cholate extract over a Sepharose 6B column in 0.1% Lubrol PX partially resolved the adenylate cyclase components. However, Gpp(NH)p inhibition of basal activity (60% of the control) was maintained in select column fractions. Sucrose gradient centrifugation totally resolved the catalytic subunit from both functional Ni and stimulatory GTP regulatory component (Ns) activities. The sedimentation of functional Ni activity was detected by assaying the ability of sucrose gradient fractions to confer Gpp(NH)p inhibition of the resolved catalytic activity. Labeling of gradient or column fractions with pertussis toxin and [32P]NAD revealed that both the 39,000- and 41,000-dalton substrates comigrated with the functional Ni activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
36
|
|
37
|
Cerione RA, Staniszewski C, Caron MG, Lefkowitz RJ, Codina J, Birnbaumer L. A role for Ni in the hormonal stimulation of adenylate cyclase. Nature 1985; 318:293-5. [PMID: 2999605 DOI: 10.1038/318293a0] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The best understood system for transduction of extracellular messages into intracellular signals is the hormone receptor-coupled adenylate cyclase. In such systems receptors are functionally coupled to the enzyme by two special proteins, termed the stimulatory and inhibitory guanine nucleotide regulatory proteins (Ns and Ni, respectively). These proteins, thought to mediate, respectively, stimulatory and inhibitory influences on the adenylate cyclase, are members of a larger class of heterotrimeric guanine nucleotide regulatory proteins involved in membrane signal transduction. We have studied the interactions of the various components of the adenylate cyclase system by co-reconstituting pure beta-adrenergic receptors, pure Ns and Ni, and functionally resolved preparations of the catalyst in phospholipid vesicles. In the absence of Ni, beta-adrenergic receptor/Ns-mediated catecholamine stimulation of the enzyme is relatively modest (approximately 1.3-fold). Surprisingly, however, when Ni is also present, stimulation increases dramatically (up to 7-8-fold) because of a greater suppression of basal relative to agonist-stimulated enzyme activity. Thus, Ni may actually be required for maximal agonist stimulation as well as for inhibition of the adenylate cyclase.
Collapse
|
38
|
Krall JF, Leshon SC, Korenman SG. Phospholipase A2 sensitivity of uterine smooth muscle membrane phospholipids and adenylate cyclase activity. Effect of temperature on the action of phospholipase present in excess. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39293-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Terman BI, Bitonti AJ, Moss J, Vaughan M. Activation and stabilization of the catalytic unit of adenylate cyclase. Biochem J 1985; 227:91-7. [PMID: 4039563 PMCID: PMC1144812 DOI: 10.1042/bj2270091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The requirements for stability and activity of the catalytic unit (C) of adenylate cyclase were investigated. After solubilization of bovine brain membranes in the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulphonate (Chaps), the catalytic unit was separated from the stimulatory guanine-nucleotide-binding protein (Gs) by gel filtration on Ultrogel AcA-34. The partially purified C unit was rapidly inactivated at 30 degrees C; 0.25 mM-ATP stabilized activity. Although C-unit activity was dependent on Mg2+ or Mn2+, stabilization by ATP did not require bivalent cations. Activity of the Ultrogel-AcA-34-purified C unit was increased by Ca2+ plus calmodulin and by phosphatidylcholine plus lysophosphatidylcholine; activity in the presence of both activators was significantly greater than with each alone. Calmodulin plus Ca2+ and phospholipids also stabilized C unit. The column-purified C unit was activated by forskolin; the effect of forskolin was additive to those of calmodulin plus Ca2+ and phospholipids. p[NH]ppG-stimulated adenylate cyclase activity was reconstituted by mixing samples from the gel-filtration column containing Gs with C unit. Activation by Ca2+ plus calmodulin and Gs plus p[NH]ppG was additive; Ca2+ plus calmodulin did not alter the concentration of p[NH]ppG required for half-maximal activation. Results were similar with forskolin and Gs plus p[NH]ppG; the presence of one activator did not alter the effect of the other. These studies define conditions for separation of C unit and Gs from brain adenylate cyclase and demonstrate that ATP (in the absence of bivalent cations), phospholipids, calmodulin plus Ca2+, and forskolin all interact with C unit in a manner that is independent of functional Gs.
Collapse
|
40
|
Abstract
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
41
|
Lefkowitz RJ, Cerione RA, Codina J, Birnbaumer L, Caron MG. Reconstitution of the beta-adrenergic receptor. J Membr Biol 1985; 87:1-12. [PMID: 2865370 DOI: 10.1007/bf01870694] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R. Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins. RECENT PROGRESS IN HORMONE RESEARCH 1985; 41:41-99. [PMID: 2996090 DOI: 10.1016/b978-0-12-571141-8.50006-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Interaction of the stimulatory and inhibitory regulatory proteins of the adenylyl cyclase system with the catalytic component of cyc-S49 cell membranes. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90674-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Arad H, Rosenbusch JP, Levitzki A. Stimulatory GTP regulatory unit Ns and the catalytic unit of adenylate cyclase are tightly associated: mechanistic consequences. Proc Natl Acad Sci U S A 1984; 81:6579-83. [PMID: 6436817 PMCID: PMC391973 DOI: 10.1073/pnas.81.21.6579] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Turkey erythrocyte membranes were solubilized in the mild detergent octylpenta(oxyethylene) [CH3(CH2)7-(OCH2CH2)5OH], which possesses a high critical micelle concentration (approximately equal to 6 mM) and forms small, dynamic micelles. Both the native enzyme Ns(GDP) X C and the p[NH]ppG-preactivated species N's X p[NH]ppG X C' were found to possess the same molecular mass of 215,000 +/- 17,000 daltons. Both enzyme species migrate as a tight complex between Ns and C on both gel permeation columns and on DEAE-Sephacel columns in detergent. The two functional units, Ns and C, remain associated even in dilute detergent solutions and throughout a 300- to 400-fold purification in octylpoly(oxyethylene). These results strongly support the view that Ns and C do not come apart during the process of enzyme activation by the beta-adrenergic receptor. Furthermore, these results strongly support our previous assertion that the beta-adrenergic receptor activation of adenylate cyclase is by a simple "collision coupling" between the receptor and NsC. These results are not compatible with shuttle mechanisms that postulate that Ns physically migrates from the receptor R to the catalytic unit C and back during the activation cycle, as suggested by Citri and Schramm [Citri, Y. & Schramm, M. (1980) Nature (London) 287, 297-300] and by De Lean et al. [De Lean, A., Stadel, J. M. & Lefkowitz, R. J. (1980) J. Biol. Chem. 255, 5108-5117].
Collapse
|
45
|
Cerione RA, Sibley DR, Codina J, Benovic JL, Winslow J, Neer EJ, Birnbaumer L, Caron MG, Lefkowitz RJ. Reconstitution of a hormone-sensitive adenylate cyclase system. The pure beta-adrenergic receptor and guanine nucleotide regulatory protein confer hormone responsiveness on the resolved catalytic unit. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90913-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Enomoto K, Asakawa T. GTPase activity associates with the inhibitory GTP-binding regulatory component of adenylate cyclase purified from rat brain. FEBS Lett 1984; 171:233-9. [PMID: 6144576 DOI: 10.1016/0014-5793(84)80494-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The inhibitory regulatory component of adenylate cyclase (Ni) was highly purified from rat brain synaptic membranes. A low Km GTPase activity was always associated with Ni through the purification, and the recovery of GTPase activity correlated well with that of Ni. Purified Ni was hardly ADP-ribosylated by islet-activating protein (IAP). A heat-labile factor in the fraction of the stimulative regulatory component (Ns) restored ADP-ribosylation and also activated the GTPase about 2-fold. NaF which was reported to interact with Ni markedly reduced GTPase activity. The purified Ni fraction inhibited adenylate cyclase only in the presence of a heat-stable factor found in the partially purified regulatory component. GTPase and inhibitory activities were weak in myelin which contained only a small amount of Ni. These findings support the view that GTPase activity is an intrinsic activity of Ni and some factors are necessary for the function of Ni.
Collapse
|
47
|
Ishibashi S, Kurokawa T, Higashi K, Dan'ura T. Regulation of the catalytic unit of adenylate cyclase system in rat brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1984; 175:63-74. [PMID: 6437160 DOI: 10.1007/978-1-4684-4805-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Kelleher DJ, Rashidbaigi A, Ruoho AE, Johnson GL. Rapid vesicle reconstitution of alprenolol-Sepharose-purified beta 1-adrenergic receptors. Interaction of the purified receptor with N. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44053-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Inhibitory regulation of adenylyl cyclase in the absence of stimulatory regulation. Requirements and kinetics of guanine nucleotide-induced inhibition of the cyc- S49 adenylyl cyclase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44092-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Suidan H, Tamir A, Tolkovsky AM. A simple test for enhanced guanyl nucleotide exchange in brain adenylate cyclase systems activated by neurotransmitters. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|