1
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
3
|
Cagigas ML, Bryce NS, Ariotti N, Brayford S, Gunning PW, Hardeman EC. Correlative cryo-ET identifies actin/tropomyosin filaments that mediate cell-substrate adhesion in cancer cells and mechanosensitivity of cell proliferation. NATURE MATERIALS 2022; 21:120-128. [PMID: 34518666 DOI: 10.1038/s41563-021-01087-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/23/2021] [Indexed: 05/26/2023]
Abstract
The actin cytoskeleton is the primary driver of cellular adhesion and mechanosensing due to its ability to generate force and sense the stiffness of the environment. At the cell's leading edge, severing of the protruding Arp2/3 actin network generates a specific actin/tropomyosin (Tpm) filament population that controls lamellipodial persistence. The interaction between these filaments and adhesion to the environment is unknown. Using cellular cryo-electron tomography we resolve the ultrastructure of the Tpm/actin copolymers and show that they specifically anchor to nascent adhesions and are essential for focal adhesion assembly. Re-expression of Tpm1.8/1.9 in transformed and cancer cells is sufficient to restore cell-substrate adhesions. We demonstrate that knock-out of Tpm1.8/1.9 disrupts the formation of dorsal actin bundles, hindering the recruitment of α-actinin and non-muscle myosin IIa, critical mechanosensors. This loss causes a force-generation and proliferation defect that is notably reversed when cells are grown on soft surfaces. We conclude that Tpm1.8/1.9 suppress the metastatic phenotype, which may explain why transformed cells naturally downregulate this Tpm subset during malignant transformation.
Collapse
Affiliation(s)
- Maria Lastra Cagigas
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole S Bryce
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicholas Ariotti
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Simon Brayford
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Peter W Gunning
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Edna C Hardeman
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Caporali S, Calabrese C, Minieri M, Pieri M, Tarantino U, Marini M, D’Ottavio S, Angeletti S, Mauriello A, Cortese C, Bernardini S, Terrinoni A. The miR-133a, TPM4 and TAp63γ Role in Myocyte Differentiation Microfilament Remodelling and Colon Cancer Progression. Int J Mol Sci 2021; 22:ijms22189818. [PMID: 34575979 PMCID: PMC8472330 DOI: 10.3390/ijms22189818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) play an essential role in the regulation of a number of physiological functions. miR-133a and other muscular miRs (myomiRs) play a key role in muscle cell growth and in some type of cancers. Here, we show that miR133a is upregulated in individuals that undertake physical exercise. We used a skeletal muscle differentiation model to dissect miR-133a's role and to identify new targets, identifying Tropomyosin-4 (TPM4). This protein is expressed during muscle differentiation, but importantly it is an essential component of microfilament cytoskeleton and stress fibres formation. The microfilament scaffold remodelling is an essential step in cell transformation and tumour progression. Using the muscle system, we obtained valuable information about the microfilament proteins, and the knowledge on these molecular players can be transferred to the cytoskeleton rearrangement observed in cancer cells. Further investigations showed a role of TPM4 in cancer physiology, specifically, we found that miR-133a downregulation leads to TPM4 upregulation in colon carcinoma (CRC), and this correlates with a lower patient survival. At molecular level, we demonstrated in myocyte differentiation that TPM4 is positively regulated by the TA isoform of the p63 transcription factor. In muscles, miR-133a generates a myogenic stimulus, reducing the differentiation by downregulating TPM4. In this system, miR-133a counteracts the differentiative TAp63 activity. Interestingly, in CRC cell lines and in patient biopsies, miR-133a is able to regulate TPM4 activity, while TAp63 is not active. The downregulation of the miR leads to TPM4 overexpression, this modifies the architecture of the cell cytoskeleton contributing to increase the invasiveness of the tumour and associating with a poor prognosis. These results add data to the interesting question about the link between physical activity, muscle physiology and protection against colorectal cancer. The two phenomena have in common the cytoskeleton remodelling, due to the TPM4 activity, that is involved in stress fibres formation.
Collapse
Affiliation(s)
- Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Cosimo Calabrese
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (S.D.)
| | - Mario Marini
- Centre of Space Biomedicine and Department of Systems Medicine of the University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Stefano D’Ottavio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (S.D.)
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Claudio Cortese
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.M.); (M.P.); (A.M.); (C.C.); (S.B.)
- Correspondence:
| |
Collapse
|
5
|
miR-21 Overexpression Promotes Esophageal Squamous Cell Carcinoma Invasion and Migration by Repressing Tropomyosin 1. Gastroenterol Res Pract 2020; 2020:6478653. [PMID: 33193757 PMCID: PMC7641708 DOI: 10.1155/2020/6478653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The migration and invasion of esophageal squamous cell carcinoma are associated with clinical outcomes, however, the mechanisms remain poorly understood. Here, we found that miR-21 is significantly overexpressed in ESCC, lung cancer, and bladder cancer compared with the adjacent normal tissue. MiR-21 and TPM1 expressions were analyzed by RT-qPCR and WB in 30 ESCC, 10 lung cancer, and 10 bladder cancer clinical specimens, each with matched adjacent normal tissue. Knockdown and overexpression of miR-21 as well as knockdown of TPM1 in ESCC cell lines were performed using synthetic oligonucleotides. TPM1 3′UTR luciferase reporter constructs were used to investigate targeting of TPM1 by miR-21. ESCC migration and invasion were assessed using transwell migration and invasion assays. Inhibition of miR-21 reduced migration and invasion in two ESCC cell lines, and overexpression of miR-21 promoted migration and invasion in vitro. Interestingly, TPM1 exhibited inverse patterns of expression compared with miR-21 in tissues and cell lines. Luciferase reporter assays demonstrated that TPM1 was directly regulated by miR-21. Moreover, the forced overexpression of miR-21 repressed the TPM1 expression, while silencing of miR-21 restored the TPM1 expression in ESCC cell lines. What is more, simultaneous silencing of miR-21 and TPM1 expressions did not alter the migratory and invasive characteristics demonstrating that the effects of miR-21 were mediated through TPM1. In conclusion, the aberrant overexpression of miR-21 is common in cancer and promotes the migration and invasion of ESCC through inhibiting the TPM1 expression. These results suggest that miR-21 may be a novel predictive marker and therapeutic target for treatment of ESCC.
Collapse
|
6
|
Affiliation(s)
- Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
8
|
Meiring JC, Bryce NS, Wang Y, Taft MH, Manstein DJ, Liu Lau S, Stear J, Hardeman EC, Gunning PW. Co-polymers of Actin and Tropomyosin Account for a Major Fraction of the Human Actin Cytoskeleton. Curr Biol 2018; 28:2331-2337.e5. [DOI: 10.1016/j.cub.2018.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
9
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
10
|
Abstract
Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.
Collapse
|
11
|
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128:2965-74. [PMID: 26240174 DOI: 10.1242/jcs.172502] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.
Collapse
Affiliation(s)
- Peter W Gunning
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Daniel P Mulvihill
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
12
|
Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. BIOARCHITECTURE 2014; 2:75-87. [PMID: 22880146 PMCID: PMC3414384 DOI: 10.4161/bioa.20975] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments.
Collapse
Affiliation(s)
- Melissa Desouza
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | |
Collapse
|
13
|
Kan CY, Wen VW, Pasquier E, Jankowski K, Chang M, Richards LA, Kavallaris M, MacKenzie KL. Endothelial cell dysfunction and cytoskeletal changes associated with repression of p16(INK4a) during immortalization. Oncogene 2012; 31:4815-27. [PMID: 22310292 PMCID: PMC3500701 DOI: 10.1038/onc.2011.645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The immortalization process is a fundamental step in the development of most (if not all) human cancers, including the aggressive endothelial cell (EC)-derived malignancy angiosarcoma. Inactivation of the tumor suppressor p16INK4a and the development of multiple chromosomal abnormalities are features of angiosarcoma that are recapitulated during telomerase-mediated immortalization of human ECs in vitro. The present study used a panel of telomerase-immortalized bone marrow EC (BMEC) lines to define the consequences of inactivation of p16INK4a on EC function and to identify molecular changes associated with repression of p16INK4a. In a comparison of two immortalized BMEC mass cultures and six clones, the cell lines that repressed p16INK4a showed a higher rate of proliferation and an impaired ability to undergo morphogenic differentiation and form vessel-like structures in vitro. Proteomic comparison of a p16INK4a-negative and a p16INK4a-positive BMEC mass culture at early- and late-passage time points following transduction with telomerase reverse transcriptase (hTERT) revealed altered expression of cytoskeletal proteins, including vimentin and α-tropomyosin (αTm), in the immortal cells. Immunoblot analyses of a panel of 11 immortal clones showed that cells that lacked p16INK4a expression tended to accumulate more dramatic changes in these cytoskeletal proteins than cells that retained p16INK4a expression. This corresponded with aberrant cytoskeletal architectures among p16INK4a-negative clones, which featured thicker actin stress fibers and less fluid membrane ruffles than p16INK4a-positive cells. A direct link between p16INK4a repression and defective EC function was confirmed by analysis of normal cells transfected with small interfering RNA (siRNA) targeting p16INK4a. siRNA-mediated repression of p16INK4a significantly impaired random motility and vessel formation in vitro. This report is the first to demonstrate that ECs that repress the expression of p16INK4a are prone to defects in motility, morphogenesis and cytoskeletal organization. These defects are likely to reflect alterations that occur during the development of EC-derived malignancies.
Collapse
Affiliation(s)
- C-Y Kan
- Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rescue of tropomyosin deficiency in Drosophila and human cancer cells by synaptopodin reveals a role of tropomyosin α in RhoA stabilization. EMBO J 2011; 31:1028-40. [PMID: 22157816 DOI: 10.1038/emboj.2011.464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 11/23/2011] [Indexed: 12/15/2022] Open
Abstract
Tropomyosins are widespread actin-binding proteins that influence numerous cellular functions including actin dynamics, cell migration, tumour suppression, and Drosophila oocyte development. Synaptopodin is another actin-binding protein with a more restricted expression pattern in highly dynamic cell compartments such as kidney podocyte foot processes, where it promotes RhoA signalling by blocking the Smurf1-mediated ubiquitination of RhoA. Here, we show that synaptopodin has a shorter half-life but shares functional properties with the highly stable tropomyosin. Transgenic expression of synaptopodin restores oskar mRNA localization in Drosophila oocytes mutant for TmII, thereby rescuing germline differentiation and fertility. Synaptopodin restores stress fibres in tropomyosin-deficient human MDA-MB 231 breast cancer cells and TPMα-depleted fibroblasts. Gene silencing of TPMα but not TPMβ causes loss of stress fibres by promoting Smurf1-mediated ubiquitination and proteasomal degradation of RhoA. Functionally, overexpression of synaptopodin or RhoA(K6,7R) significantly reduces MDA-MB 231 cell migration. Our findings elucidate RhoA stabilization by structurally unrelated actin-binding proteins as a conserved mechanism for regulation of stress fibre dynamics and cell motility in a cell type-specific fashion.
Collapse
|
15
|
Choi C, Kim D, Kim S, Jeong S, Song E, Helfman DM. From skeletal muscle to cancer: insights learned elucidating the function of tropomyosin. J Struct Biol 2011; 177:63-9. [PMID: 22119848 DOI: 10.1016/j.jsb.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
The tropomyosins (Tms) are a family of actin filament binding proteins that possess a simple dimeric α-helical coiled-coil structure along their entire length. Our knowledge of Tm structure and function has greatly expanded since they were first discovered in skeletal muscle almost 65 years ago. In multicellular organisms they exhibit extensive cell type specific isoform diversity. In this essay we discuss the genetic mechanisms by which this diversity is generated and its significance to actin-based cellular functions.
Collapse
Affiliation(s)
- Cheolwon Choi
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Zare M, Jazii FR, Soheili ZS, Moghanibashi MM. Downregulation of tropomyosin-1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation. Mol Carcinog 2011; 51:796-806. [DOI: 10.1002/mc.20847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
|
17
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
18
|
Abstract
Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.
Collapse
|
19
|
Sudol M. From Rous sarcoma virus to plasminogen activator, src oncogene and cancer management. Oncogene 2011; 30:3003-10. [PMID: 21383693 DOI: 10.1038/onc.2011.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasminogen activator (PLAU) is a serine protease that converts plasminogen to plasmin, a general protease, which promotes fibrinolysis and degradation of extracellular matrix. PLAU was reported in 1970s as one of the robustly induced enzymatic activities in Rous sarcoma virus (RSV)-transformed chicken cells. More than three decades later, with the completion of the sequencing of the chicken genome and the subsequent availability of Affymetrix GeneChip genome arrays, several laboratories have surveyed the transcriptional program affected by the RSV transformation. Interestingly, the PLAU gene was shown to be the most highly upregulated transcript. The induction of PLAU was a transformation-dependent process because viruses with deleted Src gene did not induce the transcription of the PLAU gene. Both Src and PLAU genes are associated with and contribute to the complex phenotype of human cancer. Although the activity and structures of these two enzymes are well characterized, the precise molecular function of these gene products in signaling networks is still not fully understood. Yet, the knowledge of their association with cancer is already translated into the clinical setting. Src kinase inhibitors are being tested in clinical trials of cancer therapy, and PLAU gene and its inhibitor have been included as biomarkers with strong prognostic and therapeutic predictive values. This vignette reviews the history of PLAU and Src discovery, and illuminates the complexity of their relationship, but also points to their emerging impact on public health.
Collapse
Affiliation(s)
- M Sudol
- Laboratory of Signal Transduction and Proteomic Profiling, Weis Center for Research, Geisinger Clinic, Danville, PA 17822-2608, USA.
| |
Collapse
|
20
|
Helfman DM, Flynn P, Khan P, Saeed A. Tropomyosin as a regulator of cancer cell transformation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 644:124-31. [PMID: 19209818 DOI: 10.1007/978-0-387-85766-4_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tropomyosins (Tms) are among the most studied structural proteins of the actin cytoskeleton that are implicated in neoplastic-specific alterations in actin filament organization. Decreased expression of specific nonmuscle Tm isoforms is commonly associated with the transformed phenotype. These changes in Tm expression appear to contribute to the rearrangement of microfilament bundles and morphological alterations, increased cell motility and oncogenic signaling properties of transformed cells. Below we review aspects of Tm biology as it specifically relates to transformation and cancer including its expression in culture models of transformed cells and human tumors, mechanisms that regulate Tm expression and the role of Tm in oncogenic signaling.
Collapse
Affiliation(s)
- David M Helfman
- Department of Cell Biology and Anatomy, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, Papanicolaou Building, Room 317, 1550 NW 10th Avenue (M-877), Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
21
|
Alvite G, Esteves A. Echinococcus granulosus tropomyosin isoforms: from gene structure to expression analysis. Gene 2008; 433:40-9. [PMID: 19100819 DOI: 10.1016/j.gene.2008.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
Abstract
Tropomyosins (Trps) constitute a family of actin filament-binding proteins found in all eukaryotic cells. In muscle cells, they play a central role in contraction by regulating calcium-sensitive interaction of actin and myosin. In non-muscle cells, tropomyosins regulate actin filament organization and dynamics. Trps genes exhibit extensive cell type-specific isoform diversity generated by alternative splicing. Here, we report the characterization of tropomyosin gene transcribed sequences from the parasitic platyhelminth Echinococcus granulosus. Using RT-PCR approach we isolated three isoforms (egtrpA, egtrpB and egtrpC), which display significant homologies to know tropomyosins of different phylogenetic origin. The corresponding gene, egtrp (5656 bp), contains eight introns and nine exons. Southern blot hybridization studies showed that egtrp is present as single copy locus in E. granulosus. We demonstrated that egtrp expresses three different transcripts which differ in alternatively spliced exon 4 and intron VI. Interestingly, intron VI suffers intron retention and contains an internal stop codon in frame. Three major bands are also detected by Western blot analysis using a specific anti-rEgTrp antiserum. Immune-localization and in situ hybridization studies showed that egtrp transcription and translation is mostly localized at the protoscoleces suckers. This is the first report of alternative splicing in this parasite.
Collapse
Affiliation(s)
- Gabriela Alvite
- Biochemistry Section, Cellular and Molecular Biology Department, Faculty of Sciences, University of the Republic, Montevideo, Uruguay.
| | | |
Collapse
|
22
|
Kotadiya P, McMichael BK, Lee BS. High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology. Bone 2008; 43:951-60. [PMID: 18674650 PMCID: PMC2633438 DOI: 10.1016/j.bone.2008.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 01/14/2023]
Abstract
Tropomyosins are coiled-coil dimers that bind to the major groove of F-actin and regulate its accessibility to actin-modifying proteins. Although approximately 40 tropomyosin isoforms have been identified in mammals, they can broadly be classified into two groups based on protein size, that is, high molecular weight and low molecular weight isoforms. Osteoclasts, which undergo rounds of polarization and depolarization as they progress through the resorptive cycle, possess an unusual and highly dynamic actin cytoskeleton. To further define some of the actin regulatory proteins involved in osteoclast activity, we previously performed a survey of tropomyosin isoforms in resting and resorbing osteoclasts. Osteoclasts were found to express two closely related tropomyosins of the high molecular weight type, which are not expressed in monocytic and macrophage precursors. These isoforms, Tm-2 and Tm-3, are not strongly associated with actin-rich adhesion structures, but are instead distributed diffusely throughout the cell. In this study, we found that Tm-2/3 expression occurs late in osteoclastogenesis and continues to increase as cells mature. Knockdown of these isoforms via RNA interference results in flattening and increased spreading of osteoclasts, accompanied by diminished motility and altered resorptive capacity. In contrast, overexpression of Tm-2, but not Tm-3, caused morphological changes that include decreased spreading of the cells and induction of actin patches or stress fiber-like actin filaments, also with effects on motility and resorption. Suppression of Tm-2/3 or overexpression of Tm-2 resulted in altered distribution of gelsolin and microfilament barbed ends. These data suggest that high molecular weight tropomyosins are expressed in fusing osteoclasts to regulate the cytoskeletal scaffolding of these large cells, due at least in part by moderating accessibility of gelsolin to these microfilaments.
Collapse
Affiliation(s)
- Preeyal Kotadiya
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
23
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
24
|
Tropomyosin Gene Expression in Vivo and in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-85766-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Masker K, Golden A, Gaffney CJ, Mazack V, Schwindinger WF, Zhang W, Wang LH, Carey DJ, Sudol M. Transcriptional profile of Rous Sarcoma Virus transformed chicken embryo fibroblasts reveals new signaling targets of viral-src. Virology 2007; 364:10-20. [PMID: 17448514 PMCID: PMC1974879 DOI: 10.1016/j.virol.2007.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/05/2007] [Accepted: 03/15/2007] [Indexed: 01/05/2023]
Abstract
Transformation of chicken fibroblasts in vitro by Rous Sarcoma Virus represents a model of cancer in which a single oncogene, viral src, uniformly and rapidly transforms primary cells in culture. We experimentally surveyed the transcriptional program affected by Rous Sarcoma Virus (RSV) in primary culture of chicken embryo fibroblasts. As a control, we used cells infected with non-transforming RSV mutant td106, in which the src gene was deleted. Using Affymetrix GeneChip Chicken Genome Arrays, we report 811 genes that were modulated more than 2.5 fold in the virus transformed cells. Among these, 409 genes were induced and 402 genes were repressed by viral src. From the repertoire of modulated genes, we selected 20 genes that were robustly changed. We then validated and quantified the transcriptional changes of most of the 20 selected genes by real-time PCR. The set of strongly induced genes contains vasoactive intestinal polypeptide, MAP kinase phosphatase 2 and follistatin, among others. The set of strongly repressed genes contains TGF beta 3, TGF beta-induced gene, and deiodinase. The function of several robustly modulated genes sheds new light on the molecular mechanism of oncogenic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Weizhou Zhang
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Lu-Hai Wang
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Marius Sudol
- Weis Center for Research, Danville, PA, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
- *Correspondence: M Sudol, Laboratory of Signal Transduction and Proteomic Profiling, Weis Center for Research, 100 North Academy Avenue, Lab 202, Danville, PA 17822-2608, USA. Phone: 1-570-271-6677, e.mail:
| |
Collapse
|
26
|
Hitchcock-DeGregori SE, Greenfield NJ, Singh A. Tropomyosin: regulator of actin filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:87-97. [PMID: 17278358 DOI: 10.1007/978-4-431-38453-3_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
27
|
Zheng Q, Safina A, Bakin AV. Role of high-molecular weight tropomyosins in TGF-β-mediated control of cell motility. Int J Cancer 2007; 122:78-90. [PMID: 17721995 DOI: 10.1002/ijc.23025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transforming growth factor beta1 (TGF-beta1) suppresses tumor development at early stages of cancer, but enhances tumor invasion and formation of metastasis. TGF-beta1-mediated tumor invasion is associated with epithelial to mesenchymal transition (EMT) and matrix proteolysis. The mechanisms of these TGF-beta1 responses in normal and tumor cells are not well understood. Recently, we have reported that TGF-beta1 increases expression of high-molecular weight tropomyosins (HMW-tropomyosins) and formation of actin stress fibers in normal epithelial cells. The present study investigated the role of tropomyosin in TGF-beta1-mediated cell motility and invasion. We found that TGF-beta1 restricts motility of normal epithelial cells although it promotes EMT and formation of actin stress fibers and focal adhesions. Cell motility was enhanced by siRNA-mediated suppression of HMW-tropomyosins. TGF-beta1 stimulated migration and matrix proteolysis in breast cancer MDA-MB-231 cells that express low levels of HMW-tropomyosins. Tet-Off-regulated expression of HMW-tropomyosin inhibited cell migration and matrix proteolysis without affecting expression of matrix metalloproteinases. Tropomyosin increased cell adhesion to matrix by enhancing actin fibers and focal adhesions. Finally, tropomyosin impaired the ability of tumor cells to form lung metastases in SCID mice. Thus, these results suggest that HMW-tropomyosins are important for TGF-beta-mediated control of cell motility and acquisition of the metastatic potential.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
28
|
McMichael BK, Kotadiya P, Singh T, Holliday LS, Lee BS. Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone 2006; 39:694-705. [PMID: 16765662 DOI: 10.1016/j.bone.2006.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 03/15/2006] [Accepted: 04/04/2006] [Indexed: 12/26/2022]
Abstract
Osteoclasts resorb bone through transient rearrangement of their cytoskeletons to create a polarized phenotype in which an apical ruffled membrane is surrounded by a ring of F-actin that creates a tight seal against bone substrate. This process, coupled with the capacity for rapid motility, necessitates the presence of a dynamic, multi-functional actin cytoskeleton. Tropomyosins are a large class of actin-binding proteins that can regulate microfilament stability and organization by recruiting other regulatory proteins to actin, or alternately, by inhibiting their binding. Tropomyosins are expressed from four distinct genes (alpha, beta, gamma, and delta) that are alternately spliced to produce over forty isoforms. In recent years, it has become clear that nonmuscle isoforms of tropomyosin may be differentially distributed among intracellular pools of F-actin possessing different functions. Here we have used Western analysis and immunocytochemistry coupled with confocal microscopy to identify the isoforms of tropomyosin expressed by osteoclasts, as well as their distributions within cells. Osteoclasts express at least seven isoforms with markedly different distributions. The products of the alpha gene (Tm-2, -3, and -5a/5b) are up-regulated during osteoclastogenesis, indicating potential cell-specific functions. Some isoforms (Tm-5a/5b, Tm-4) are specifically enriched within and around osteoclast attachment structures, the sealing zone and podosomes, whereas others are more abundant in internal regions of the cell. This compartmentalization of tropomyosins to specific actin structures within osteoclasts is likely to play a critical role in determining the dynamic properties of the actin cytoskeleton and thus osteoclast activity.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2006; 15:333-41. [PMID: 15953552 DOI: 10.1016/j.tcb.2005.04.007] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/12/2005] [Accepted: 04/26/2005] [Indexed: 01/14/2023]
Abstract
Actin filament functional diversity is paralleled by variation in the composition of isoforms of tropomyosin in these filaments. Although the role of tropomyosin is well understood in skeletal muscle, where it regulates the actin-myosin interaction, its role in the cytoskeleton has been obscure. The intracellular sorting of tropomyosin isoforms indicated a role in spatial specialization of actin filament function. Genetic manipulation and protein chemistry studies have confirmed that these isoforms are functionally distinct. Tropomyosins differ in their recruitment of myosin motors and their interaction with actin filament regulators such as ADF-cofilin. Tropomyosin isoforms have therefore provided a powerful mechanism to diversify actin filament function in different intracellular compartments.
Collapse
Affiliation(s)
- Peter W Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead NSW 2145, Australia.
| | | | | | | |
Collapse
|
30
|
Zhao J, Chang AC, Li C, Shedden KA, Thomas DG, Misek DE, Manoharan AP, Giordano TJ, Beer DG, Lubman DM. Comparative proteomics analysis of Barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol Cell Proteomics 2006; 6:987-99. [PMID: 16829691 DOI: 10.1074/mcp.m600175-mcp200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Esophageal adenocarcinoma, currently the seventh leading cause of cancer-related death, has been associated with the presence of Barrett metaplasia. The malignant potential of Barrett metaplasia is evidenced by ultimate progression of this condition to invasive adenocarcinoma. We utilized liquid phase separation of proteins with chromatofocusing in the first dimension and nonporous reverse phase HPLC in the second dimension followed by ESI-TOF mass spectrometry to identify proteins differentially expressed in six Barrett metaplasia samples as compared with six esophageal adenocarcinoma samples; all six Barrett samples were obtained from the identical six patients from whom we obtained the esophageal adenocarcinoma tissue. Approximately 300 protein bands were detected by mass mappings, and 38 differentially expressed proteins were identified by microLC-MS/MS. The false positive rates of the peptide identifications were evaluated by reversed database searching. Among the proteins that were identified, Rho GDP dissociation inhibitor 2, alpha-enolase, Lamin A/C, and nucleoside-diphosphate kinase A were demonstrated to be up-regulated in both mRNA and protein expression in esophageal adenocarcinomas relative to Barrett metaplasia. Candidate proteins were examined at the mRNA level using high density oligonucleotide microarrays. The cellular expression patterns were verified in both esophageal adenocarcinomas and in Barrett metaplasia by immunohistochemistry. These differentially expressed proteins may have utility as useful candidate markers of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jonsson H, Schiedek D, Goksøyr A, Grøsvik BE. Expression of cytoskeletal proteins, cross-reacting with anti-CYP1A, in Mytilus sp. exposed to organic contaminants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78 Suppl 1:S42-8. [PMID: 16581143 DOI: 10.1016/j.aquatox.2006.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The possible use of cytoskeletal components as biomarkers of organic pollution in mussels has been investigated. Responses of non-muscular actin and tropomyosin (TM), two bivalve proteins that were recently demonstrated to cross-react with anti-fish-CYP1A, were analysed in digestive tissue of blue mussels (Mytilus sp.) exposed to a wide range of organic contaminants. The results were evaluated with ELISA and Western blot assays, utilising commercial monoclonal antibodies, and compared with expression of Hsp70, a marker of chemical stress. Furthermore, mussels were sampled from the Baltic Sea at sites with different degrees of pollution to assess the expression of these proteins, and to monitor seasonal changes in relation to energy reserves and water temperature. The results demonstrated that expression of microsomal actin was significantly higher (p<0.02) in mussels exposed to a brominated flame retardant (BDE-47), and lower, however not significantly, in specimens exposed to crude oil, alone and spiked with alkylphenols and PAHs. Hsp70 was strongly induced in all exposure groups, which also included bisphenol A and diallylphthalate. Furthermore, microsomal actin exhibited seasonal variations, and expression was negatively correlated with water temperature. No correlation was seen between actin and the microfilament-binding protein TM, indicating that regulation of these two cytoskeletal components are not coupled. Furthermore, parallel and significant (p<0.05) up-regulations of TM and Hsp70 were seen in individuals sampled from a strongly polluted field site, whereas the seasonal analysis showed that TM expression was positively correlated with energy reserves (total glycogen content) in mussels, suggesting the use of TM as a marker of growth. In conclusion, this study has demonstrated the cytoskeleton to be a target of contaminants in mussels, calling for further attention. Exposure-induced increase of microsomal actin can be interpreted either as stimulated actin synthesis, or re-arrangements of the dynamic microfilaments.
Collapse
|
32
|
Prasad GL. Regulation of the Expression of Tropomyosins and Actin Cytoskeleton by ras Transformation. Methods Enzymol 2006; 407:410-22. [PMID: 16757342 DOI: 10.1016/s0076-6879(05)07034-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Neoplastic transformation by Ras proteins markedly suppresses the expression of certain isoforms of tropomyosins (TMs), which are important regulators of actin cytoskeleton. Downregulation of TMs and other actin-associated proteins is believed to result in the assembly of aberrant cytoskeleton, which in turn contributes to the malignant transformation by Ras. Oncogenic activation of ras, in addition to suppressing TMs by means of epigenetic mechanisms, also rapidly inhibits their cytoskeletal fractionation, leading to the disruption of cytoskeleton. Restoration of expression of certain isoforms of TMs reorganizes microfilaments and suppresses the malignant growth of ras-transformed cells. This chapter discusses some of the approaches to the analysis of TM isoform expression in normal and ras-transformed cells.
Collapse
Affiliation(s)
- G L Prasad
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
33
|
Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, Sossey-Alaoui K, Bakin AV. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 2005; 24:5043-52. [PMID: 15897890 DOI: 10.1038/sj.onc.1208688] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of actin stress fibers has been associated with cell transformation and metastasis. TGF-beta induction of stress fibers in epithelial cells requires high molecular weight tropomyosins encoded by TPM1 and TPM2 genes. Here, we investigated the mechanism underlying the failure of TGF-beta to induce stress fibers and inhibit cell migration in metastatic cells. RT-PCR analysis in carcinoma cell lines revealed a significant reduction in TPM1 transcripts in metastatic MDA-MB-231, MDA-MB-435 and SW620 cell lines. Treatment of these cells with demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) increased mRNA levels of TPM1 with no effect on TPM2. Importantly, 5-aza-dC treatment of MDA-MB-231 cells restored TGF-beta induction of TPM1 and formation of stress fibers. Forced expression of TPM1 by using Tet-Off system increased stress fibers in MDA-MB-231 cells and reduced cell migration. A potential CpG island spanning the TPM1 proximal promoter, exon 1, and the beginning of intron 1 was identified. Bisulfite sequencing showed significant cytosine methylation in metastatic cell lines that correlated with a reduced expression of TPM1. Together these results suggest that epigenetic suppression of TPM1 may alter TGF-beta tumor suppressor function and contribute to metastatic properties of tumor cells.
Collapse
Affiliation(s)
- Andrea E Varga
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sukezane T, Oneyama C, Kakumoto K, Shibutani K, Hanafusa H, Akagi T. Human diploid fibroblasts are resistant to MEK/ERK-mediated disruption of the actin cytoskeleton and invasiveness stimulated by Ras. Oncogene 2005; 24:5648-55. [PMID: 16007212 DOI: 10.1038/sj.onc.1208724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ras-induced transformation is characterized not only by uncontrolled proliferation but also by drastic morphological changes accompanied by the disruption of the actin cytoskeleton. Previously, we reported that human fibroblasts are more resistant than rodent fibroblasts to Ras-induced transformation. To explore the molecular basis for the difference in susceptibility to Ras-induced transformation, we investigated the effect of activated H-Ras on the actin cytoskeleton in human diploid fibroblasts and in rat embryo fibroblasts, both of which are immortalized by SV40 early region. We demonstrate here that Ras-induced morphological changes, decreased expression of tropomyosin isoforms, and suppression of the ROCK/LIMK/Cofilin pathway observed in the rat fibroblasts were not detected in the human fibroblasts even with high expression levels of Ras. We also show that activation of the MEK/ERK pathway sufficed to induce all of these alterations in the rat fibroblasts, whereas the human fibroblasts were refractory to these MEK/ERK-mediated changes. In addition to morphological changes, we demonstrated that the expression of activated Ras induced an invasive phenotype in the rat, but not in the human fibroblasts. These studies provide evidence for the existence of human-specific mechanisms that resist Ras/MEK/ERK-mediated transformation.
Collapse
Affiliation(s)
- Taiko Sukezane
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Armstrong F, Duplantier MM, Trempat P, Hieblot C, Lamant L, Espinos E, Racaud-Sultan C, Allouche M, Campo E, Delsol G, Touriol C. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 2005; 23:6071-82. [PMID: 15208656 DOI: 10.1038/sj.onc.1207813] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Majority of anaplastic large-cell lymphomas (ALCLs) are associated with the t(2;5)(p23;q35) translocation, fusing the NPM (nucleophosmin) and ALK (anaplastic lymphoma kinase) genes (NPM-ALK). Recent studies demonstrated that ALK may also be involved in variant translocations, namely, t(1;2)(q25;p23), t(2;3)(p23;q21), t(2;17)(p23;q23) and inv(2)(p23q35), which create the TPM3-ALK, TFG-ALK5, CLTC-ALK, and ATIC-ALK fusion genes, respectively. Although overexpression of NPM-ALK has previously been shown to transform fibroblasts, the transforming potential of variant X-ALK proteins has not been precisely investigated. We stably transfected the cDNAs coding for NPM-ALK, TPM3-ALK, TFG-ALK, CLTC-ALK or ATIC-ALK into nonmalignant NIH3T3 cells. All X-ALK variants are tyrosine phosphorylated and their subcellular distribution was in agreement with that observed in tumors. Moreover, our results show that the in vitro transforming capacity of NIH3T3-transfected cells are in relation to the level of X-ALK fusion proteins excepted for TPM3-ALK for which there is an inverse correlation. The differences between the five X-ALK variants with regard to proliferation rate, colony formation in soft agar, invasion, migration through the endothelial barrier and tumorigenicity seem to be due to differential activation of various signaling pathways such as PI3-kinase/AKT. These findings may have clinical implications in the pathogenesis and prognosis of ALK-positive ALCLs.
Collapse
Affiliation(s)
- Florence Armstrong
- Inserm U.563, Centre de Physiopathologie de Toulouse-Purpan, Department of 'Oncogenesis and Signaling in Hematopoietic cells', Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bharadwaj S, Hitchcock-DeGregori S, Thorburn A, Prasad GL. N Terminus Is Essential for Tropomyosin Functions. J Biol Chem 2004; 279:14039-48. [PMID: 14722123 DOI: 10.1074/jbc.m310934200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Down-regulation of several key actin-binding proteins, such as alpha-actinin, vinculin, gelsolin, and tropomyosins (TMs), is considered to contribute to the disorganized cytoskeleton present in many neoplastic cells. TMs stabilize actin filaments against the gel severing actions of proteins such as cofilin. Among multiple TMs expressed in non-muscle cells, tropomyosin-1 (TM1) isoform induces stress fibers and functions as a suppressor of malignant transformation. However, the molecular mechanisms of TM1-mediated cytoskeletal effects and tumor suppression remain poorly understood. We have hypothesized that the ability of TM1 to stabilize microfilaments is crucial for tumor suppression. In this study, by employing a variant TM1, which contains an N-terminal hemagglutinin epitope tag, we demonstrate that the N terminus is a key determinant of tropomyosin-1 function. Unlike the wild type TM1, the modified protein fails to restore stress fibers and inhibit anchorage-independent growth in transformed cells. Furthermore, the N-terminal modification of TM1 disorganizes the cytoskeleton and delays cytokinesis in normal cells, abolishes binding to F-actin, and disrupts the dimeric associations in vivo. The functionally defective TM1 allows the association of cofilin to stress fibers and disorganizes the microfilaments, whereas wild type TM1 appears to restrict the binding of cofilin to stress fibers. TM1-induced cytoskeletal reorganization appears to be mediated through preventing cofilin interaction with microfilaments. Our studies provide in vivo functional evidence that the N terminus is a critical determinant of TM1 functions, which in turn determines the organization of stress fibers.
Collapse
Affiliation(s)
- Shantaram Bharadwaj
- Departments of General Surgery and Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
37
|
Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, Prasad GL. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003; 22:6194-203. [PMID: 13679858 DOI: 10.1038/sj.onc.1206719] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suppression of tropomyosins (TMs), a family of actin-binding, microfilament-associated proteins, is a prominent feature of many transformed cells. Yet it is unclear whether downregulation of TMs occur in human tumors. We have investigated the expression of tropomyosin-1 (TM1) in human breast carcinoma tissues by in situ hybridization and immunofluorescence. TM1 mRNA and protein are readily detectable in normal mammary tissue. In contrast, TM1 expression is abolished in the primary human breast tumors. Expression of other TM isoforms, however, is variable among the tumors. The consistent and profound downregulation of TM1 suggests that TM1 may be a novel and useful biomarker of mammary neoplasms. These data also support the hypothesis that suppression of TM1 expression during the malignant conversion of mammary epithelium as a contributing factor of breast cancer. In support of this hypothesis, we show that the ability to suppress malignant growth properties of breast cancer cells is specific to TM1 isoform. Investigations into the mechanisms of TM1-induced tumor suppression reveal that TM1 induces anoikis (detachment induced apoptosis) in breast cancer cells. Downregulation of TM1 in breast tumors may destabilize microfilament architecture and confer resistance to anoikis, which facilitates survival of neoplastic cells outside the normal microenvironment and promote malignant growth.
Collapse
Affiliation(s)
- Gira N Raval
- Surgical Oncology and Vascular Surgery Services, Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yager ML, Hughes JAI, Lovicu FJ, Gunning PW, Weinberger RP, O'Neill GM. Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br J Cancer 2003; 89:860-3. [PMID: 12942118 PMCID: PMC2394486 DOI: 10.1038/sj.bjc.6601201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tropomyosin 1 (TM1) is downregulated in a number of transformed cell types, and exogenous expression of TM1 can restore actin organisation and reverse cellular transformation. We find that TM1 is also downregulated in human neuroblastoma cell lines, correlating with increasing malignancy. However, exogenous TM1 does not restore actin cytoskeleton organisation in neuroblastoma cells.
Collapse
Affiliation(s)
- M L Yager
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Department of Anatomy and Histology, The University of Sydney, Sydney 2000, NSW, Australia
| | - J A I Hughes
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - F J Lovicu
- Department of Anatomy and Histology, The University of Sydney, Sydney 2000, NSW, Australia
| | - P W Gunning
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - R P Weinberger
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - G M O'Neill
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia. E-mail:
| |
Collapse
|
39
|
Hughes JAI, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 2003; 42:25-35. [PMID: 12594734 DOI: 10.1002/glia.10174] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tropomyosin has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. In order to gain insight into the role of tropomyosins in cell division, we examined their expression in developing and neoplastic brain tissue. We found that the high-molecular-weight tropomyosins are downregulated at birth, which correlates with glial cell differentiation and withdrawal of most cells from the cell cycle. Expression of these isoforms was restricted to proliferative areas in the embryonic brain and was absent from the adult, where the majority of cells are quiescent. However, they were induced under conditions where glial cells became proliferative in response to injury. During cytokinesis, these tropomyosin isoforms were associated with the contractile ring. We also investigated tropomyosin expression in neoplastic CNS tissues. Low-grade astrocytic tumors expressed high-molecular-weight tropomyosins, while highly malignant CNS tumors of diverse origin did not (P </= 0.001). Furthermore, high-molecular-weight tropomyosins were absent from the contractile ring in highly malignant astrocytoma cells. Our findings suggest a role for high-molecular-weight tropomyosins in astrocyte cytokinesis, although highly malignant CNS tumors are still able to undergo cell division in their absence. Additionally, the correlation between high-molecular-weight tropomyosin expression and tumor grade suggests that tropomyosins are potentially useful as indicators of CNS tumor grade.
Collapse
Affiliation(s)
- Julie A I Hughes
- Oncology Research Unit, Children's Hospital at Westmead, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Janssen RAJ, Kim PN, Mier JW, Morrison DK. Overexpression of kinase suppressor of Ras upregulates the high-molecular-weight tropomyosin isoforms in ras-transformed NIH 3T3 fibroblasts. Mol Cell Biol 2003; 23:1786-97. [PMID: 12588996 PMCID: PMC151698 DOI: 10.1128/mcb.23.5.1786-1797.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Revised: 10/10/2002] [Accepted: 12/12/2002] [Indexed: 01/08/2023] Open
Abstract
The down-regulation of the high-molecular-weight isoforms of tropomyosin (TM) is considered to be an essential event in cellular transformation. In ras-transformed fibroblasts, the suppression of TM is dependent on the activity of the Raf-1 kinase; however, the requirement for other downstream effectors of Ras, such as MEK and ERK, is less clear. In this study, we have utilized the mitogen-activated protein kinase scaffolding protein Kinase Suppressor of Ras (KSR) to further investigate the regulation of TM and to clarify the importance of MEK/ERK signaling in this process. Here, we report that overexpression of wild-type KSR1 in ras-transformed fibroblasts restores TM expression and induces cell flattening and stress fiber formation. Moreover, we find that the transcriptional activity of a TM-alpha promoter is decreased in ras-transformed cells and that the restoration of TM by KSR1 coincides with increased transcription from this promoter. Although ERK activity was suppressed in cells overexpressing KSR1, ERK inhibition alone was insufficient to upregulate TM expression. The KSR1-mediated effects on stress fiber formation and TM transcription required the activity of the ROCK kinase, because these effects could be suppressed by the ROCK inhibitor, Y27632. Overexpression of KSR1 did not directly regulate ROCK activity, but did permit the recoupling of ROCK to the actin polymerization machinery. Finally, all of the KSR1-induced effects were mediated by the C-terminal domain of KSR1 and were dependent on the KSR-MEK interaction.
Collapse
Affiliation(s)
- Richard A J Janssen
- Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
41
|
Okubo Y, Hamada JI, Takahashi Y, Tada M, Tsutsumida A, Furuuchi K, Aoyama T, Sugihara T, Moriuchi T. Transduction of HOXD3-antisense into human melanoma cells results in decreased invasive and motile activities. Clin Exp Metastasis 2002; 19:503-11. [PMID: 12405287 DOI: 10.1023/a:1020346211686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Homeobox genes regulate sets of genes that determine cellular fates in embryonic morphogenesis and maintenance of adult tissue architecture by regulating cellular motility and cell-cell interactions. Our previous studies showed that a specific member, HOXD3, when overexpressed, enhanced cell motility and invasiveness of human lung cancer A549 cells (Hamada et al. Int. J. Cancer 2001; 93: 516-25 [19]). In the present study, we investigated the roles of HOXD3 in motile and invasive behavior of human malignant melanoma cells. Of seven melanoma cell lines examined here, six cell lines expressed the HOXD3 gene, whereas normal melanocytes did not. We transduced the HOXD3-antisense gene expression vector into two cell lines (A375M and MMIV). The cell transduced with the HOXD3-antisense gene showed reduced in vitro invasion of Matrigel. The transduction of the HOXD3-antisense gene also decreased cell spreading, haptotactic activity to vitronectin and laminin-1, and phagokinetic activity. To find the difference of gene expression between the HOXD3-antisense-transduced A375M cells and the control A375MNeo2 cells, we carried out cDNA microarray analysis. The results of the microarray analysis indicated that the increased expression of cdc42-interacting protein 4, KIAA0554 and tropomyosin 1, which are all associated with the cytoskeletal system, may be involved in the reduction of motile and invasive activity by the HOXD3-antisense gene transduction.
Collapse
Affiliation(s)
- Yoshiko Okubo
- Division of Cancer-Related Genes Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The study of the development of the mammary gland at the molecular level in animals is difficult because of the complex tissue organization. This review introduces a proteomic approach to investigate mammary gland development in a cell culture system that we have previously developed as an in vitro model for studying mammary cell differentiation. The model is based on two cell lines, one of which is able to differentiate spontaneously and produce hemispherical blisters, called domes, when confluent. Through proteomic dissection of dome-forming cells, two types of key regulatory genes have been identified: genes inducing cellular structural modifications and genes related to functional modifications. We identified several genes in the pathway leading to dome formation in vitro and showed that the functional and structural changes taking place in dome-forming cells correspond to cellular changes occurring in vivo when tubules and alveoli are developed in the mammary gland at pregnancy.
Collapse
Affiliation(s)
- I Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
| | | |
Collapse
|
43
|
Shields JM, Mehta H, Pruitt K, Der CJ. Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras-mediated downregulation of tropomyosin. Mol Cell Biol 2002; 22:2304-17. [PMID: 11884615 PMCID: PMC133695 DOI: 10.1128/mcb.22.7.2304-2317.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We showed previously that activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, demonstrating the importance of Raf-independent pathways in mediating Ras transformation. To assess the mechanism by which Raf-independent effector signaling pathways contribute to Ras-mediated transformation, we recently utilized representational difference analysis to identify genes expressed in a deregulated fashion by activated Ras but not Raf. One gene identified in these analyses encodes for alpha-tropomyosin. Therefore, we evaluated the mechanism by which Ras causes the downregulation of tropomyosin expression. By using RIE-1 cells that harbor inducible expression of activated H-Ras(12V), we determined that the downregulation of tropomyosin expression correlated with the onset of morphological transformation. We found that the reversal of Ras transformation caused by inhibition of extracellular signal-regulated kinase activation corresponded to a restoration of tropomyosin expression. Inhibition of p38 activity in Raf-expressing RIE-1 cells caused both morphological transformation and loss of tropomyosin expression. Thus, a reduction in tropomyosin expression correlated strictly with morphological transformation of RIE-1 cells. However, forced overexpression of tropomyosin in Ras-transformed cells did not reverse morphological or growth transformation, a finding consistent with the possibility that multiple changes in gene expression contribute to Ras transformation. We also determined that tropomyosin expression was low in two human tumor cell lines, DLD-1 and HT1080, that harbor endogenous mutated alleles of ras, but high in transformation-impaired, derivative cell lines in which the mutant ras allele has been genetically deleted. Finally, treatment with azadeoxycytidine restored tropomyosin expression in Ras-transformed RIE-1, HT1080, and DLD-1 cells, suggesting a role for DNA methylation in downregulating tropomyosin expression.
Collapse
Affiliation(s)
- Janiel M Shields
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Tropomyosin (TM) is widely distributed in all cell types associated with actin as a fibrous molecule composed of two alpha-helical chains arranged as a coiled-coil. It is localised, polymerised end to end, along each of the two grooves of the F-actin filament providing structural stability and modulating the filament function. To accommodate the wide range of functions associated with actin filaments that occur in eucaryote cells TM exists in a large number isoforms, over 20 of which have been identified. These isoforms which are expressed by alternative promoters and alternative RNA processing of four genes, TPM1, 2, 3 and 4, all conform to a general pattern of structure. Their amino acid sequences consist of an integral number, six or seven in vertebrates, of quasiequivalent regions of about 40 residues that are considered to represent the actin-binding regions of the molecule. In addition to the variable regions a large part of the polypeptide chains of the TM isoforms, mainly centrally located and expressed by five exons, is invariant. Many of the isoforms are tissue and filament specific in their distribution implying that the exons expressed in them and the regions of the molecule they represent are of significance for the function of the filament system with which they are associated. In the case of muscle there is clear evidence that the TM moves its position on the F-actin filament during contraction and it is therefore considered to play an important part in the regulation of the process. It is uncertain how the role of TM in muscle compares to that in non-muscle systems and if its function in the former tissue is unique to muscle.
Collapse
MESH Headings
- Actin Cytoskeleton/chemistry
- Actin Cytoskeleton/ultrastructure
- Actins/chemistry
- Actomyosin/physiology
- Adenosine Triphosphatases/physiology
- Alternative Splicing
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Autoantibodies/immunology
- Autoantigens/immunology
- Blood Platelets/chemistry
- Calcium/physiology
- Calmodulin-Binding Proteins/metabolism
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Carrier Proteins/physiology
- Humans
- Macromolecular Substances
- Microfilament Proteins
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Multigene Family
- Muscle Contraction
- Mutagenesis, Site-Directed
- Mutation, Missense
- Organ Specificity
- Protein Conformation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/physiology
- Protein Processing, Post-Translational
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Tropomodulin
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/immunology
- Tropomyosin/physiology
- Troponin T/metabolism
- Vertebrates/genetics
- Vertebrates/metabolism
Collapse
Affiliation(s)
- S V Perry
- Department of Physiology, Medical School, University of Birmingham, Edgbaston
| |
Collapse
|
45
|
Shah V, Bharadwaj S, Kaibuchi K, Prasad GL. Cytoskeletal organization in tropomyosin-mediated reversion of ras-transformation: Evidence for Rho kinase pathway. Oncogene 2001; 20:2112-21. [PMID: 11360195 DOI: 10.1038/sj.onc.1204291] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Revised: 01/19/2001] [Accepted: 01/23/2001] [Indexed: 01/08/2023]
Abstract
Tropomyosin (TM) family of cytoskeletal proteins is implicated in stabilizing actin microfilaments. Many TM isoforms, including tropomyosin-1 (TM1), are down-regulated in transformed cells. Previously we demonstrated that TM1 is a suppressor of the malignant transformation, and that TM1 reorganizes microfilaments in the transformed cells. To investigate how TM1 induces microfilament organization in transformed cells, we utilized ras-transformed NIH3T3 (DT) cells, and those transduced to express TM1, and/or TM2. Enhanced expression of TM1 alone, but not TM2, results in re-emergence of microfilaments; TM1, together with TM2 remarkably improves microfilament architecture. TM1 induced cytoskeletal reorganization involves an enhanced expression of caldesmon, but not vinculin, alpha-actinin, or gelsolin. In addition, TM1-induced cytoskeletal reorganization and the revertant phenotype appears to involve re-activation of RhoA controlled pathways in DT cells. RhoA expression, which is suppressed in DT cells, is significantly increased in TM1-expressing cells, without detectable changes in the expression of Rac or Cdc42. Furthermore, expression of a dominant negative Rho kinase, or treatment with Y-27632 disassembled microfilaments in normal NIH3T3 and in TM1 expressing cells. These data suggest that reactivation of Rho kinase directed pathways are critical for TM1-mediated microfilament assemblies.
Collapse
Affiliation(s)
- V Shah
- Wistar Institute of Anatomy and Cell Biology, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
46
|
Zucchi I, Bini L, Valaperta R, Ginestra A, Albani D, Susani L, Sanchez JC, Liberatori S, Magi B, Raggiaschi R, Hochstrasser DF, Pallini V, Vezzoni P, Dulbecco R. Proteomic dissection of dome formation in a mammary cell line: role of tropomyosin-5b and maspin. Proc Natl Acad Sci U S A 2001; 98:5608-13. [PMID: 11331746 PMCID: PMC33260 DOI: 10.1073/pnas.091101898] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2001] [Indexed: 11/18/2022] Open
Abstract
In this work we extended the study of genes controlling the formation of specific differentiation structures called "domes" formed by the rat mammary adenocarcinoma cell line LA7 under the influence of DMSO. We have reported previously that an interferon-inducible gene, rat-8, and the beta-subunit of the epithelial sodium channel (ENaC) play a fundamental role in this process. Now, we used a proteomic approach to identify proteins differentially expressed either in DMSO-induced LA7 or in 106A10 cells. Two differentially expressed proteins were investigated. The first, tropomyosin-5b, strongly expressed in DMSO-induced LA7 cells, is needed for dome formation because its synthesis inhibition by the antisense RNA technology abolished domes. The second protein, maspin, strongly expressed in the uninduced 106A10 cell line, inhibits dome formation because 106A10 cells, transfected with rat8 cDNA (the function of which is required for the organization of these structures), acquired the ability to develop domes when cultured in presence of an antimaspin antibody. Dome formation in these cultures are accompanied by ENaC beta-subunit expression in the absence of DMSO. Therefore, dome formation requires the expression of tropomyosin-5b, in addition to the ENaC beta-subunit and the rat8 proteins, and is under the negative control of maspin.
Collapse
Affiliation(s)
- I Zucchi
- Istituto Tecnologie Biomediche Avanzate, Consiglio Nazionale delle Ricerche, Via F. lli Cervi 93, 20090 Segrate-Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The production of heritable changes in gene expression is the driving force in the development and progression of breast cancer. Such changes can result from mutations or from epigenetic events such as hypermethylation of DNA and hypoacetylation of histones. Histone acetylation and DNA methylation are major determinants of chromatin structure, and chromatin structure is a primary regulator of gene transcription. Cancer cells frequently contain both mutated genes and genes with altered expression due to one or more epigenetic mechanisms. This review describes the epigenetic changes that disrupt normal chromatin architecture and modify the expression of key genes in breast cancer cells. The structural integrity of the latter genes is usually intact, but their expression has been substantially altered due to methylation in their promoter region or deacetylation of histones that interact with their promoter region or both mechanisms. Genes affected by epigenetic changes in breast cancers include HoxA5, p21WAF, gelsolin, BRCA1, BRCA2, E-cadherin, steroid hormone receptors, and retinoic acid receptor II. Because these epigenetic modifications are usually reversible by treatment with certain drugs, they represent vulnerabilities in the cancer cell that can be exploited as novel targets for new prevention and therapeutic strategies.
Collapse
Affiliation(s)
- L M Mielnicki
- Division of Experimental Pathology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
48
|
Seddighzadeh M, Linder S, Shoshan MC, Auer G, Alaiya AA. Inhibition of extracellular signal-regulated kinase 1/2 activity of the breast cancer cell line MDA-MB-231 leads to major alterations in the pattern of protein expression. Electrophoresis 2000; 21:2737-43. [PMID: 10949153 DOI: 10.1002/1522-2683(20000701)21:13<2737::aid-elps2737>3.0.co;2-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biochemical and genetic strategies have implied that aberrant signaling in the extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase pathway contributes significantly to transformed phenotypes. Using PD98059, an inhibitor of the ERK-kinase MEK1, we have here assessed the effects of ERK inhibition on the pattern of protein expression in the metastatic human breast cancer cell line MDA-MB-231. At a concentration of inhibitor which did not significantly affect cell growth, PD98059 induced large changes in the expression of MDA-MB-231 polypeptides. The majority of these changes were due to decreased expression of low-abundance proteins. Decreases of more abundant proteins such as glutathione-S-transferase pi, hsp80 and hsp100 were also recorded. The levels of a few proteins increased, among them cytokeratin 8. We conclude that PD98059 treatment of MDA-MB-231 cells induces large changes in protein expression.
Collapse
Affiliation(s)
- M Seddighzadeh
- Radiumhemmet's Research Laboratory, Department of Oncology and Pathology, Karolinska Institute and Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
49
|
Abstract
Gelsolin is an actin filament severing protein composed of six similar structured domains that differ with respect to actin, calcium and polyphospho-inositide binding. Previous work has established that gelsolin binds tropomyosin [Koepf, E.K. and Burtnick, L.D. (1992) FEBS Lett. 309, 56-58]. We have produced various specific gelsolin domains in Escherichia coli in order to establish which of the six domains binds tropomyosin. Gelsolin domains 1-3 (G1-3), G1-2 and G2 all bind tropomyosin in a pH and calcium insensitive manner whereas binding of G4-6 to tropomyosin was barely detectable under the conditions tested. We conclude that gelsolin binds tropomyosin via domain 2 (G2).
Collapse
Affiliation(s)
- S K Maciver
- Genes and Development Group, Department of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | |
Collapse
|
50
|
Alaiya AA, Franzén B, Auer G, Linder S. Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification. Electrophoresis 2000; 21:1210-7. [PMID: 10786893 DOI: 10.1002/(sici)1522-2683(20000401)21:6<1210::aid-elps1210>3.0.co;2-s] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies of global protein expression in human tumors have led to the identification of various polypeptide markers, potentially useful as diagnostic tools. Many changes in gene expression recorded between benign and malignant human tumors are due to post-translational modifications, not detected by analyses of RNA. Proteome analyses have also yielded information about tumor heterogeneity and the degree of relatedness between primary tumors and their metastases. Results from our own studies have shown a similar pattern of changes in protein expression in different epithelial tumors, such as decreases in tropomyosin and cytokeratin expression and increases in proliferating cell nuclear antigen (PCNA) and heat shock protein expression. Such information has been used to create artificial learning models for tumor classification. The artificial learning approach has potential to improve tumor diagnosis and cancer treatment prediction.
Collapse
Affiliation(s)
- A A Alaiya
- Unit of Cancer Proteomics, Karolinska Institute and Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|