1
|
Mule SN, Saad JS, Sauter IP, Fernandes LR, de Oliveira GS, Quina D, Tano FT, Brandt-Almeida D, Padrón G, Stolf BS, Larsen MR, Cortez M, Palmisano G. The protein map of the protozoan parasite Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum during growth phase transition and temperature stress. J Proteomics 2024; 295:105088. [PMID: 38237666 DOI: 10.1016/j.jprot.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Joyce Silva Saad
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ismael Pretto Sauter
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Livia Rosa Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Daniel Quina
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Fabia Tomie Tano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Deborah Brandt-Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Gabriel Padrón
- Center for Genetic Engineering & Biotechnology, La Habana, Cuba
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia.
| |
Collapse
|
2
|
Jiménez AV, Cabezas DCO, Delay M, Gómez IG, Camacho M. Acoustophoretic Motion of Leishmania spp. Parasites. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1202-1214. [PMID: 35351318 DOI: 10.1016/j.ultrasmedbio.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The analysis of cell motion in an acoustic field is of interest as it can lead to new methods of cell separation, isolation and manipulation for diagnosis and treatment of diseases. Studies of the motion of different species of Leishmania parasites during exposure to ultrasonic standing waves in a microfluidic device allowed identification of acoustic responses of these parasites in their promastigote and amastigote forms. Both forms exhibited a positive acoustic contrast factor and were driven toward the pressure node established in the center of the channel by the acoustically induced radiation force (FR). Promastigotes experience calculated FR amplitudes one order of magnitude larger than those experienced by amastigotes because of the measured differences in volume. The aggregates formed at the pressure node have distinct shapes and stability conditions, for both promastigotes and amastigotes.
Collapse
Affiliation(s)
- Abelino Vargas Jiménez
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia.
| | - Diana Carolina Ochoa Cabezas
- Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia
| | | | - Itziar González Gómez
- Concejo Superior de Investigaciones Científicas (CSIC), Instituto de Tecnologías Físicas y de la Información (ITEFI), Grupo de resonadores ultrasónicos para cavitacián y micromanipulacián (RESULT), Madrid, Spain
| | - Marcela Camacho
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia
| |
Collapse
|
3
|
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, Glanzová K, Leštinová T, Matveeva NS, Chmelová Ľ, Mlacovská D, Spitzová T, Vojtková B, Volf P, Yurchenko V, Kraeva N. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021; 12:852-867. [PMID: 33724149 PMCID: PMC7971327 DOI: 10.1080/21505594.2021.1896830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristýna Glanzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadezhda S. Matveeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Denisa Mlacovská
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Spitzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
4
|
Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol 2019; 35:760-777. [PMID: 31471215 PMCID: PMC6783356 DOI: 10.1016/j.pt.2019.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The subpellicular microtubule array defines the wide range of cellular morphologies found in parasitic kinetoplastids (trypanosomatids). Morphological studies have characterized array organization, but little progress has been made towards identifying the molecular mechanisms that are responsible for array differentiation during the trypanosomatid life cycle, or the apparent stability and longevity of array microtubules. In this review, we outline what is known about the structure and biogenesis of the array, with emphasis on Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, which cause life-threatening diseases in humans and livestock. We highlight unanswered questions about this remarkable cellular structure that merit new consideration in light of our recently improved understanding of how the 'tubulin code' influences microtubule dynamics to generate complex cellular structures.
Collapse
Affiliation(s)
- Amy N Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
5
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Giarola NLL, Silveira TS, Inacio JDF, Vieira LP, Almeida-Amaral EE, Meyer-Fernandes JR. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa. Exp Parasitol 2014; 146:25-33. [PMID: 25176449 DOI: 10.1016/j.exppara.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 01/04/2023]
Abstract
Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.
Collapse
Affiliation(s)
- Naira Lígia Lima Giarola
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | - Thaís Souza Silveira
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro IFRJ, Brazil
| | | | - Lisvane Paes Vieira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | | | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil.
| |
Collapse
|
7
|
Gadelha APR, Cunha-e-Silva NL, de Souza W. Assembly of the Leishmania amazonensis flagellum during cell differentiation. J Struct Biol 2013; 184:280-92. [PMID: 24041804 DOI: 10.1016/j.jsb.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
Abstract
The flagellar cytoskeleton of Leishmania promastigotes contains the canonical 9+2 microtubular axoneme and a filamentous structure, the paraflagellar rod (PFR), which is present alongside the axoneme. In contrast to promastigotes, which contain a long and motile flagellum, the amastigote form of Leishmania displays a short flagellum without a PFR that is limited to the flagellar pocket domain. Here, we investigated the biogenesis of the Leishmania flagellum at 0, 4, 6 and 24h of differentiation. Light and electron microscopy observations of the early stages of L. amazonensis differentiation showed that the intermediate forms presented a short and wider flagellum that did not contain a PFR and presented reduced motion. 3D-reconstruction analysis of electron tomograms revealed the presence of vesicles and electron-dense aggregates at the tip of the short flagellum. In the course of differentiation, cells were able to adhere and proliferate with a doubling time of about 6h. The new flagellum emerged from the flagellar pocket around 4h after initiation of cell cycle. Close contact between the flagellar membrane and the flagellar pocket membrane was evident in the intermediate forms. At a later stage of differentiation, intermediate cells exhibited a longer flagellum (shorter than in promastigotes) that contained a PFR and electron dense aggregates in the flagellar matrix. In some cells, PFR profiles were observed inside the flagellar pocket. Taken together, these data contribute to the understanding of flagellum biogenesis and organisation during L. amazonensis differentiation.
Collapse
Affiliation(s)
- Ana Paula Rocha Gadelha
- Divisão de Biologia Estrutural, Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
8
|
Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression. BMC Genomics 2013; 14:454. [PMID: 23829570 PMCID: PMC3708823 DOI: 10.1186/1471-2164-14-454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/19/2013] [Indexed: 01/14/2023] Open
Abstract
Background Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. Results We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation. Conclusions Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania speciation. In the L. braziliensis genome database, two loci containing α-tubulin sequences were found, but only the locus at chromosome 13 contains the prototypic α-tubulin genes, which are repeated in a head-to-tail manner. Also, we determined that the levels of α-tubulin mRNAs are down-regulated drastically in response to heat shock by a post-transcriptional mechanism which is dependent upon active protein synthesis.
Collapse
|
9
|
Quiñonez-Díaz L, Mancilla-Ramírez J, Avila-García M, Ortiz-Avalos J, Berron A, González S, Paredes Y, Galindo-Sevilla N. Effect of ambient temperature on the clinical manifestations of experimental diffuse cutaneous leishmaniasis in a rodent model. Vector Borne Zoonotic Dis 2012; 12:851-60. [PMID: 22651383 DOI: 10.1089/vbz.2011.0844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dermal species of Leishmania have a relatively broad temperature range for optimal growth in vitro, with temperature differences accompanied by a form change. This suggests that when the host is living in moderate temperatures (22°C), infection may proceed at temperatures lower than those that occur in tropical regions (32°C), and a different clinical expression of the disease due to a different parasitic form may result. The aim of this study was to investigate the effect of environmental temperature on the clinical expression of the disease. BALB/C mice infected with Leishmania mexicana were housed at 32°±2°C or 22°±1°C, and assessed for the development of inflammation and the presence of parasites in organs using PCR and immunohistology. The clinical expression of leishmaniasis at 32°C included inflammation at the site of inoculation with swelling of the nose and tail, whereas at 22°C, up to 50% of the infected mice developed dry exfoliative dermatitis with alopecia on the dorsum. In both cases, parasite colonization was confirmed in the skin, with parasites at more external locations at 22°C. Parasite visceralization was confirmed in all internal organs and glands in both cases based on PCR and immunohistology. In conclusion, the clinical expression of diffuse leishmaniasis by Leishmania mexicana in laboratory mice is modified by temperature, from nodular inflammation at 32°C, to dry exfoliative dermatitis and alopecia at 22°C, with parasite visceralization in both cases.
Collapse
Affiliation(s)
- Laura Quiñonez-Díaz
- Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kapoor P, Kumar A, Naik R, Ganguli M, Siddiqi MI, Sahasrabuddhe AA, Gupta CM. Leishmania actin binds and nicks kDNA as well as inhibits decatenation activity of type II topoisomerase. Nucleic Acids Res 2010; 38:3308-17. [PMID: 20147461 PMCID: PMC2879525 DOI: 10.1093/nar/gkq051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmania actin (LdACT) is an unconventional form of eukaryotic actin in that it markedly differs from other actins in terms of its filament forming as well as toxin and DNase-1-binding properties. Besides being present in the cytoplasm, cortical regions, flagellum and nucleus, it is also present in the kinetoplast where it appears to associate with the kinetoplast DNA (kDNA). However, nothing is known about its role in this organelle. Here, we show that LdACT is indeed associated with the kDNA disc in Leishmania kinetoplast, and under in vitro conditions, it specifically binds DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove. We further reveal that this protein exhibits DNA-nicking activity which requires its polymeric state as well as ATP hydrolysis and through this activity it converts catenated kDNA minicircles into open form. In addition, we show that LdACT specifically binds bacterial type II topoisomerase and inhibits its decatenation activity. Together, these results strongly indicate that LdACT could play a critical role in kDNA remodeling.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Division of Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil Palace, CSIR, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Tubulin is a highly conserved, negatively charged protein that is found in essentially all eukaryotic cells. These properties ensure that isolation protocols successful in one system will likely work, with a few modifications, in most systems. Tubulin has been isolated most frequently from mammalian brain, and the main difference encountered in other systems versus brain is that tubulin is much less abundant in nearly all other sources than it is in brain. This means that attempting to purify tubulin by direct polymerization from a homogenate will often fail or be quite inefficient. However, the conservation of negative charge on tubulin means that an initial ion exchange step can be used to both purify and concentrate the protein from most systems. Polymerization-competent tubulin can usually be obtained by inducing polymerization in the salt eluate from the ion exchange step. We describe protocols for this procedure and describe its application to a number of vertebrate, fungal, protozoal, and plant sources.
Collapse
Affiliation(s)
- Dan L Sackett
- Laboratory of Integrative and Medical Biophysics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
12
|
Hiam A, Sebastien D, George B, Arlette F, Kalil J, Le Pape P. Microtubule target for new antileishmanial drugs based on ethyl 3-haloacetamidobenzoates. J Enzyme Inhib Med Chem 2008; 21:305-12. [PMID: 16918078 DOI: 10.1080/14756360600700699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A new family of antimicrotubule drugs named (3-haloacetamidobenzoyl) ureas and ethyl 3-haloacetamidobenzoates were found to be cytotoxic to the Leishmania parasite protozoa. While the benzoylureas were shown to strongly inhibit in vitro mammalian brain microtubule assembly, the ethyl ester derivatives were characterized as very poor inhibitors of this process. Ethyl 3-chloroacetamidobenzoate, MF29, was found to be the most efficient drug on the promastigote stage of three Leishmania species (IC50: 0.3-1.8 microM). MF29 maintained its activity against the clinical relevant intracellular stage of L. mexicana with IC50 value of 0.33 microM. It was the only compound that exhibits a high activity on all the Leishmania species tested. This compound appeared to alter parasite microtubule organisation as demonstrated by using antibodies directed against microtubule components and more precisely the class of microtubule decorated by the MAP2-like protein. It is interesting to notice that this MAP2-like protein was identified for the first time in a Leishmania parasite
Collapse
Affiliation(s)
- Abdala Hiam
- Department of Parasitology and Mycologie médicale, BioCiT UPRES EA 1155, Faculty of Pharmacy, Nantes University, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | | | | | | | |
Collapse
|
13
|
Chang KP, Fong D. Cell biology of host-parasite membrane interactions in leishmaniasis. CIBA FOUNDATION SYMPOSIUM 2008; 99:113-37. [PMID: 6357669 DOI: 10.1002/9780470720806.ch7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecular interactions at the host-parasite interface are crucial for the outcome of microbial infection, particularly in infection by intracellular parasites, such as Leishmania donovani and Leishmania mexicana, whose natural transmission begins with the delivery of the promastigote stage by the sandfly vector into the susceptible host. The ensuing event is intracellular parasitism of macrophages in the host by the amastigote stage. The establishment of this event in leishmaniasis must follow the sequence: (1) Leishmania-macrophage attachment; (2) entry of Leishmania species into macrophages; (3) intra-macrophage survival and differentiation of Leishmania species; and (4) intracellular multiplication of Leishmania species. This sequence precedes all clinical symptoms and pathological consequences in different forms of the disease. Study of these cellular events in Leishmania-macrophage systems in vitro indicates that host-parasite membrane interactions dictate many of the cellular events. Some morphological and functional changes of macrophages in response to leishmanial infection are related to their membrane activities, i.e. endocytosis and exocytosis. Leishmania parasites undergo profound plasma membrane-related changes, on entry into macrophages, at the morphological, antigenic and molecular levels. Most of these changes probably reflect necessary steps for the transition of Leishmania species from an extracellular to an intracellular life. The remarkable ability of Leishmania species subsequently to live in the secondary lysosome of the macrophage may also be due to certain intrinsic structures and dynamic properties of the parasite plasma membrane. Further analysis of leishmanial surface molecules and their interactions with macrophages is essential in any attempt to understand the pathogenic mechanism in leishmaniasis.
Collapse
|
14
|
Isotype expression, post-translational modification and stage-dependent production of tubulins in erythrocytic Plasmodium falciparum. Int J Parasitol 2008; 38:527-39. [DOI: 10.1016/j.ijpara.2007.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/02/2007] [Accepted: 09/17/2007] [Indexed: 11/17/2022]
|
15
|
Kolli BK, Kostal J, Zaborina O, Chakrabarty AM, Chang KP. Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 2007; 158:163-75. [PMID: 18242727 DOI: 10.1016/j.molbiopara.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Leishmania amazonensis was found to release nucleoside diphosphate kinase (NdK)-a stable enzyme capable of decreasing extracellular ATP. The release of this enzyme from Leishmania results in its progressive accumulation extracellularly as they replicate, peaking at the stationary phase in vitro. The released NdK is immunoprecipitable and constitutes approximately 40% of its total activities and proteins. The retention of a known cytosolic protein by wild type cells and a fluorescent protein by DsRed transfectants at stationary phase, which release NdK, indicates that this is a spontaneous event, independent of inadvertent cytolysis. Recombinant products of Leishmania NdK prepared were enzymatically and immunologically active. Both recombinant and native Leishmania NdK utilized ATP to produce expected nucleoside triphosphates in the presence of nucleoside diphosphates in excess. Both native and recombinant Leishmania NdK were also found to prevent ATP-induced cytolysis of J774 macrophages in vitro, as determined by assays for lactate dehydrogenase release from these cells and for their mitochondrial membrane potential changes. The results obtained thus suggest that Leishmania NdK not only serves its normal house-keeping and other important functions true to all cells, but also prevents ATP-mediated lysis of macrophages, thereby preserving the integrity of the host cells to the benefit of the parasite.
Collapse
Affiliation(s)
- Bala Krishna Kolli
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | | | | | | | | |
Collapse
|
16
|
Leishmania mexicana amazonensis: plasma membrane adenine nucleotide translocator and chemotaxis. Exp Parasitol 2007; 118:408-19. [PMID: 18031742 DOI: 10.1016/j.exppara.2007.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 01/16/2023]
Abstract
Leishmania cannot synthesize purines de novo and rely on their host to furnish these compounds. To accomplish this, they possess multiple purine nucleoside and nucleobase transporters. Subcellular fractionation, immunohistochemical localization with anti-adenine nucleotide translocator (ANT) antibodies and surface biotinylation show that the mitochondrial ANT is also present in the plasma membrane of both promastigotes and amastigotes. Leishmania, however, do not appear to rely on this transporter to supplement their purine or energy requirements via preformed ATP from its host. Rather, Leishmania appear to use the plasma membrane ANT as part of a chemotaxis response. ATP is a chemorepellant for Leishmania and cells treated with atractyloside, an inhibitor of ANT, no longer exhibit negative chemotaxis for this compound.
Collapse
|
17
|
Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation. Parasitology 2007; 135:183-94. [PMID: 17931458 DOI: 10.1017/s0031182007003782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene expression profiling is increasingly used in the field of infectious diseases for characterization of host, pathogen and the nature of their interaction. The purpose of this study was to develop a robust, standardized method for comparative expression profiling and molecular characterization of Leishmania donovani clinical isolates. The limitations and possibilities associated with expression profiling in intracellular amastigotes and promastigotes were assessed through a series of comparative experiments in which technical and biological parameters were scrutinized. On a technical level, our results show that it is essential to use parasite harvesting procedures that involve minimal disturbance of the parasite's environment in order to 'freeze' gene expression levels instantly; this is particularly a delicate task for intracellular amastigotes and for specific 'sensory' genes. On the biological level, we demonstrate that gene expression levels fluctuate during in vitro development of both intracellular amastigotes and promastigotes. We chose to use expression-curves rather than single, specific, time-point measurements to capture this biological variation. Intracellular amastigote protocols need further refinement, but we describe a first generation tool for high-throughput comparative molecular characterization of patients' isolates, based on the changing expression profiles of promastigotes during in vitro differentiation.
Collapse
|
18
|
Yakovich AJ, Ragone FL, Alfonzo JD, Sackett DL, Werbovetz KA. Leishmania tarentolae: purification and characterization of tubulin and its suitability for antileishmanial drug screening. Exp Parasitol 2006; 114:289-96. [PMID: 16753146 PMCID: PMC1986769 DOI: 10.1016/j.exppara.2006.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/17/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022]
Abstract
Previously, tubulin has been purified from Leishmania amazonensis and used to identify novel molecules with selective antimitotic activity. However, L. amazonensis is pathogenic and requires a relatively expensive medium for large-scale cultivation. Herein, the purification and characterization of tubulin from the non-pathogenic Leishmania tarentolae is reported, together with the sequence of alpha- and beta-tubulin from this organism. This protein was purified by sonication, diethylaminoethyl-Sepharose chromatography, and one assembly disassembly cycle in 1% overall recovery based on total cellular protein. Leishmania tarentolae tubulin was indistinguishable from the corresponding L. amazonensis protein in terms of binding affinity for dinitroaniline sulfanilamides and sensitivity to assembly inhibition by these compounds. The amino acid sequences derived from the L. tarentolae alpha- and beta-tubulin genes were 99.6 and 99.4% identical to the corresponding amino acid sequences from the Leishmania major Friedlin strain. These results indicate that tubulin from L. tarentolae is suitable for use in drug screening.
Collapse
Affiliation(s)
- Adam J. Yakovich
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
| | - Frank L. Ragone
- College of Biological Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Juan D. Alfonzo
- College of Biological Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- * Corresponding author. Tel.: +1 614 292 5499; fax: +1 614 292 2435; E-mail address:
| |
Collapse
|
19
|
Cuervo P, Sabóia-Vahia L, Costa Silva-Filho F, Fernandes O, Cupolillo E, DE Jesus JB. A zymographic study of metalloprotease activities in extracts and extracellular secretions of Leishmania (Viannia) braziliensis strains. Parasitology 2005; 132:177-85. [PMID: 16197592 DOI: 10.1017/s0031182005008942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/24/2005] [Accepted: 08/04/2005] [Indexed: 11/06/2022]
Abstract
Proteolytic activities of 5 strains of Leishmania (Viannia) braziliensis isolated from Brazilian and Colombian patients, presenting distinct clinical manifestations, were characterized and compared using whole-promastigote extracts and extracellular secretions. Zymographic assays concerning whole-cell extracts and supernatants resulted in the detection of high molecular weight bands, ranging from 50 to 125 kDa. Proteolytic activities from both whole-cell extracts and supernatants were optimal in a pH range 5.5 to 9.0 for all analysed strains. Such protease activities were inhibited when 10 mM 1,10-phenanthroline was assayed, strongly suggesting that the enzymes responsible for hydrolysis of the substrate belong to the metalloproteases class. Distinct profiles of metalloproteases were observed among the studied L. (V.) braziliensis strains. Differences among the microorganisms might be related to the geographical origin of the strains and/or to the clinical presentation.
Collapse
Affiliation(s)
- P Cuervo
- Departamento de Medicina Tropical, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
20
|
Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Trop 2003; 85:375-90. [PMID: 12659975 DOI: 10.1016/s0001-706x(02)00238-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Leishmanial mechanisms of virulence have been proposed previously to involve two different groups of parasite molecules. One group consists of largely surface and secretory products, and the second group includes intracellular molecules, referred to as 'pathoantigens'. In the first group are invasive/evasive determinants, which protect not only parasites themselves, but also infected host cells from premature cytolysis. These determinants help intracellular amastigotes maintain continuous infection by growing at a slow rate in the parasitophorous vacuoles of host macrophages. This is illustrated in closed in vitro systems, e.g. Leishmania amazonensis in macrophage cell lines. Although individual macrophages may become heavily parasitized at times, massive destruction of macrophages has not been observed to result from uncontrolled parasite replication. This is thus unlikely to be the direct cause of virulence manifested as the clinical symptoms seen in human leishmaniasis. Of relevance is likely the second group of immunopathology-causing parasite 'pathoantigens'. These are highly conserved cytoplasmic proteins, which have been found to contain Leishmania-unique epitopes immunologically active in leishmaniasis. How these intracellular parasite antigens become exposed to the host immune system is accounted for by periodic cytolysis of the parasites during natural infection. This event is notable with a small number of parasites, even as they grow in an infected culture. The cytolysis of these parasites to release 'pathoantigens' may be inadvertent or medicated by specific mechanisms. Information on the pathoantigenic epitopes is limited. T-cell epitopes have long been recognized, albeit ill-defined, as important in eliciting CD4+ cell development along either the Th1 or Th2 pathway. Their operational mechanisms in suppressing or exacerbating cutaneous disease are still under intensive investigation. However, immune response to B-cell epitopes of such 'pathoantigens' is clearly futile and counterproductive. Their intracellular location within the parasites renders them inaccessible to the specific antibodies generated. One example is the Leishmania K39 epitope, against which antibodies are produced in exceedingly high titers, especially in Indian kala-azar. Here, we consider the hypothetical emergence of this pathoantigenicity and its potential contributions to the virulent phenotype in the form of immunopathology. Microbial virulence may be similarly explained in other emerging and re-emerging infectious diseases. Attenuation of microbial virulence may be achieved by genetic elimination of pathoantigenicity, thereby providing mutants potentially useful as avirulent live vaccines for immunoprophylasis of infectious diseases.
Collapse
Affiliation(s)
- Kwang-Poo Chang
- Department of Microbiology/Immunology, University of Health Sciences/Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Microtubules are cytoskeletal polymers essential for the survival of all eukaryotes. These proteins are the proposed cellular targets of many anticancerous, antifungal and antihelminthic drugs. Sufficient differences exist between the microtubules of kinetoplastid parasites like Leishmania and humans to explore the selective targeting of these proteins for therapeutic purposes. This review describes the basic structure of microtubules and its dynamics in general, with specific insights into leishmanial microtubules, the salient features of microtubule-drug interactions including the specificity of certain drugs for parasitic microtubules. Chemotherapy against leishmanial parasites is failing because of the emergence of drug resistant strains. The possible mechanisms of resistance to antimicrotubule agents along with insights into the role of microtubules in mediating drug resistance in Leishmania are discussed.
Collapse
Affiliation(s)
- K G Jayanarayan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | |
Collapse
|
22
|
Bellatin JA, Murray AS, Zhao M, McMaster WR. Leishmania mexicana: identification of genes that are preferentially expressed in amastigotes. Exp Parasitol 2002; 100:44-53. [PMID: 11971653 DOI: 10.1006/expr.2001.4677] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protozoan parasite Leishmania has a digenetic life cycle, alternating between the promastigote and the amastigote stages. Amastigotes infect macrophage cells and reside in the hydrolytic environment of the phagolysosome. Leishmania show distinct morphological and biochemical changes during differentiation into amastigotes. These alterations are believed to be regulated by stage-specific expression of a discrete number of genes. Selective-suppression PCR, a PCR-based subtractive hybridization technique, identified two genes preferentially expressed in L. mexicana lesion amastigotes: a novel gene family, A600, and a differentially expressed beta-tubulin gene. Northern blot analysis confirmed amastigote-specific expression of these genes and quantitation showed a sixfold higher abundance of A600 and beta-tubulin transcripts in lesion amastigotes. The A600 gene was predicted to contain a 293-bp open reading frame (ORF) that was tandemly repeated in the L. mexicana genome. Sequence analysis predicted that the A600 ORF encodes either a membrane-bound or a secreted protein that may have a functional role in amastigote differentiation or intraphagolysosomal parasite survival.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- DNA, Complementary/analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Gene Expression Regulation
- Genome, Protozoan
- Leishmania mexicana/chemistry
- Leishmania mexicana/genetics
- Mice
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames
- Polymerase Chain Reaction/methods
- Protozoan Proteins/genetics
- Protozoan Proteins/physiology
- RNA, Protozoan/genetics
- Restriction Mapping
- Sequence Alignment
- Species Specificity
- Tubulin/chemistry
- Tubulin/genetics
Collapse
Affiliation(s)
- J A Bellatin
- Department of Medical Genetics, University of British Columbia and Immunology Research Centre, Vancouver Hospital Jack Bell Research Centre, 2660 Oak Street, Vancouver, British Columbia, Canada V6H 3Z6
| | | | | | | |
Collapse
|
23
|
Brooks DR, Denise H, Westrop GD, Coombs GH, Mottram JC. The stage-regulated expression of Leishmania mexicana CPB cysteine proteases is mediated by an intercistronic sequence element. J Biol Chem 2001; 276:47061-9. [PMID: 11592967 DOI: 10.1074/jbc.m108498200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tandemly arranged CPB genes of Leishmania mexicana are polycistronically transcribed and encode cysteine proteases that are differentially stage-specific; CPB1 and CPB2 are expressed predominantly in metacyclics, whereas CPB3-CPB18 are expressed mainly in amastigotes. The mechanisms responsible for this differential expression have been studied via gene analysis and re-integration of individual CPB genes, and variants thereof, into a CPB-deficient parasite mutant. Comparison of the nucleotide sequences of the repeat units of CPB1 and CPB2 with CPB2.8 (typical of CPB3-CPB18) revealed two major regions of divergence as follows: one of 258 base pairs (bp) corresponding to the C-terminal extension of CPB2.8; another, designated InS, of 120 bp, with insertions totaling 57 bp, localized to the intercistronic region downstream of CPB1 and CPB2. Cell lines expressing CPB2.8 or CPB2 with the 3'-untranslated region and intercistronic sequence of CPB2.8 showed up-regulation in amastigotes. Conversely, metacyclic-specific expression occurred with CPB2 or CPB2.8 with the 3'-untranslated region and intercistronic sequence of CPB2. Moreover, the InS down-regulated expression in amastigotes of a reporter gene integrated into the CPB locus. It is proposed that the InS mediates metacyclic-specific stage-regulated expression of CPB by affecting the maturation of polycistronic pre-mRNA. This is the first well defined cis-regulatory element implicated in post-transcriptional stage-specific gene expression in Leishmania.
Collapse
Affiliation(s)
- D R Brooks
- Wellcome Centre for Molecular Parasitology, University of Glasgow, the Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Nishisaka M, Yokoyama N, Xuan X, Inoue N, Nagasawa H, Fujisaki K, Mikami T, Igarashi I. Characterisation of the gene encoding a protective antigen from Babesia microti identified it as eta subunit of chaperonin containing T-complex protein 1. Int J Parasitol 2001; 31:1673-9. [PMID: 11730795 DOI: 10.1016/s0020-7519(01)00278-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Passive immunisations with a monoclonal antibody termed 1-5H showed a partial but significant inhibition of parasitaemia against Babesia microti challenge infection. By immunoscreening with 1-5H, a clone (termed p58 gene) was obtained from a cDNA expression library of B. microti and the complete nucleotide sequence was determined. A protein homology search showed significant amino acid identities to the eta subunit of the chaperonin containing T-complex protein 1 (CCT) of human (59%), mouse (58%) and Plasmodium falciparum (62%). Genomic analyses indicated that the p58 gene is present as a single copy gene and contains a total of approximately 400-bp introns in the genome of B. microti. The mAb 1-5H recognised a 58-kDa protein of B. microti and was found to cross-react with a 60-kDa protein of Babesia rodhaini. These results suggest the possibility that the p58 protein is the CCT eta subunit of B. microti and functions as a chaperonin.
Collapse
Affiliation(s)
- M Nishisaka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cunningham ML, Beverley SM. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol Biochem Parasitol 2001; 113:199-213. [PMID: 11295174 DOI: 10.1016/s0166-6851(01)00213-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protozoan parasites of the trypanosomatid genus Leishmania are pteridine auxotrophs, and have evolved an elaborate and versatile pteridine salvage network capable of accumulating and reducing pteridines. This includes biopterin and folate transporters (BT1 and FT1), pteridine reductase (PTR1), and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Notably, PTR1 is a novel alternative pteridine reductase whose activity is resistant to inhibition by standard antifolates. In cultured promastigote parasites, PTR1 can function as a metabolic by-pass under conditions of DHFR inhibition and thus reduce the efficacy of chemotherapy. To test whether pteridine salvage occurred in the infectious stage of the parasite, we examined several pathogenic species of Leishmania and the disease-causing amastigote stage that resides within human macrophages. To accomplish this we developed a new sensitive HPLC-based assay for PTR1 activity. These studies established the existence of the pteridine salvage pathway throughout the infectious cycle of Leishmania, including amastigotes. In general, activities were not well correlated with RNA transcript levels, suggesting the occurrence of at least two different modes of post-transcriptional regulation. Thus, pteridine salvage by amastigotes may account for the clinical inefficacy of antifolates against leishmaniasis, and ultimately provide insights into how this may be overcome in the future.
Collapse
Affiliation(s)
- M L Cunningham
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
26
|
Werbovetz KA, Brendle JJ, Sackett DL. Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol Biochem Parasitol 1999; 98:53-65. [PMID: 10029309 DOI: 10.1016/s0166-6851(98)00146-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Past work suggests that tubulin from kinetoplastid parasites may present an excellent drug target. To explore this possibility, tubulin was purified on a milligram scale from Leishmania mexicana amazonensis promastigotes by sonication, DEAE-Sepharose chromatography, and one cycle of assembly-disassembly. Purified leishmanial tubulin is recognized by commercially available anti-tubulin antibodies and displays concentration dependent assembly in vitro. The vinca site agents vinblastine, maytansine, and rhizoxin bind to leishmanial tubulin as assessed by the quenching of intrinsic tubulin fluorescence and the alteration of the proteins reactivity with the sulfhydryl-specific reagent 5,5'-dithiobis(2-nitrobenzoic acid). They also interfere with the assembly of leishmanial tubulin at low micromolar concentrations. Electrophilic compounds such as phenyl arsenoxide and 4-chloro-3,5-dinitro-alpha,alpha,alpha-trifluorotoluene (chloralin), which are of interest as traditional and experimental antiparasitic agents, respectively, inhibit the assembly of leishmanial tubulin in vitro as well. Colchicine-site agents and trifluralin, on the other hand, have little or no effect on leishmanial tubulin in these assays. Maytansine, taxol, and the electrophiles block the growth of Leishmania donovani amastigote-like forms in vitro at low ( <1 microM) concentrations, while colchicine site agents, trifluralin, vinblastine, and rhizoxin are at least two orders of magnitude less toxic to the parasite.
Collapse
Affiliation(s)
- K A Werbovetz
- Department of Parasitology, Walter Reed Army Medical Institute of Research, Washington, DC 20307, USA.
| | | | | |
Collapse
|
27
|
Joshi M, Dwyer DM, Nakhasi HL. Molecular cloning and characterization of a Leishmania donovani alpha-tubulin gene. J Eukaryot Microbiol 1995; 42:628-32. [PMID: 7581339 DOI: 10.1111/j.1550-7408.1995.tb05918.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have isolated a cDNA for an alpha-tubulin mRNA from L. donovani promastigotes and determined its complete nucleotide sequence. Both nucleotide and deduced amino acid sequence analysis of this cDNA showed significant similarity with a previously reported, partial sequence of an L. enriettii alpha-tubulin and the complete sequence of human alpha-tubulin. Further, the in vitro translated L. donovani alpha-tubulin gene product was specifically immunoprecipitated with a monoclonal antibody against human alpha-tubulin. Northern blot analysis revealed that there was little change in the expression of the L. donovani alpha-tubulin RNA during parasite differentiation from promastigote to the in vitro grown "amastigote" form. Southern blot analysis revealed a simple genomic organization for the L. donovani alpha-tubulin gene with more than one copy of the alpha-tubulin gene in the parasite genome. To our knowledge, this is the first complete sequence of an alpha-tubulin for Leishmania to be reported in the literature.
Collapse
Affiliation(s)
- M Joshi
- Laboratory of Molecular Pharmacology, Division of Hematologic Products, CBER, US Food and Drug Administration, Bethesda, Maryland, USA
| | | | | |
Collapse
|
28
|
Mendoza-León A, Havercroft JC, Barker DC. The RFLP analysis of the beta-tubulin gene region in New World Leishmania. Parasitology 1995; 111 ( Pt 1):1-9. [PMID: 7609983 DOI: 10.1017/s0031182000064544] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the similarities and differences in the organization of tubulin genes in New World Leishmania by restriction endonuclease digestion of genomic DNA and Southern blot analysis, using heterologous and homologous tubulin gene probes. As judged by the hybridization pattern and the restriction fragment length polymorphism (RFLP), there were large differences in both the restriction and hybridization patterns of the beta-tubulin sequences between stocks of the mexicana and braziliensis complexes. There were similarities in the hybridization patterns of different species of the mexicana complex. In contrast, a high heterogeneity was found between species of the braziliensis complex which includes intraspecific variation. The results suggest that this polymorphism may be associated with random mutations. The same analysis gave evidence of large differences in the beta-tubulin gene restriction pattern between New and Old World Leishmania. This variation in the beta-tubulin gene region was sufficient to distinguish between New and Old World Leishmania groups and between stocks of the mexicana and braziliensis complexes.
Collapse
Affiliation(s)
- A Mendoza-León
- Centro de Biología Celular, Facultad de Ciencias, Universidad Central de Venezuela, Caracas
| | | | | |
Collapse
|
29
|
Ghosh A, Ghosh T, Ghosh S, Das S, Adhya S. Interaction of small ribosomal and transfer RNAs with a protein from Leishmania donovani. Nucleic Acids Res 1994; 22:1663-9. [PMID: 8202369 PMCID: PMC308046 DOI: 10.1093/nar/22.9.1663] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using synthetic antisense RNA from the 5'-untranslated region of the beta-tubulin gene as probe in gel retardation assays, a heat stable RNA-binding factor was identified in promastigotes of the kinetoplastid protozoan Leishmania donovani. The same or similar factors interact with several small ribosomal RNA (srRNA) species and, more weakly, with tRNA, as shown by binding and competition experiments. Deletion analysis indicated involvement of repeated purine-rich motifs on the antisense RNA, in the reaction. Related, conserved motifs occur on at least two of the srRNAs. By a modified Western blot assay, the RNA-binding species was identified as a single, small polypeptide. The activity is apparently specific for the promastigote stage of the parasite, being undetectable in amastigotes. The properties of this RNA-binding factor suggest that it is a novel, previously uncharacterized protein.
Collapse
Affiliation(s)
- A Ghosh
- Genetic Engineering Laboratory, Indian Institute of Chemical Biology, Calcutta
| | | | | | | | | |
Collapse
|
30
|
Sanyal T, Ghosh DK, Sarkar D. Immunoblotting identifies an antigen recognized by anti gp63 in the immune complexes of Indian kala-azar patient sera. Mol Cell Biochem 1994; 130:11-7. [PMID: 8190117 DOI: 10.1007/bf01084263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In SDS-PAGE the immune complexes (IC) of kala-azar patient sera showed intense bands at 55 kDa and 20 kDa corresponding to heavy and light chains of immunoglobulins. In immunoblot experiment, kala-azar and normal IC after treatment with patient sera showed multiple bands of which the band at 55 kDa was most prominent in kala-azar IC. It is known that in kala-azar sera antihuman IgG is present, so the heavy band at 55 kDa region may be due to higher amount of IgG and/or other antigen(s) present at that region. Immunoblot experiments of kala-azar IC with anti gp63 also developed a major band at 55 kDa. It suggests that the antigen (55 kDa) and gp63 have common antigenic epitope (s). Normal IC did not react with anti gp63 indicating absence of this antigen in normal IC. Antigenic similarity between the IC antigen (55 kDa) and gp63 indicated that the former antigen may have been processed from gp63. In summary, identification of a parasite antigen (55 kDa) in IC of kala-azar patients sera may be useful in developing a serodiagnostic assay for visceral leishmaniasis.
Collapse
Affiliation(s)
- T Sanyal
- Leishmania Group, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
31
|
Ryan KA, Garraway LA, Descoteaux A, Turco SJ, Beverley SM. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A 1993; 90:8609-13. [PMID: 8378337 PMCID: PMC47407 DOI: 10.1073/pnas.90.18.8609] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trypanosomatid parasites of the genus Leishmania cause a spectrum of widespread tropical diseases. In the vertebrate host they reside within the macrophage phagolysosome; however, the mechanisms employed in this remarkable survival strategy are not well understood. Recent advances in the molecular genetics of these parasites prompted us to develop methods of functional genetic complementation in Leishmania and apply them to the isolation of genes involved in the biosynthesis of the virulence determinant lipophosphoglycan, an abundant glycosyl-phosphatidylinositol-anchored polysaccharide. LPG1, the gene product identified by complementation of the R2D2 mutant, appears to be a glycosyltransferase responsible for the addition of galactofuranosyl residues to the nascent lipophosphoglycan chain. As galactofuranose is not found in mammalian cells, inhibition of the addition of this sugar could be exploited for chemotherapy. Overall, the success of the functional complementation approach opens the way to the identification of a variety of genes involved in pathogenesis and parasitism.
Collapse
Affiliation(s)
- K A Ryan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
32
|
Chan MM, Grogl M, Chen CC, Bienen EJ, Fong D. Herbicides to curb human parasitic infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc Natl Acad Sci U S A 1993; 90:5657-61. [PMID: 8516314 PMCID: PMC46780 DOI: 10.1073/pnas.90.12.5657] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a major tropical disease for which current chemotherapies, pentavalent antimonials, are inadequate and cause severe side effects. It has been reported that trifluralin, a microtubule-disrupting herbicide, is inhibitory to Leishmania amazonensis. In this study, the in vitro effect of trifluralin on different species of trypanosomatid protozoans was determined. In addition to L. amazonensis, trifluralin is effective against Leishmania major and Leishmania tropica, which cause cutaneous infections, Leishmania donovani, which causes visceral disease, Leishmania panamensis, which may cause mucocutaneous infection, and Trypanosoma brucei, an important human and veterinary pathogen. Moreover, most encouragingly, trifluralin is effective in vivo as a topical ointment against L. major and Leishmania mexicana murine cutaneous leishmaniasis. Thus, trifluralin is a promising lead drug for several related, prevalent tropical diseases: leishmaniasis, trypanosomiasis of animals, and, possibly, African trypanosomiasis in humans.
Collapse
Affiliation(s)
- M M Chan
- Department of Biological Sciences, Rutgers, State University of New Jersey, Piscataway 08855-1059
| | | | | | | | | |
Collapse
|
33
|
Curotto de Lafaille M, Wirth D. Creation of Null/+ mutants of the alpha-tubulin gene in Leishmania enriettii by gene cluster deletion. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35913-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Antigenic characterisation of cultured trypanosomes isolated from three species of fishes. Syst Parasitol 1992. [DOI: 10.1007/bf00008008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Bhaumik M, Das S, Adhya S. Evidence for translational control of beta-tubulin synthesis during differentiation of Leishmania donovani. Parasitology 1991; 103 Pt 2:197-205. [PMID: 1745547 DOI: 10.1017/s0031182000059485] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tubulin biosynthesis was rapidly induced during transformation of the mammalian (amastigote) stage of the kinetoplastid parasite Leishmania donovani to flagellated promastigotes. However, transcription of beta-tubulin genes occurred constitutively, as judged by nascent RNA synthesis in isolated nuclei and Northern blotting of steady-state mRNA. Two mRNA species of 2.2 and 2.4 kb were shared by the two cell-types, while a third 2.6 kb species, constituting about 20% of the total, was present in large amounts in promastigotes. RNase protection experiments demonstrated sequence microheterogeneity in the 5'-untranslated region, the pattern of which was identical in promastigotes and amastigotes. By primer extension assays, heterogeneity in the 5'-terminal cap structure of amastigote beta-tubulin mRNA and differential pausing of reverse transcriptase within the mini-exon leader region were detected. These differences correlated with enhanced translational efficiency of tubulin mRNA from promastigotes in a rabbit reticulocyte lysate system. The results indicate that translational control plays a major role in tubulin induction during L. donovani differentiation.
Collapse
Affiliation(s)
- M Bhaumik
- Genetic Engineering Laboratory, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
36
|
Chan MM, Triemer RE, Fong D. Effect of the anti-microtubule drug oryzalin on growth and differentiation of the parasitic protozoan Leishmania mexicana. Differentiation 1991; 46:15-21. [PMID: 2044859 DOI: 10.1111/j.1432-0436.1991.tb00861.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The parasitic protozoan Leishmania mexicana differentiates from a non-motile intracellular amastigote in the mammalian macrophage phagolysosome into a motile, extracellular promastigote in the insect vector gut. This developmental program has been accomplished in vitro, thus providing a useful model for studying changes in the cytoskeleton during cell differentiation. The role of microtubules in leishmania differentiation was demonstrated by using the dinitroaniline herbicide oryzalin, which inhibited both leishmania proliferation and differentiation; 25 microM oryzalin reduced promastigote division by over 95%. Interestingly, at a sublethal dose (5 microM), promastigotes became round and multiflagellated but remained motile. At 50 microM oryzalin, the number of intracellular amastigotes decreased by 50%. However, leishmania differentiation seemed to be the most drug-sensitive stage: there was a 60% reduction in amastigote-to-promastigote differentiation at 0.5 microM oryzalin. The specific action of oryzalin on leishmania microtubules was verified by its inhibition of in vitro polymerization of leishmania microtubules, but not control mammalian microtubules (from rat brain). These findings indicate that microtubules play a major role in leishmania proliferation, maintenance of cell shape, and cytodifferentiation.
Collapse
Affiliation(s)
- M M Chan
- Department of Biological Sciences, Rutgers, State University of New Jersey, Piscataway, NJ 08855-1059
| | | | | |
Collapse
|
37
|
Pinelli E, Shapira M. Temperature-induced expression of proteins in Leishmania mexicana amazonensis. A 22-kDa protein is possibly localized in the mitochondrion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:685-91. [PMID: 2269292 DOI: 10.1111/j.1432-1033.1990.tb15669.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Temperature increase is an integral part of Leishmania life cycle, and plays a major role in stage transformation. Analysis of the temperature-dependent pattern of protein synthesis on two-dimensional gel electrophoresis shows that, in addition to the conserved heat-shock type of response in which expression of the major 70-kDa and 83-kDa heat-shock proteins is observed, a group of low-molecular-mass (17-40 kDa) proteins is induced in promastigotes of Leishmania mexicana amazonensis at elevated temperatures. Immuno-gold labelling with antibodies raised against the heat-induced 22-kDa proteins was localized mainly in the mitochondrion of Leishmania parasites, though labelling was observed also in the nucleus. The correlation of this finding with various reports on induction of mitochondrial enzymes in response to temperature stress in other organisms is discussed.
Collapse
Affiliation(s)
- E Pinelli
- Department of Biophysics, MacArthur Center for Molecular Biology of Parasitic Diseases, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
38
|
|
39
|
Adhya S, Das S, Bhaumik M. Transcription and processing ofβ-tubulin messenger RNA inLeishmania donovani promastigotes. J Biosci 1990. [DOI: 10.1007/bf02702666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Mukherjee A, Seth M, Bhaduri AP. Present status of Leishmaniasis. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1990; 34:447-90. [PMID: 2236573 DOI: 10.1007/978-3-0348-7128-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A Mukherjee
- Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
41
|
|
42
|
Samaras N, Spithill TW. The Developmentally Regulated P100/11E Gene of Leishmania major Shows Homology to a Superfamily of Reductase Genes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84990-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
43
|
Kidane GZ, Samaras N, Spithill TW. Cloning of Developmentally Regulated Genes from Leishmania major and Expression following Heat Induction. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Dagger F, Dunia I, Hernandez AG, Pradel LA, Benedetti EL. Plasma membrane and cytoskeletal constituents in Leishmania mexicana. Mol Biol Rep 1989; 13:197-206. [PMID: 2978792 DOI: 10.1007/bf00788171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The presence and the localization of actin, spectrin and ankyrin are studied by immunofluorescence and immunoblotting in Leishmania mexicana promastigotes growing in vitro. These proteins, amphitropic in nature, coexist both in soluble and insoluble forms. Our results demonstrate that the Triton insoluble form of these proteins constitutes beside tubulin the cytoskeletal scaffold of promastigotes in close association with the plasma membrane, the axoneme and the basal body of the parasite.
Collapse
Affiliation(s)
- F Dagger
- Department of Cell Biology, Faculty of Sciences, Universidad Central de Venezuela, Caracas
| | | | | | | | | |
Collapse
|
45
|
Mukhopadhyay NK, Saha AK, Lovelace JK, Da Silva R, Sacks DL, Glew RH. Comparison of the protein kinase and acid phosphatase activities of five species of Leishmania. THE JOURNAL OF PROTOZOOLOGY 1988; 35:601-7. [PMID: 3199342 DOI: 10.1111/j.1550-7408.1988.tb04158.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Promastigotes from log phase and stationary phase cultures of Leishmania donovani, L. braziliensis panamensis, L. tropica, L. major, and L. mexicana amazonensis were analyzed for their content of protein kinase and acid phosphatase activities. Cell surface, histone-specific protein kinase activity was 1.3- to 2.8-fold higher in stationary phase cells of all species except for L. tropica in which the activities of stationary and log phase cells were equal; L. mexicana amazonensis had the highest histone-specific protein kinase activity and L. donovani the lowest. When viable, motile promastigotes of all five species were incubated for 10 min with [gamma-32P]ATP and Mg2+ (10 mM) in the absence of exogenous histone acceptor; about one dozen proteins were phosphorylated in each case. Both log phase and stationary phase promastigotes of all five species extensively phosphorylated a 50-kDa protein that had the mobility of tubulin. Incubation of pure calf brain tubulin with [gamma-32P]ATP and purified L. donovani protein kinase resulted in extensive phosphorylation of the former. Highly infective metacyclic forms (PNA-) of L. major, isolated from a stationary culture using the peanut agglutinin (PNA), contained eight times more histone-specific protein kinase activity than noninfective log phase cells (PNA+). The PNA- and PNA+ forms of L. major both phosphorylated a 50-kDa protein when incubated with [gamma-32P]ATP and magnesium or manganese ions (10 mM); the 50-kDa protein was precipitated by anti-tubulin rabbit antibodies. Extracts of all five species contained large amounts of acid phosphatase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N K Mukhopadhyay
- Department of Microbiology, School of Medicine, University of Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | |
Collapse
|
46
|
Kink JA, Chang KP. Biological and biochemical characterization of tunicamycin-resistant Leishmania mexicana: mechanism of drug resistance and virulence. Infect Immun 1987; 55:1692-700. [PMID: 3036710 PMCID: PMC260580 DOI: 10.1128/iai.55.7.1692-1700.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A parasitic protozoan, Leishmania mexicana amazonensis, was previously made resistant to tunicamycin (J.A. Kink and K.-P. Chang, Proc. Natl. Acad. Sci. USA 84:1253-1257, 1987). In the present study, six different tunicamycin-resistant variants were biologically and biochemically compared with their parental wild type to further delineate the mechanism of tunicamycin resistance and that of their virulence observed. In contrast to their parental wild type, all tunicamycin-resistant variants were found to grow and differentiate in tunicamycin-containing medium. The 50% lethal doses of tunicamycin for variants resistant to 10 or 80 micrograms of tunicamycin per ml were 20- and 100-fold higher, respectively, than that of the wild type. Specific activity of the microsomal N-acetylglucosamine-1-phosphate transferase was 4- to 12-fold higher in the tunicamycin-resistant cells than in their parental wild type and tunicamycin-sensitive revertants. The level of the enzyme activity is proportional to the degree of drug resistance. Inhibition kinetics studies showed that the enzyme from all groups was equally sensitive to the drug, with a 50% effective concentration of 1 to 1.3 micrograms of tunicamycin per ml. Thus, tunicamycin resistance of the variants is caused primarily by an increased level of their enzyme without alteration of its structure. Protein glycosylation determined by the incorporation of 2-D-[3H]mannose was about twofold higher in the tunicamycin-resistant variants than in their parental wild type. The increased glycosyltransferase activity in the latter apparently renders their protein glycosylation insensitive to the inhibition by tunicamycin. A major membrane glycoprotein of 63 kilodaltons (gp63) on the leishmania surface was found to be about threefold higher in the tunicamycin-resistant variants than in the wild type, as determined by immunoprecipitation with a monoclonal antibody specific for this antigen. Tunicamycin treatment of the wild type and tunicamycin-resistant variants caused changes in the electrophoretic mobility of this molecule, indicating a higher degree of its glycosylation in the latter cells. The tunicamycin-resistant variants parasitized macrophages in vitro more effectively than did the wild type, accounting for their virulence seen in mice. Thus, a high level of the glycosyltransferase enables the tunicamycin-resistant cells not only to overcome the inhibitory effect of tunicamycin on protein glycosylation but also to express their virulence, possibly by regulating N glycosylation of leishmanial proteins critical for leishmanias to establish intracellular parasitism.
Collapse
|
47
|
Darling TN, Blum JJ. In vitro reversible transformation of Leishmania braziliensis panamensis between promastigote and ellipsoidal forms. THE JOURNAL OF PROTOZOOLOGY 1987; 34:166-8. [PMID: 3585815 DOI: 10.1111/j.1550-7408.1987.tb03154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Raising the temperature of a log-phase culture of Leishmania braziliensis panamensis promastigotes from 26 degrees C to 34 degrees C resulted in formation of a culture containing 85% ellipsoidally shaped forms after 1.5 h. The temperature-induced ellipsoidal forms decreased in size but persisted in high proportion (85-95%) for at least 12 h at 34 degrees C. Recovery from the ellipsoidal forms to a culture containing 85-95% promastigotes was observed after returning the temperature to 26 degrees C. The time required for recovery increased markedly with the duration of the preceding heat treatment, up to about 70 h for a 12-h heat treatment.
Collapse
|
48
|
Kink JA, Chang KP. Tunicamycin-resistant Leishmania mexicana amazonensis: expression of virulence associated with an increased activity of N-acetylglucosaminyltransferase and amplification of its presumptive gene. Proc Natl Acad Sci U S A 1987; 84:1253-7. [PMID: 2950522 PMCID: PMC304405 DOI: 10.1073/pnas.84.5.1253] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tunicamycin at 10 micrograms/ml inhibits the growth and infectivity of the parasitic protozoan Leishmania mexicana amazonensis. Tunicamycin-resistant variants of this parasite were produced by gradual acclimatization of cells to increasing concentrations of the drug up to 80 micrograms/ml and a single-step selection of ethyl methanesulfonate-pretreated or differentiating leishmanias with the drug at 10 micrograms/ml. Prolonged exposure to the drug increases stability of drug resistance of those resistant to 10 micrograms/ml. Tunicamycin-resistant cells contain amplified DNA, which hybridizes in proportion to the cells' degree of drug resistance with Alg 7, a cloned DNA probe apparently encoding yeast N-acetylglucosaminyltransferase. This enzyme from all variants remained sensitive to inhibition by tunicamycin, but its specific activity was up to 15-fold higher than that of the wild type. Thus, amplification of the gene encoding this enzyme appears to result in its overproduction in the variants, accounting for their resistance to tunicamycin. The tunicamycin-resistant cells are more virulent to mice than their parental wild type. Thus, leishmanial virulence may be related to amplification or expression of gene(s) encoding enzymes involved in the regulation of N-glycosylation of parasite proteins.
Collapse
|
49
|
Fong D, Chang KP. Changes in tubulin mRNAs during differentiation of a parasitic protozoan Leishmania mexicana. Ann N Y Acad Sci 1986; 466:129-31. [PMID: 3460412 DOI: 10.1111/j.1749-6632.1986.tb38389.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Characterization of cellular immune response to chemically defined glycoconjugates from Leishmania mexicana subsp. amazonensis. Infect Immun 1986; 51:80-6. [PMID: 2416692 PMCID: PMC261068 DOI: 10.1128/iai.51.1.80-86.1986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two defined glycoconjugates (GP-10/20 and FR II Phe) purified from Leishmania mexicana subsp. amazonensis were analyzed with respect to their ability to induce cellular responses in immunized and infected mice. Each glycoconjugate was recognized by specific immune cells, as assessed by the proliferative response of lymph node cells of immunized mice. The response to GP-10/20 depended on helper T cells and antigen-presenting cells and was restricted by a major histocompatibility complex class II gene product. A specific anti-GP-10/20 T-cell line was established, and it was able to transfer a delayed-type hypersensitivity (DTH) response to normal mice. Both antigens were also recognized during an ongoing disease, as assessed by DTH response of infected mice. By this response, it was possible to distinguish susceptible from resistant strains of mice. In the course of the disease in resistant mice a correlation between the size of the primary lesion and the DTH response to GP-10/20 was observed. The presence of the glycoproteins on both promastigote and amastigote forms of the parasite, the antigenic similarities between both fractions, and the distribution of the GP-10/20 antigen in other trypanosomatids were studied. The results showed that both antigens were present on promastigotes and amastigotes. GP-10/20 shared no epitopes with FR II Phe, was included as part of the crude preparation leishmanin, and had some cross-reactive determinants with Leishmania donovani and Crithidia deanei.
Collapse
|