1
|
Zhao B, Hu L, Kaundal S, Neetu N, Lee CH, Somoulay X, Sankaran B, Taylor GM, Dermody TS, Venkataram Prasad BV. Structure of orthoreovirus RNA chaperone σNS, a component of viral replication factories. Nat Commun 2024; 15:2460. [PMID: 38503747 PMCID: PMC10950856 DOI: 10.1038/s41467-024-46627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
The mammalian orthoreovirus (reovirus) σNS protein is required for formation of replication compartments that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of a σNS mutant that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure shows that dimers interact with each other using N-terminal arms to form a helical assembly resembling WT σNS filaments in complex with RNA observed using cryo-EM. The interior of the helical assembly is of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same site as the N-terminal arm. This finding suggests that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS, which is supported by the structure of σNS lacking an N-terminal arm. We further observed that σNS has RNA chaperone activity likely essential for presenting mRNA to the viral polymerase for genome replication. This activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Soni Kaundal
- Verna and Marrs Mclean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Neetu Neetu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher H Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburg, PA, USA
| | - Xayathed Somoulay
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburg, PA, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Gwen M Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburg, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburg, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburg, PA, USA.
| | - B V Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Verna and Marrs Mclean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Zhao B, Hu L, Kuandal S, Neetu N, Lee C, Somoulay X, Sankaran B, Taylor GM, Dermody TS, Prasad BVV. Structure of Orthoreovirus RNA Chaperone σNS, a Component of Viral Replication Factories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551319. [PMID: 37577609 PMCID: PMC10418060 DOI: 10.1101/2023.07.31.551319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The reovirus σNS RNA-binding protein is required for formation of intracellular compartments during viral infection that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of an R6A mutant of σNS that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure of selenomethionine-substituted σNS-R6A reveals that the mutant protein forms a stable antiparallel dimer, with each subunit having a well-folded central core and a projecting N-terminal arm. The dimers interact with each other by inserting the N-terminal arms into a hydrophobic pocket of the neighboring dimers on either side to form a helical assembly that resembles filaments of WT σNS in complex with RNA observed using cryo-EM. The interior of the crystallographic helical assembly is positively charged and of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same hydrophobic pocket as the N-terminal arm, as demonstrated in the crystal structure of σNS-R6A in complex with bile acid, suggesting that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS. This idea is supported by the structure of σNS lacking the N-terminal arm. We discovered that σNS displays RNA helix destabilizing and annealing activities, likely essential for presenting mRNA to the viral RNA-dependent RNA polymerase for genome replication. The RNA chaperone activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.
Collapse
|
3
|
Abstract
The function of the mammalian orthoreovirus (reovirus) σNS nonstructural protein is enigmatic. σNS is an RNA-binding protein that forms oligomers and enhances the stability of bound RNAs, but the mechanisms by which it contributes to reovirus replication are unknown. To determine the function of σNS-RNA binding in reovirus replication, we engineered σNS mutants deficient in RNA-binding capacity. We found that alanine substitutions of positively charged residues in a predicted RNA-binding domain decrease RNA-dependent oligomerization. To define steps in reovirus replication facilitated by the RNA-binding property of σNS, we established a complementation system in which wild-type or mutant forms of σNS could be tested for the capacity to overcome inhibition of σNS expression. Mutations in σNS that disrupt RNA binding also diminish viral replication and σNS distribution to viral factories. Moreover, viral mRNAs only incorporate into viral factories or factory-like structures (formed following expression of nonstructural protein μNS) when σNS is present and capable of binding RNA. Collectively, these findings indicate that σNS requires positively charged residues in a putative RNA-binding domain to recruit viral mRNAs to sites of viral replication and establish a function for σNS in reovirus replication.
Collapse
|
4
|
Reovirus Nonstructural Protein σNS Acts as an RNA Stability Factor Promoting Viral Genome Replication. J Virol 2018; 92:JVI.00563-18. [PMID: 29769334 DOI: 10.1128/jvi.00563-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022] Open
Abstract
Viral nonstructural proteins, which are not packaged into virions, are essential for the replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. The reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, the activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered, using in vitro and cell-based RNA degradation experiments, that σNS increases the RNA half-life. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases the viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication.IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the family Reoviridae encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different viruses in the family Reoviridae diverge in primary sequence, they are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the family Reoviridae assort and replicate their genomes.
Collapse
|
5
|
Borodavka A, Ault J, Stockley PG, Tuma R. Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment. Nucleic Acids Res 2015; 43:7044-57. [PMID: 26109354 PMCID: PMC4538827 DOI: 10.1093/nar/gkv639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
Reoviruses are important human, animal and plant pathogens having 10-12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA-protein and RNA-RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA-RNA interactions between genomic precursors during segment assortment and packaging.
Collapse
Affiliation(s)
- Alexander Borodavka
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - James Ault
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Ouattara LA, Barin F, Barthez MA, Bonnaud B, Roingeard P, Goudeau A, Castelnau P, Vernet G, Paranhos-Baccalà G, Komurian-Pradel F. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis 2011; 17:1436-44. [PMID: 21801621 PMCID: PMC3381585 DOI: 10.3201/eid1708.101528] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
For many encephalitis cases, the cause remains unidentified. After 2 children (from the same family) received a diagnosis of acute necrotizing encephalopathy at Centre Hospitalier Universitaire (Tours, France), we attempted to identify the etiologic agent. Because clinical samples from the 2 patients were negative for all pathogens tested, urine and throat swab specimens were added to epithelial cells, and virus isolates detected were characterized by molecular analysis and electron microscopy. We identified a novel reovirus strain (serotype 2), MRV2Tou05, which seems to be closely related to porcine and human strains. A specific antibody response directed against this new reovirus strain was observed in convalescent-phase serum specimens from the patients, whereas no response was observed in 38 serum specimens from 38 healthy adults. This novel reovirus is a new etiologic agent of encephalitis.
Collapse
|
7
|
Broering TJ, Arnold MM, Miller CL, Hurt JA, Joyce PL, Nibert ML. Carboxyl-proximal regions of reovirus nonstructural protein muNS necessary and sufficient for forming factory-like inclusions. J Virol 2005; 79:6194-206. [PMID: 15858004 PMCID: PMC1091696 DOI: 10.1128/jvi.79.10.6194-6206.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian orthoreoviruses are believed to replicate in distinctive, cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. The viral nonstructural protein muNS has been implicated in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly. In this study, we sought to identify the regions of muNS that are involved in forming factory-like inclusions in transfected cells in the absence of infection or other viral proteins. Sequences in the carboxyl-terminal one-third of the 721-residue muNS protein were linked to this activity. Deletion of as few as eight residues from the carboxyl terminus of muNS resulted in loss of inclusion formation, suggesting that some portion of these residues is required for the phenotype. A region spanning residues 471 to 721 of muNS was the smallest one shown to be sufficient for forming factory-like inclusions. The region from positions 471 to 721 (471-721 region) includes both of two previously predicted coiled-coil segments in muNS, suggesting that one or both of these segments may also be required for inclusion formation. Deletion of the more amino-terminal one of the two predicted coiled-coil segments from the 471-721 region resulted in loss of the phenotype, although replacement of this segment with Aequorea victoria green fluorescent protein, which is known to weakly dimerize, largely restored inclusion formation. Sequences between the two predicted coiled-coil segments were also required for forming factory-like inclusions, and mutation of either one His residue (His570) or one Cys residue (Cys572) within these sequences disrupted the phenotype. The His and Cys residues are part of a small consensus motif that is conserved across muNS homologs from avian orthoreoviruses and aquareoviruses, suggesting this motif may have a common function in these related viruses. The inclusion-forming 471-721 region of muNS was shown to provide a useful platform for the presentation of peptides for studies of protein-protein association through colocalization to factory-like inclusions in transfected cells.
Collapse
Affiliation(s)
- Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Miller CL, Broering TJ, Parker JSL, Arnold MM, Nibert ML. Reovirus sigma NS protein localizes to inclusions through an association requiring the mu NS amino terminus. J Virol 2003; 77:4566-76. [PMID: 12663763 PMCID: PMC152138 DOI: 10.1128/jvi.77.8.4566-4576.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells infected with mammalian reoviruses contain phase-dense inclusions, called viral factories, in which viral replication and assembly are thought to occur. The major reovirus nonstructural protein mu NS forms morphologically similar phase-dense inclusions when expressed in the absence of other viral proteins, suggesting it is a primary determinant of factory formation. In this study we examined the localization of the other major reovirus nonstructural protein, sigma NS. Although sigma NS colocalized with mu NS in viral factories during infection, it was distributed diffusely throughout the cell when expressed in the absence of mu NS. When coexpressed with mu NS, sigma NS was redistributed and colocalized with mu NS inclusions, indicating that the two proteins associate in the absence of other viral proteins and suggesting that this association may mediate the localization of sigma NS to viral factories in infected cells. We have previously shown that mu NS residues 1 to 40 or 41 are both necessary and sufficient for mu NS association with the viral microtubule-associated protein mu 2. In the present study we found that this same region of micro NS is required for its association with sigma NS. We further dissected this region, identifying residues 1 to 13 of mu NS as necessary for association with sigma NS, but not with mu 2. Deletion of sigma NS residues 1 to 11, which we have previously shown to be required for RNA binding by that protein, resulted in diminished association of sigma NS with mu NS. Furthermore, when treated with RNase, a large portion of sigma NS was released from mu NS coimmunoprecipitates, suggesting that RNA contributes to their association. The results of this study provide further evidence that mu NS plays a key role in forming the reovirus factories and recruiting other components to them.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
9
|
Becker MM, Goral MI, Hazelton PR, Baer GS, Rodgers SE, Brown EG, Coombs KM, Dermody TS. Reovirus sigmaNS protein is required for nucleation of viral assembly complexes and formation of viral inclusions. J Virol 2001; 75:1459-75. [PMID: 11152519 PMCID: PMC114052 DOI: 10.1128/jvi.75.3.1459-1475.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 10/26/2000] [Indexed: 11/20/2022] Open
Abstract
Progeny virions of mammalian reoviruses are assembled in the cytoplasm of infected cells at discrete sites termed viral inclusions. Studies of temperature-sensitive (ts) mutant viruses indicate that nonstructural protein sigmaNS and core protein mu2 are required for synthesis of double-stranded (ds) RNA, a process that occurs at sites of viral assembly. We used confocal immunofluorescence microscopy and ts mutant reoviruses to define the roles of sigmaNS and mu2 in viral inclusion formation. In cells infected with wild-type (wt) reovirus, sigmaNS and mu2 colocalize to large, perinuclear structures that correspond to viral inclusions. In cells infected at a nonpermissive temperature with sigmaNS-mutant virus tsE320, sigmaNS is distributed diffusely in the cytoplasm and mu2 is contained in small, punctate foci that do not resemble viral inclusions. In cells infected at a nonpermissive temperature with mu2-mutant virus tsH11.2, mu2 is distributed diffusely in the cytoplasm and the nucleus. However, sigmaNS localizes to discrete structures in the cytoplasm that contain other viral proteins and are morphologically indistinguishable from viral inclusions seen in cells infected with wt reovirus. Examination of cells infected with wt reovirus over a time course demonstrates that sigmaNS precedes mu2 in localization to viral inclusions. These findings suggest that viral RNA-protein complexes containing sigmaNS nucleate sites of viral replication to which other viral proteins, including mu2, are recruited to commence dsRNA synthesis.
Collapse
Affiliation(s)
- M M Becker
- Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gillian AL, Schmechel SC, Livny J, Schiff LA, Nibert ML. Reovirus protein sigmaNS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol 2000; 74:5939-48. [PMID: 10846075 PMCID: PMC112090 DOI: 10.1128/jvi.74.13.5939-5948.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1999] [Accepted: 04/05/2000] [Indexed: 11/20/2022] Open
Abstract
Reovirus nonstructural protein sigmaNS interacts with reovirus plus-strand RNAs in infected cells, but little is known about the nature of those interactions or their roles in viral replication. In this study, a recombinant form of sigmaNS was analyzed for in vitro binding to nucleic acids using gel mobility shift assays. Multiple units of sigmaNS bound to single-stranded RNA molecules with positive cooperativity and with each unit covering about 25 nucleotides at saturation. The sigmaNS protein did not bind preferentially to reovirus RNA over nonreovirus RNA in competition experiments but did bind preferentially to single-stranded over double-stranded nucleic acids and with a slight preference for RNA over DNA. In addition, sigmaNS bound to single-stranded RNA to which a 19-base DNA oligonucleotide was hybridized at either end or near the middle. When present in saturative amounts, sigmaNS displaced this oligonucleotide from the partial duplex. The strand displacement activity did not require ATP hydrolysis and was inhibited by MgCl(2), distinguishing it from a classical ATP-dependent helicase. These properties of sigmaNS are similar to those of single-stranded DNA binding proteins that are known to participate in genomic DNA replication, suggesting a related role for sigmaNS in replication of the reovirus RNA genome.
Collapse
Affiliation(s)
- A L Gillian
- Department of Biochemistry and Institute for Molecular Virology, The College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Piron M, Delaunay T, Grosclaude J, Poncet D. Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J Virol 1999; 73:5411-21. [PMID: 10364288 PMCID: PMC112597 DOI: 10.1128/jvi.73.7.5411-5421.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rotavirus nonstructural protein NSP3 is a sequence-specific RNA binding protein that binds the nonpolyadenylated 3' end of the rotavirus mRNAs. NSP3 also interacts with the translation initiation factor eIF4GI and competes with the poly(A) binding protein. Deletion mutations and point mutations of NSP3 from group A rotavirus (NSP3A), expressed in Escherichia coli, indicate that the RNA binding domain lies between amino acids 4 and 149. Similar results were obtained with NSP3 from group C rotaviruses. Data also indicate that a dimer of NSP3A binds one molecule of RNA and that dimerization is necessary for strong RNA binding. The dimerization domain of NSP3 was mapped between amino acids 150 and 206 by using the yeast two-hybrid system. The eukaryotic initiation factor 4 GI subunit (eIF-4GI) binding domain of NSP3A has been mapped in the last 107 amino acids of its C terminus by using a pulldown assay and the yeast two-hybrid system. NSP3 is composed of two functional domains separated by a dimerization domain.
Collapse
Affiliation(s)
- M Piron
- Laboratoire INRA de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
12
|
Gillian AL, Nibert ML. Amino terminus of reovirus nonstructural protein sigma NS is important for ssRNA binding and nucleoprotein complex formation. Virology 1998; 240:1-11. [PMID: 9448684 DOI: 10.1006/viro.1997.8905] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reovirus nonstructural protein sigma NS exhibits a ssRNA-binding activity thought to be involved in assembling the reovirus mRNAs for genome replication and virion morphogenesis. To extend analysis of this activity, recombinant sigma NS (r sigma NS) was expressed in insect cells using a recombinant baculovirus. In infected-cell extracts, r sigma NS was found in large complexes (> or = 30 S) that were disassembled into smaller, 13-19 S complexes upon treatment with RNase A. R sigma NS also bound to poly(A)-Sepharose beads both before and after purification. Treatment with high salt during purification caused r sigma NS to sediment in even smaller, 7-9 S complexes, consistent with more complete loss of RNA. To localize the RNA-binding site, limited proteolysis was used to fragment the r sigma NS protein. Upon mild treatment with thermolysin, 11 amino acids were removed from the amino terminus of r sigma NS, and the resulting protein no longer bound to poly(A). In addition, when r sigma NS in cell extracts was treated with thermolysin to generate the amino-terminally truncated from, it sedimented at 7-9 S, also consistent with the loss of RNA-binding capacity. To confirm these findings, a deletion mutant lacking amino acids 2-11 was constructed and expressed in insect cells from a recombinant baculovirus. The mutant protein in cell extracts showed greatly reduced poly(A)-binding activity and sedimented as 7-9 S complexes. These data suggest that the first 11 amino acids of sigma NS, which are predicted to form an amphipathic alpha-helix, are important for both ssRNA binding and formation of complexes larger than 7-9 S.
Collapse
Affiliation(s)
- A L Gillian
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison 53706, USA
| | | |
Collapse
|
13
|
Theron J, Nel LH. Stable protein-RNA interaction involves the terminal domains of bluetongue virus mRNA, but not the terminally conserved sequences. Virology 1997; 229:134-42. [PMID: 9123855 DOI: 10.1006/viro.1996.8389] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction of bluetongue virus (BTV) proteins with viral RNA was investigated in vitro by means of a biochemical approach. By subjecting cytoplasmic extracts from virus-infected baby hamster kidney cells and in vitro synthesized radiolabeled RNA to ultraviolet cross-linking assays, we demonstrated that, of all the BTV proteins, NS2 becomes most intimately associated with the labeled viral RNA. Competition binding studies indicated that NS2 has the greatest affinity for the 3' region of the viral transcripts. By analyzing the binding efficiency of NS2 to mutant RNA transcripts which lacked the fully conserved 5'- and/or 3'-terminal hexanucleotides, we have established that these sequences are not necessary for optimal binding. The specificity of the NS2-RNA interaction was investigated by competition experiments with unlabeled BTV-specific homologous and heterologous competitor RNAs as well as with viral double-stranded RNA (dsRNA). Although apparent differences in the ability of NS2 to bind to the different RNA transcripts were observed, it did not bind to the dsRNA.
Collapse
Affiliation(s)
- J Theron
- Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
| | | |
Collapse
|
14
|
Joklik WK, Roner MR. Molecular recognition in the assembly of the segmented reovirus genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:249-81. [PMID: 8650305 DOI: 10.1016/s0079-6603(08)60147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- W K Joklik
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
15
|
Poncet D, Aponte C, Cohen J. Structure and function of rotavirus nonstructural protein NSP3. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1996; 12:29-35. [PMID: 9015099 DOI: 10.1007/978-3-7091-6553-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The genomes of viruses in the family Reoviridae consist of segmented double-stranded RNA. There are 10 to 12 segments depending on the genus. The 5' ends and the 3' ends of the RNAs present conserved motifs for each virus genus. These conserved motifs have been hypothesized to play a role in genomic segment assortment during virus morphogenesis. Using a set of monoclonal antibodies we have tried to identify rotaviral proteins that bind to RNA during infection in cell culture. This methodology takes advantage of being able to label RNA in vitro to high specific activity and also of solid phase processing of RNA-protein complexes. After cross-linking the RNA to protein in infected cells, protein-RNA complexes are precipitated with a specific MAb; then, the RNA in the complex is labeled in vitro and the protein or nucleic acid moieties are analyzed by usual protocols. This paper describes results using an anti NSP3 MAb. In infected cells, we have shown that NSP3 binds to the eleven messenger RNAs, and that a sequence from nucleotides 8 to 15 is protected from digestion with RNAse T1 by NSP3 in the RNA-protein complex. The availability of recombinant protein NSP3 expressed in the baculovirus-insect cell system has allowed the sequence specificity of NSP3 to be studied in vitro. The minimal sequence recognized by NSP3 is GACC. The role of NSP3 in rotavirus replication is discussed based on these results and by comparison with other RNA-binding proteins of members of the Reoviridae family.
Collapse
Affiliation(s)
- D Poncet
- Laboratoire de Virologie et Immunologie Moleculaires INRA, Jouy-en-Josas, France
| | | | | |
Collapse
|
16
|
Poncet D, Aponte C, Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol 1993; 67:3159-65. [PMID: 8388495 PMCID: PMC237654 DOI: 10.1128/jvi.67.6.3159-3165.1993] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interaction between viral proteins and RNAs has been studied in rotavirus-infected cells. The use of UV cross-linking followed by immunoprecipitation and labeling with T4 polynucleotide kinase allowed us to detect interactions between RNA and nonstructural viral proteins. The RNAs linked to the nonstructural protein NSP3 have been identified as rotavirus mRNAs, and the sequences of the RNase T1-protected fragments have been established. These sequences correspond to the 3' end sequence common to all rotavirus group A genes. We also show that the last 3' nucleotide is cross-linked to the protein and that monomeric and multimeric forms of NSP3 are bound to rotavirus mRNA. The role of NSP3 in rotavirus replication is discussed in the light of our results and by comparison with other RNA-binding proteins of members of the Reoviridae family.
Collapse
Affiliation(s)
- D Poncet
- Laboratoire de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | |
Collapse
|
17
|
Huismans H, van Dijk AA, Bauskin AR. In vitro phosphorylation and purification of a nonstructural protein of bluetongue virus with affinity for single-stranded RNA. J Virol 1987; 61:3589-95. [PMID: 2822964 PMCID: PMC255959 DOI: 10.1128/jvi.61.11.3589-3595.1987] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A phosphorylated, nonstructural protein of bluetongue virus, NS2, is synthesized throughout the replication cycle in comparatively large amounts. The protein was detected in both the soluble and particulate fraction of the cytoplasm of infected cells. The particulate NS2 could be solubilized in 0.5 M NaCl. It was found that NS2 in the particulate fraction and immunoprecipitates of NS2 from the soluble protein fraction could be phosphorylated in vitro. It is not known whether the kinase involved is of cellular or viral origin, but after purification of NS2 by affinity chromatography on poly(U)-Sepharose it could still by phosphorylated in vitro without the addition of exogenous protein kinase. The affinity of NS2 for nucleic acid was also investigated. The protein was found to bind to single-stranded RNA. In the presence of purified bluetongue virus mRNA, NS2 formed a complex with an estimated S value of about 22S.
Collapse
Affiliation(s)
- H Huismans
- Department of Biochemistry, Veterinary Research Institute, Onderstepoort, South Africa
| | | | | |
Collapse
|
18
|
Abstract
Two major bovine rotavirus proteins have RNA-binding activity as shown by an RNA overlay-protein blot assay. Of the six proteins in purified virions, only one showed RNA-binding activity. This 92,000-molecular-weight (92K) protein was present in both single- and double-shelled particles. Its RNA-binding activity was blocked by preincubation with monospecific antibody to VP2. Thus, the 92K RNA-binding protein in rotavirus virions is VP2, the second most abundant protein in single-shelled particles. In infected cell extracts, numerous cellular RNA-binding proteins and two virus-specific RNA-binding proteins were detected, VP2 and a 31K nonstructural (NS31) protein. VP2 bound single-stranded RNA in preference to double-stranded RNA, whereas NS31 bound both single- and double-stranded RNA equally well. Binding did not appear to be nucleotide sequence specific, because RNA from uninfected cells and an unrelated RNA virus bound to VP2 and to NS31 as did rotavirus RNA. This technique showed that both cellular and rotavirus RNA-binding proteins also bound DNA. VP2 interacted with rotavirus RNA over a broad pH range, with an optimum at pH 6.4 to 6.8, and at NaCl concentrations between 0 and 100 mM. The RNA-binding activity of NS31 exhibited similar pH and NaCl dependency. Sequence-specific nucleic acid binding could be detected by this method. When labeled synthetic oligodeoxyribonucleotides corresponding to the 3' and 5' plus-sense terminal sequences of rotavirus gene segments were used as probes, the 3' synthetic oligodeoxyribonucleotide bound to one 48K protein in control and infected cells. This suggests that there may be a specific functional interaction between the 48K cellular protein and this 3'-terminal noncoding region of the rotavirus genome or mRNA. These data show that the RNA overlay-protein blot assay is a useful test to identify some cellular and viral proteins with RNA-binding activity. For bovine rotavirus, the evidence suggests that, of all the virus-specific proteins, VP2 and NS31 are most likely to interact with RNA during transcription and replication or virus assembly or both.
Collapse
|
19
|
Adam SA, Choi YD, Dreyfuss G. Interaction of mRNA with proteins in vesicular stomatitis virus-infected cells. J Virol 1986; 57:614-22. [PMID: 3003393 PMCID: PMC252776 DOI: 10.1128/jvi.57.2.614-622.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of mRNA with proteins in vesicular stomatitis virus (VSV)-infected cells was studied by photochemical cross-linking in intact cells. The major [35S]methionine-labeled proteins which became cross-linked by UV light to mRNA in uninfected and in VSV-infected HeLa cells were similar and had apparent mobilities in sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to 135, 93, 72, 68, 53, 50, 43, and 36 kilodaltons. The proteins which were cross-linked in vivo specifically to the five mRNAs of VSV were labeled through radioactive nucleotides incorporated only into VSV mRNAs under conditions (5 micrograms of actinomycin D per ml) in which only VSV mRNAs are labeled. The same major mRNP proteins that became cross-linked to host mRNAs also became cross-linked to VSV mRNAs, although several quantitative differences were detected. Photochemical cross-linking and immunoblotting of cross-linked mRNPs with VSV antiserum demonstrated that in addition to host proteins VSV mRNAs also became cross-linked to the VSV-encoded N protein. The poly(A) segment of both host and VSV mRNAs was associated in vivo selectively with the 72-kilodalton polypeptide. The major proteins of mRNA-ribonucleoprotein complexes are therefore ubiquitous and common to different mRNAs. Furthermore, since the major messenger ribonucleoproteins interact also with VSV mRNAs even though these mRNAs are transcribed in the cytoplasm, it appears that nuclear transcription and nucleocytoplasmic transport are not necessary for mRNA to interact with these proteins.
Collapse
|
20
|
Richardson MA, Furuichi Y. Synthesis in Escherichia coli of the reovirus nonstructural protein sigma NS. J Virol 1985; 56:527-33. [PMID: 3932675 PMCID: PMC252609 DOI: 10.1128/jvi.56.2.527-533.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coding region of reovirus type 3 genomic segment S3, encoding the nonstructural protein sigma NS, was placed under the control of the bacteriophage lambda pL promoter in the Escherichia coli expression plasmid pRC23 (J.C. Lacal, E. Santos, V. Notario, M. Barbacid, S. Yamazaki, H.-F. Kung, C. Seamans, S. McAndrew, and R. Crowl, Proc. Natl. Acad. Sci. USA 81:5305-5309). Derepression of the pL promoter led to the synthesis of a protein of the same molecular weight as sigma NS produced in reovirus-infected L cells. The expressed protein was indistinguishable from authentic sigma NS by peptide mapping with Staphylococcus aureus V8 protease and by immunoblot analysis. Most importantly, the purified protein had nucleic acid-binding properties similar to that previously shown for sigma NS obtained from infected cells. Binding of single-stranded RNAs by recombinant sigma NS protein was inhibited by GTP.
Collapse
|