1
|
Shaw E, Thomas N, Jones J, Abu-Shumays R, Vaaler A, Akeson M, Koutmou K, Jain M, Garcia D. Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors. Nucleic Acids Res 2024; 52:12074-12092. [PMID: 39340295 PMCID: PMC11514469 DOI: 10.1093/nar/gkae796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.
Collapse
Affiliation(s)
- Ethan A Shaw
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Niki K Thomas
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin L Abu-Shumays
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mark Akeson
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - David M Garcia
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
2
|
Jayasinghe MI, Patel KJ, Jackman JE. Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1315-1327. [PMID: 38997129 PMCID: PMC11404450 DOI: 10.1261/rna.080156.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Members of the 3'-5' RNA polymerase family, comprised of tRNAHis guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), catalyze templated synthesis of RNA in the reverse direction to all other known 5'-3' RNA and DNA polymerases. The discovery of enzymes capable of this reaction raised the possibility of exploiting 3'-5' polymerases for posttranscriptional incorporation of nucleotides to the 5'-end of nucleic acids without ligation, and instead by templated polymerase addition. To date, studies of these enzymes have focused on nucleotide addition to highly structured RNAs, such as tRNA and other noncoding RNAs. Consequently, general principles of RNA substrate recognition and nucleotide preferences that might enable broader application of 3'-5' polymerases have not been elucidated. Here, we investigated the feasibility of using Thg1 or TLPs for multiple nucleotide incorporation to the 5'-end of a short duplex RNA substrate, using a templating RNA oligonucleotide provided in trans to guide 5'-end addition of specific sequences. Using optimized assay conditions, we demonstrated a remarkable capacity of certain TLPs to accommodate short RNA substrate-template duplexes of varying lengths with significantly high affinity, resulting in the ability to incorporate a desired nucleotide sequence of up to eight bases to 5'-ends of the model RNA substrates in a template-dependent manner. This work has further advanced our goals to develop this atypical enzyme family as a versatile nucleic acid 5'-end labeling tool.
Collapse
Affiliation(s)
- Malithi I Jayasinghe
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Krishna J Patel
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
4
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
6
|
Nakamura A, Wang D, Komatsu Y. Analysis of GTP addition in the reverse (3'-5') direction by human tRNA His guanylyltransferase. RNA (NEW YORK, N.Y.) 2021; 27:665-675. [PMID: 33758037 PMCID: PMC8127990 DOI: 10.1261/rna.078287.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Human tRNAHis guanylyltransferase (HsThg1) catalyzes the 3'-5' addition of guanosine triphosphate (GTP) to the 5'-end (-1 position) of tRNAHis, producing mature tRNAHis In human cells, cytoplasmic and mitochondrial tRNAHis have adenine (A) or cytidine (C), respectively, opposite to G-1 Little attention has been paid to the structural requirements of incoming GTP in 3'-5' nucleotidyl addition by HsThg1. In this study, we evaluated the incorporation efficiencies of various GTP analogs by HsThg1 and compared the reaction mechanism with that of Candida albicans Thg1 (CaThg1). HsThg1 incorporated GTP opposite A or C in the template most efficiently. In contrast to CaThg1, HsThg1 could incorporate UTP opposite A, and guanosine diphosphate (GDP) opposite C. These results suggest that HsThg1 could transfer not only GTP, but also other NTPs, by forming Watson-Crick (WC) hydrogen bonds between the incoming NTP and the template base. On the basis of the molecular mechanism, HsThg1 succeeded in labeling the 5'-end of tRNAHis with biotinylated GTP. Structural analysis of HsThg1 was also performed in the presence of the mitochondrial tRNAHis Structural comparison of HsThg1 with other Thg1 family enzymes suggested that the structural diversity of the carboxy-terminal domain of the Thg1 enzymes might be involved in the formation of WC base-pairing between the incoming GTP and template base. These findings provide new insights into an unidentified biological function of HsThg1 and also into the applicability of HsThg1 to the 5'-terminal modification of RNAs.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuo Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
7
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
8
|
Analysis of tRNA-derived RNA fragments (tRFs) in Cryptococcus spp.: RNAi-independent generation and possible compensatory effects in a RNAi-deficient genotype. Fungal Biol 2021; 125:389-399. [PMID: 33910680 DOI: 10.1016/j.funbio.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Small RNAs (sRNAs) are key factors in the regulation of gene expression. Recently, a new class of regulatory sRNAs derived from tRNAs was described, the tRNA-derived RNA fragments (tRFs). Such RNAs range in length from 14 to 30 nucleotides and are produced from both mature and primary tRNA transcripts, with very specific cleavage sites along the tRNA sequence. Although several mechanisms have been proposed for how tRFs mediate regulation of gene expression, the exact mechanism of tRF biogenesis and its dependency upon the RNAi pathway remain unclear. Cryptococcus gattii and Cryptococcus neoformans are basidiomycetous yeasts and important human pathogens. While C. neoformans is RNAi proficient, C. gattii VGII has lost essential RNAi genes. Here, we sought to identify the tRF production profile in C. gattii VGII and C. neoformans in order to assess the RNAi-dependency of tRF production in these fungal species. We developed a RNA-sequencing-based tRF prediction workflow designed to improve the currently available prediction tools. Using this methodology, we were able to identify tRFs in both organisms. Despite the loss of the RNAi pathway, C. gattii VGII displayed a number of identified tRFs that did not differ significantly from those observed in C. neoformans. The analysis of predicted tRF targets revealed that a higher number of targets was found for C. gattii VGII tRFs compared to C. neoformans tRFs. These results support the idea that tRFs are at least partially independent of the canonical RNAi machinery, raising questions about possible compensatory roles of alternative regulatory RNAs in the absence of a functional RNAi pathway.
Collapse
|
9
|
Lee YH, Lo YT, Chang CP, Yeh CS, Chang TH, Chen YW, Tseng YK, Wang CC. Naturally occurring dual recognition of tRNA His substrates with and without a universal identity element. RNA Biol 2019; 16:1275-1285. [PMID: 31179821 DOI: 10.1080/15476286.2019.1626663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extra 5' guanine nucleotide (G-1) on tRNAHis is a nearly universal feature that specifies tRNAHis identity. The G-1 residue is either genome encoded or post-transcriptionally added by tRNAHis guanylyltransferase (Thg1). Despite Caenorhabditis elegans being a Thg1-independent organism, its cytoplasmic tRNAHis (CetRNAnHis) retains a genome-encoded G-1. Our study showed that this eukaryote possesses a histidyl-tRNA synthetase (CeHisRS) gene encoding two distinct HisRS isoforms that differ only at their N-termini. Most interestingly, its mitochondrial tRNAHis (CetRNAmHis) lacks G-1, a scenario never observed in any organelle. This tRNA, while lacking the canonical identity element, can still be efficiently aminoacylated in vivo. Even so, addition of G-1 to CetRNAmHis strongly enhanced its aminoacylation efficiency in vitro. Overexpression of CeHisRS successfully bypassed the requirement for yeast THG1 in the presence of CetRNAnHis without G-1. Mutagenesis assays showed that the anticodon takes a primary role in CetRNAHis identity recognition, being comparable to the universal identity element. Consequently, simultaneous introduction of both G-1 and the anticodon of tRNAHis effectively converted a non-cognate tRNA to a tRNAHis-like substrate. Our study suggests that a new balance between identity elements of tRNAHis relieves HisRS from the absolute requirement for G-1.
Collapse
Affiliation(s)
- Yi-Hsueh Lee
- a Department of Life Sciences, National Central University , Taoyuan , Taiwan
| | - Ya-Ting Lo
- a Department of Life Sciences, National Central University , Taoyuan , Taiwan
| | - Chia-Pei Chang
- a Department of Life Sciences, National Central University , Taoyuan , Taiwan
| | - Chung-Shu Yeh
- b Genomics Research Center, Academia Sinica , Taipei , Taiwan
| | | | - Yu-Wei Chen
- c Department of Neurology, Landseed International Hospital , Taoyuan , Taiwan
| | - Yi-Kuan Tseng
- d Graduate Institute of Statistics, National Central University , Taoyuan , Taiwan
| | - Chien-Chia Wang
- a Department of Life Sciences, National Central University , Taoyuan , Taiwan
| |
Collapse
|
10
|
Matlock AO, Smith BA, Jackman JE. Chemical footprinting and kinetic assays reveal dual functions for highly conserved eukaryotic tRNA His guanylyltransferase residues. J Biol Chem 2019; 294:8885-8893. [PMID: 31000629 DOI: 10.1074/jbc.ra119.007939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/16/2019] [Indexed: 01/28/2023] Open
Abstract
tRNAHis guanylyltransferase (Thg1) adds a single guanine to the -1 position of tRNAHis as part of its maturation. This seemingly modest addition of one nucleotide to tRNAHis ensures translational fidelity by providing a critical identity element for the histidyl aminoacyl tRNA synthetase (HisRS). Like HisRS, Thg1 utilizes the GUG anticodon for selective tRNAHis recognition, and Thg1-tRNA complex structures have revealed conserved residues that interact with anticodon nucleotides. Separately, kinetic analysis of alanine variants has demonstrated that many of these same residues are required for catalytic activity. A model in which loss of activity with the variants was attributed directly to loss of the critical anticodon interaction has been proposed to explain the combined biochemical and structural results. Here we used RNA chemical footprinting and binding assays to test this model and further probe the molecular basis for the requirement for two critical tRNA-interacting residues, His-152 and Lys-187, in the context of human Thg1 (hThg1). Surprisingly, we found that His-152 and Lys-187 alanine-substituted variants maintain a similar overall interaction with the anticodon region, arguing against the sufficiency of this interaction for driving catalysis. Instead, conservative mutagenesis revealed a new direct function for these residues in recognition of a non-Watson-Crick G-1:A73 bp, which had not been described previously. These results have important implications for the evolution of eukaryotic Thg1 from a family of ancestral promiscuous RNA repair enzymes to the highly selective enzymes needed for their essential function in tRNAHis maturation.
Collapse
Affiliation(s)
- Ashanti O Matlock
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Brian A Smith
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Jane E Jackman
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel) 2019; 10:genes10030250. [PMID: 30917604 PMCID: PMC6471195 DOI: 10.3390/genes10030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3′ to 5′ synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3′ to 5′ chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.
Collapse
|
13
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Nakamura A, Wang D, Komatsu Y. Molecular mechanism of substrate recognition and specificity of tRNA His guanylyltransferase during nucleotide addition in the 3'-5' direction. RNA (NEW YORK, N.Y.) 2018; 24:1583-1593. [PMID: 30111535 PMCID: PMC6191723 DOI: 10.1261/rna.067330.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 05/06/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) transfers a guanosine triphosphate (GTP) in the 3'-5' direction onto the 5'-terminal of tRNAHis, opposite adenosine at position 73 (A73). The guanosine at the -1 position (G-1) serves as an identity element for histidyl-tRNA synthetase. To investigate the mechanism of recognition for the insertion of GTP opposite A73, first we constructed a two-stranded tRNAHis molecule composed of a primer and a template strand through division at the D-loop. Next, we evaluated the structural requirements of the incoming GTP from the incorporation efficiencies of GTP analogs into the two-piece tRNAHis Nitrogen at position 7 and the 6-keto oxygen of the guanine base were important for G-1 addition; however, interestingly, the 2-amino group was found not to be essential from the highest incorporation efficiency of inosine triphosphate. Furthermore, substitution of the conserved A73 in tRNAHis revealed that the G-1 addition reaction was more efficient onto the template containing the opposite A73 than onto the template with cytidine (C73) or other bases forming canonical Watson-Crick base-pairing. Some interaction might occur between incoming GTP and A73, which plays a role in the prevention of continuous templated 3'-5' polymerization. This study provides important insights into the mechanism of accurate tRNAHis maturation.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
15
|
Tomita K, Liu Y. Human BCDIN3D Is a Cytoplasmic tRNA His-Specific 5'-Monophosphate Methyltransferase. Front Genet 2018; 9:305. [PMID: 30127802 PMCID: PMC6088191 DOI: 10.3389/fgene.2018.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Abstract
Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) is a member of the Bin3 methyltransferase family and is evolutionary conserved from worm to human. BCDIN3D is overexpressed in breast cancer, which is associated with poor prognosis of breast cancers. However, the biological functions and properties of BCDIN3D have been enigmatic. Recent studies have revealed that human BCDIN3D monomethylates 5'-monophsosphate of cytoplasmic tRNAHisin vivo and in vitro. BCDIN3D recognizes the unique and exceptional structural features of cytoplasmic tRNAHis and discriminates tRNAHis from other cytoplasmic tRNA species. Thus, BCDIN3D is a tRNAHis-specific 5'-monophosphate methyltransferase. Methylation of the 5'-phosphate group of tRNAHis does not significantly affect tRNAHis aminoacylation by histidyl-tRNA synthetase in vitro nor the steady state level or stability of tRNAHisin vivo. Hence, methylation of the 5'-phosphate group of tRNAHis by BCDIN3D or tRNAHis itself may be involved in certain unknown biological processes, beyond protein synthesis. This review discusses recent reports on BCDIN3D and the possible association between 5'-phosphate monomethylation of tRNAHis and the tumorigenic phenotype of breast cancer.
Collapse
Affiliation(s)
- Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yining Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
16
|
Gößringer M, Lechner M, Brillante N, Weber C, Rossmanith W, Hartmann RK. Protein-only RNase P function in Escherichia coli: viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res 2017; 45:7441-7454. [PMID: 28499021 PMCID: PMC5499578 DOI: 10.1093/nar/gkx405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.
Collapse
Affiliation(s)
- Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
17
|
Martinez A, Yamashita S, Nagaike T, Sakaguchi Y, Suzuki T, Tomita K. Human BCDIN3D monomethylates cytoplasmic histidine transfer RNA. Nucleic Acids Res 2017; 45:5423-5436. [PMID: 28119416 PMCID: PMC5435960 DOI: 10.1093/nar/gkx051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Human RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro. In BCDN3D-knockout cells, established by CRISPR/Cas9 editing, the methyl moiety at the 5΄-monophosphate of cytoplasmic tRNAHis is lost, and the exogenous expression of BCDIN3D in the knockout cells restores the modification in cytoplasmic tRNAHis. BCIDN3D recognizes the 5΄-guanosine nucleoside at position -1 (G-1) and the eight-nucleotide acceptor helix with the G-1-A73 mis-pair at the top of the acceptor stem of cytoplasmic tRNAHis, which are exceptional structural features among cytoplasmic tRNA species. While the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis affects neither the overall aminoacylation process in vitro nor the steady-state level of cytoplasmic tRNAHisin vivo, it protects the cytoplasmic tRNAHis transcript from degradation in vitro. Thus, BCDIN3D acts as a cytoplasmic tRNAHis-specific 5΄-methylphosphate capping enzyme. The present results also suggest the possible involvement of the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis and/or cytoplasmic tRNAHis itself in the tumorigenesis of breast cancer cells.
Collapse
Affiliation(s)
- Anna Martinez
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takashi Nagaike
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
18
|
Mukai T, Vargas-Rodriguez O, Englert M, Tripp HJ, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. Transfer RNAs with novel cloverleaf structures. Nucleic Acids Res 2017; 45:2776-2785. [PMID: 28076288 PMCID: PMC5389517 DOI: 10.1093/nar/gkw898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023] Open
Abstract
We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | | | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Lee YH, Chang CP, Cheng YJ, Kuo YY, Lin YS, Wang CC. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci 2017; 74:2663-2677. [PMID: 28321488 PMCID: PMC11107585 DOI: 10.1007/s00018-017-2491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
The discriminator base N73 is a key identity element of tRNAHis. In eukaryotes, N73 is an "A" in cytoplasmic tRNAHis and a "C" in mitochondrial tRNAHis. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNAHis. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNAHis, have acquired highly specialized tRNA recognition properties through evolution.
Collapse
Affiliation(s)
- Yi-Hsueh Lee
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yu-Ju Cheng
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yi-Yi Kuo
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan.
| |
Collapse
|
20
|
Lee K, Lee EH, Son J, Hwang KY. Crystal structure of tRNA His guanylyltransferase from Saccharomyces cerevisiae. Biochem Biophys Res Commun 2017. [PMID: 28623126 DOI: 10.1016/j.bbrc.2017.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
tRNA maturation involves several steps, including processing, splicing, CCA addition, and posttranscriptional modifications. tRNAHis guanylyltransferase (Thg1) is the only enzyme known to catalyze templated nucleotide addition in the 3'-5' direction, unlike other DNA and RNA polymerases. For a better understanding of its unique catalytic mechanism at the molecular level, we determined the crystal structure of GTP-bound Thg1 from Saccharomyces cerevisiae at the maximum resolution of 3.0 Å. The structure revealed the enzyme to have a tetrameric conformation that is well conserved among different species, and the GTP molecule was clearly bound at the active site, coordinating with two magnesium ions. In addition, two flexible protomers at the potential binding site (PBS) for tRNAHis were observed. We suggest that the PBS of the tetramer could also be one of the sites for interaction with partner proteins.
Collapse
Affiliation(s)
- Kitaik Lee
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Eun Hye Lee
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Jonghyeon Son
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea.
| |
Collapse
|
21
|
Abstract
The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.
Collapse
Affiliation(s)
- Christiane Rammelt
- a Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Walter Rossmanith
- b Center for Anatomy & Cell Biology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
22
|
Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements. PLoS One 2016; 11:e0160246. [PMID: 27494328 PMCID: PMC4975455 DOI: 10.1371/journal.pone.0160246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.
Collapse
|
23
|
Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3'-5' RNA polymerases. Nucleic Acids Res 2016; 44:8395-406. [PMID: 27484477 PMCID: PMC5041481 DOI: 10.1093/nar/gkw681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria G Abad
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elisabeth Y Carrillo
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Kimura S, Suzuki T, Chen M, Kato K, Yu J, Nakamura A, Tanaka I, Yao M. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein. SCIENCE ADVANCES 2016; 2:e1501397. [PMID: 27051866 PMCID: PMC4820378 DOI: 10.1126/sciadv.1501397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 05/23/2023]
Abstract
Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5'-end of truncated transfer RNA (tRNA) species in a Watson-Crick template-dependent manner. The reaction proceeds in two steps: the activation of the 5'-end by adenosine 5'-triphosphate (ATP)/guanosine 5'-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3'-5' direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3'-OH of the incoming nucleotide and the 5'-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3'-5' elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G-1 addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode.
Collapse
Affiliation(s)
- Shoko Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tateki Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Meirong Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
25
|
Tian Q, Wang C, Liu Y, Xie W. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase. Nucleic Acids Res 2015; 43:2980-90. [PMID: 25722375 PMCID: PMC4357726 DOI: 10.1093/nar/gkv129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNAHis bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNAHis, which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5′ extremity of tRNA and enzyme is probably a result of coevolution of both.
Collapse
Affiliation(s)
- Qingnan Tian
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| | - Yuhuan Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
26
|
Rao BS, Jackman JE. Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA (NEW YORK, N.Y.) 2015; 21:243-53. [PMID: 25505023 PMCID: PMC4338351 DOI: 10.1261/rna.048389.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/06/2014] [Indexed: 05/23/2023]
Abstract
The identity of tRNA(His) is strongly associated with the presence of an additional 5'-guanosine residue (G-1) in all three domains of life. The critical nature of the G-1 residue is underscored by the fact that two entirely distinct mechanisms for its acquisition are observed, with cotranscriptional incorporation observed in Bacteria, while post-transcriptional addition of G-1 occurs in Eukarya. Here, through our investigation of eukaryotes that lack obvious homologs of the post-transcriptional G-1-addition enzyme Thg1, we identify alternative pathways to tRNA(His) identity that controvert these well-established rules. We demonstrate that Trypanosoma brucei, like Acanthamoeba castellanii, lacks the G-1 identity element on tRNA(His) and utilizes a noncanonical G-1-independent histidyl-tRNA synthetase (HisRS). Purified HisRS enzymes from A. castellanii and T. brucei exhibit a mechanism of tRNA(His) recognition that is distinct from canonical G-1-dependent synthetases. Moreover, noncanonical HisRS enzymes genetically complement the loss of THG1 in Saccharomyces cerevisiae, demonstrating the biological relevance of the G-1-independent aminoacylation activity. In contrast, in Caenorhabditis elegans, which is another Thg1-independent eukaryote, the G-1 residue is maintained, but here its acquisition is noncanonical. In this case, the G-1 is encoded and apparently retained after 5' end processing, which has so far only been observed in Bacteria and organelles. Collectively, these observations unearth a widespread and previously unappreciated diversity in eukaryotic tRNA(His) identity mechanisms.
Collapse
Affiliation(s)
- Bhalchandra S Rao
- Molecular, Cellular and Developmental Biology Program, Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Molecular, Cellular and Developmental Biology Program, Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Betat H, Long Y, Jackman JE, Mörl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014; 15:23975-98. [PMID: 25535083 PMCID: PMC4284800 DOI: 10.3390/ijms151223975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
28
|
Smith BA, Jackman JE. Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.). Biochemistry 2014; 53:1380-91. [PMID: 24548272 PMCID: PMC3985462 DOI: 10.1021/bi4014648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In
eukaryotes, the tRNAHis guanylyltransferase (Thg1)
catalyzes 3′–5′ addition of a single guanosine
residue to the −1 position (G–1) of tRNAHis, across from a highly conserved adenosine at position 73
(A73). After addition of G–1, Thg1 removes
pyrophosphate from the tRNA 5′-end, generating 5′-monophosphorylated
G–1-containing tRNA. The presence of the 5′-monophosphorylated
G–1 residue is important for recognition of tRNAHis by its cognate histidyl-tRNA synthetase. In addition to
the single-G–1 addition reaction, Thg1 polymerizes
multiple G residues to the 5′-end of tRNAHis variants.
For 3′–5′ polymerization, Thg1 uses the 3′-end
of the tRNAHis acceptor stem as a template. The mechanism
of reverse polymerization is presumed to involve nucleophilic attack
of the 3′-OH from each incoming NTP on the intact 5′-triphosphate
created by the preceding nucleotide addition. The potential exists
for competition between 5′-pyrophosphate removal and 3′–5′
polymerase reactions that could define the outcome of Thg1-catalyzed
addition, yet the interplay between these competing reactions has
not been investigated for any Thg1 enzyme. Here we establish transient
kinetic assays to characterize the pyrophosphate removal versus nucleotide
addition activities of yeast Thg1 with a set of tRNAHis substrates in which the identity of the N–1:N73 base pair was varied to mimic various products of the N–1 addition reaction catalyzed by Thg1. We demonstrate
that retention of the 5′-triphosphate is correlated with efficient
3′–5′ reverse polymerization. A kinetic partitioning
mechanism that acts to prevent addition of nucleotides beyond the
−1 position with wild-type tRNAHis is proposed.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
29
|
Abstract
Nucleotide polymerization proceeds in the forward (5'-3') direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3'-5') would present a "simpler" solution. Interestingly, reverse (3'-5') nucleotide addition is catalyzed by the tRNA maturation enzyme tRNA(His) guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNA(His) guanylyltransferase-tRNA(His) complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme's active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5'-3' polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process.
Collapse
|
30
|
Structural studies of a bacterial tRNA(HIS) guanylyltransferase (Thg1)-like protein, with nucleotide in the activation and nucleotidyl transfer sites. PLoS One 2013; 8:e67465. [PMID: 23844012 PMCID: PMC3701042 DOI: 10.1371/journal.pone.0067465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/18/2013] [Indexed: 11/19/2022] Open
Abstract
All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His) guanylyltransferase (Thg1) enzymes catalyze the unusual reverse addition (3' to 5') of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His), a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs) are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His). Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His) maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP). The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.
Collapse
|
31
|
Rao BS, Mohammad F, Gray MW, Jackman JE. Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res 2012; 41:1885-94. [PMID: 23241387 PMCID: PMC3561963 DOI: 10.1093/nar/gks1242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The additional G(-1) nucleotide on tRNA(His) is a nearly universal feature that specifies tRNA(His) identity in all three domains of life. In eukaryotes, the G(-1) identity element is obtained by a post-transcriptional pathway, through the unusual 3'-5' polymerase activity of the highly conserved tRNA(His) guanylyltransferase (Thg1) enzyme, and no examples of eukaryotic histidyl-tRNAs that lack this essential element have been identified. Here we report that the eukaryote Acanthamoeba castellanii lacks the G(-1) identity element on its tRNA(His), consistent with the lack of a gene encoding a bona fide Thg1 ortholog in the A. castellanii genome. Moreover, the cytosolic histidyl-tRNA synthetase in A. castellanii exhibits an unusual tRNA substrate specificity, efficiently aminoacylating tRNA(His) regardless of the presence of G(-1). A. castellanii does contain two Thg1-related genes (encoding Thg1-like proteins, TLPs), but the biochemical properties we associate here with these proteins are consistent with a function for these TLPs in separate pathways unrelated to tRNA(His) metabolism, such as mitochondrial tRNA repair during 5'-editing.
Collapse
Affiliation(s)
- Bhalchandra S Rao
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
32
|
Jackman JE, Gott JM, Gray MW. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. RNA (NEW YORK, N.Y.) 2012; 18:886-99. [PMID: 22456265 PMCID: PMC3334698 DOI: 10.1261/rna.032300.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tRNA(His) guanylyltransferase (Thg1) family of enzymes comprises members from all three domains of life (Eucarya, Bacteria, Archaea). Although the initial activity associated with Thg1 enzymes was a single 3'-to-5' nucleotide addition reaction that specifies tRNA(His) identity in eukaryotes, the discovery of a generalized base pair-dependent 3'-to-5' polymerase reaction greatly expanded the scope of Thg1 family-catalyzed reactions to include tRNA repair and editing activities in bacteria, archaea, and organelles. While the identification of the 3'-to-5' polymerase activity associated with Thg1 enzymes is relatively recent, the roots of this discovery and its likely physiological relevance were described ≈ 30 yr ago. Here we review recent advances toward understanding diverse Thg1 family enzyme functions and mechanisms. We also discuss possible evolutionary origins of Thg1 family-catalyzed 3'-to-5' addition activities and their implications for the currently observed phylogenetic distribution of Thg1-related enzymes in biology.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
33
|
Smith BA, Jackman JE. Kinetic analysis of 3'-5' nucleotide addition catalyzed by eukaryotic tRNA(His) guanylyltransferase. Biochemistry 2011; 51:453-65. [PMID: 22136300 DOI: 10.1021/bi201397f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tRNA(His) guanylyltransferase (Thg1) catalyzes the incorporation of a single guanosine residue at the -1 position (G(-1)) of tRNA(His), using an unusual 3'-5' nucleotidyl transfer reaction. Thg1 and Thg1 orthologs known as Thg1-like proteins (TLPs), which catalyze tRNA repair and editing, are the only known enzymes that add nucleotides in the 3'-5' direction. Thg1 enzymes share no identifiable sequence similarity with any other known enzyme family that could be used to suggest the mechanism for catalysis of the unusual 3'-5' addition reaction. The high-resolution crystal structure of human Thg1 revealed remarkable structural similarity between canonical DNA/RNA polymerases and eukaryotic Thg1; nevertheless, questions regarding the molecular mechanism of 3'-5' nucleotide addition remain. Here, we use transient kinetics to measure the pseudo-first-order forward rate constants for the three steps of the G(-1) addition reaction catalyzed by yeast Thg1: adenylylation of the 5' end of the tRNA (k(aden)), nucleotidyl transfer (k(ntrans)), and removal of pyrophosphate from the G(-1)-containing tRNA (k(ppase)). This kinetic framework, in conjunction with the crystal structure of nucleotide-bound Thg1, suggests a likely role for two-metal ion chemistry in all three chemical steps of the G(-1) addition reaction. Furthermore, we have identified additional residues (K44 and N161) involved in adenylylation and three positively charged residues (R27, K96, and R133) that participate primarily in the nucleotidyl transfer step of the reaction. These data provide a foundation for understanding the mechanism of 3'-5' nucleotide addition in tRNA(His) maturation.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
34
|
Paris Z, Fleming IMC, Alfonzo JD. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell Dev Biol 2011; 23:269-74. [PMID: 22024020 DOI: 10.1016/j.semcdb.2011.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/04/2011] [Accepted: 10/12/2011] [Indexed: 11/12/2022]
Abstract
In all organisms tRNAs play the essential role of connecting the genetic information found in DNA with the protein synthesis machinery ensuring fidelity during translation. Following transcription tRNAs undergo a number of processing events including numerous post-transcriptional modifications that render a tRNA molecule fully functional. The effects of some modifications go beyond simply affecting tRNA structure and can alter the meaning of the tRNA. This review will summarize the current state of the tRNA editing field, highlighting how editing affects tRNA structure and function in various organisms. It will also discuss recent data that hints at connections between editing and modification that may be exploited by cells to modulate a tRNA's role in translation.
Collapse
Affiliation(s)
- Zdeněk Paris
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
35
|
Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Söll D. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 2011; 40:333-44. [PMID: 21890903 PMCID: PMC3245924 DOI: 10.1093/nar/gkr696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Histidine transfer RNA (tRNA) is unique among tRNA species as it carries an additional nucleotide at its 5' terminus. This unusual G(-1) residue is the major tRNA(His) identity element, and essential for recognition by the cognate histidyl-tRNA synthetase to allow efficient His-tRNA(His) formation. In many organisms G(-1) is added post-transcriptionally as part of the tRNA maturation process. tRNA(His) guanylyltransferase (Thg1) specifically adds the guanylyate residue by recognizing the tRNA(His) anticodon. Thg1 homologs from all three domains of life have been the subject of exciting research that gave rise to a detailed biochemical, structural and phylogenetic enzyme characterization. Thg1 homologs are phylogenetically classified into eukaryal- and archaeal-type enzymes differing characteristically in their cofactor requirements and specificity. Yeast Thg1 displays a unique but limited ability to add 2-3 G or C residues to mutant tRNA substrates, thus catalyzing a 3' → 5' RNA polymerization. Archaeal-type Thg1, which has been horizontally transferred to certain bacteria and few eukarya, displays a more relaxed substrate range and may play additional roles in tRNA editing and repair. The crystal structure of human Thg1 revealed a fascinating structural similarity to 5' → 3' polymerases, indicating that Thg1 derives from classical polymerases and evolved to assume its specific function in tRNA(His) processing.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
36
|
Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. RNA (NEW YORK, N.Y.) 2011; 17:613-23. [PMID: 21307182 PMCID: PMC3062173 DOI: 10.1261/rna.2517111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.
Collapse
Affiliation(s)
- Maria G Abad
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yuan J, Gogakos T, Babina AM, Söll D, Randau L. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 2010; 39:2286-93. [PMID: 21087993 PMCID: PMC3064791 DOI: 10.1093/nar/gkq1176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
38
|
|
39
|
tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Proc Natl Acad Sci U S A 2010; 107:20305-10. [PMID: 21059936 DOI: 10.1073/pnas.1010436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA(His) guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-Å crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.
Collapse
|
40
|
Sinapah S, Wu S, Chen Y, Pettersson BMF, Gopalan V, Kirsebom LA. Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection. Nucleic Acids Res 2010; 39:1105-16. [PMID: 20935047 PMCID: PMC3035440 DOI: 10.1093/nar/gkq732] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase P is a catalytic ribonucleoprotein primarily involved in tRNA biogenesis. Archaeal RNase P comprises a catalytic RNase P RNA (RPR) and at least four protein cofactors (RPPs), which function as two binary complexes (POP5•RPP30 and RPP21• RPP29). Exploiting the ability to assemble a functional Pyrococcus furiosus (Pfu) RNase P in vitro, we examined the role of RPPs in influencing substrate recognition by the RPR. We first demonstrate that Pfu RPR, like its bacterial and eukaryal counterparts, cleaves model hairpin loop substrates albeit at rates 90- to 200-fold lower when compared with cleavage by bacterial RPR, highlighting the functionally comparable catalytic cores in bacterial and archaeal RPRs. By investigating cleavage-site selection exhibited by Pfu RPR (±RPPs) with various model substrates missing consensus-recognition elements, we determined substrate features whose recognition is facilitated by either POP5•RPP30 or RPP21•RPP29 (directly or indirectly via the RPR). Our results also revealed that Pfu RPR + RPP21•RPP29 displays substrate-recognition properties coinciding with those of the bacterial RPR-alone reaction rather than the Pfu RPR, and that this behaviour is attributable to structural differences in the substrate-specificity domains of bacterial and archaeal RPRs. Moreover, our data reveal a hierarchy in recognition elements that dictates cleavage-site selection by archaeal RNase P.
Collapse
Affiliation(s)
- Sylvie Sinapah
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University SE-751 24, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
42
|
Placido A, Sieber F, Gobert A, Gallerani R, Giegé P, Maréchal-Drouard L. Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res 2010; 38:7711-7. [PMID: 20660484 PMCID: PMC2995067 DOI: 10.1093/nar/gkq646] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare Ernesto Quagliariello, Universita' degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Heinemann IU, Randau L, Tomko RJ, Söll D. 3'-5' tRNAHis guanylyltransferase in bacteria. FEBS Lett 2010; 584:3567-72. [PMID: 20650272 DOI: 10.1016/j.febslet.2010.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Abstract
The identity of the histidine specific transfer RNA (tRNA(His)) is largely determined by a unique guanosine residue at position -1. In eukaryotes and archaea, the tRNA(His) guanylyltransferase (Thg1) catalyzes 3'-5' addition of G to the 5'-terminus of tRNA(His). Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
44
|
Preston MA, Phizicky EM. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA (NEW YORK, N.Y.) 2010; 16:1068-77. [PMID: 20360392 PMCID: PMC2856879 DOI: 10.1261/rna.2087510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/12/2010] [Indexed: 05/23/2023]
Abstract
Nearly all tRNA(His) species have an additional 5' guanine nucleotide (G(-1)). G(-1) is encoded opposite C(73) in nearly all prokaryotes and in some archaea, and is added post-transcriptionally by tRNA(His) guanylyltransferase (Thg1) opposite A(73) in eukaryotes, and opposite C(73) in other archaea. These divergent mechanisms of G(-1) conservation suggest that G(-1) might have an important cellular role, distinct from its role in tRNA(His) charging. Thg1 is also highly conserved and is essential in the yeast Saccharomyces cerevisiae. However, the essential roles of Thg1 are unclear since Thg1 also interacts with Orc2 of the origin recognition complex, is implicated in the cell cycle, and catalyzes an unusual template-dependent 3'-5' (reverse) polymerization in vitro at the 5' end of activated tRNAs. Here we show that thg1-Delta strains are viable, but only if histidyl-tRNA synthetase and tRNA(His) are overproduced, demonstrating that the only essential role of Thg1 is its G(-1) addition activity. Since these thg1-Delta strains have severe growth defects if cytoplasmic tRNA(His) A(73) is overexpressed, and distinct, but milder growth defects, if tRNA(His) C(73) is overexpressed, these results show that the tRNA(His) G(-1) residue is important, but not absolutely essential, despite its widespread conservation. We also show that Thg1 catalyzes 3'-5' polymerization in vivo on tRNA(His) C(73), but not on tRNA(His) A(73), demonstrating that the 3'-5' polymerase activity is pronounced enough to have a biological role, and suggesting that eukaryotes may have evolved to have cytoplasmic tRNA(His) with A(73), rather than C(73), to prevent the possibility of 3'-5' polymerization.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Gene Expression
- Genes, Fungal
- Histidine-tRNA Ligase/genetics
- Histidine-tRNA Ligase/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- RNA, Transfer, His/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Melanie A Preston
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
45
|
Gott JM, Somerlot BH, Gray MW. Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:482-8. [PMID: 20106952 PMCID: PMC2822913 DOI: 10.1261/rna.1958810] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mitochondrial genome of Physarum polycephalum encodes five tRNAs, four of which are edited by nucleotide insertion. Two of these tRNAs, tRNA(met1) and tRNA(met2), contain predicted mismatches at the beginning (proximal end) of the acceptor stem. In addition, the putative 5' end of tRNA(met2) overlaps the 3' end of a small, abundant, noncoding RNA, which we term ppoRNA. These anomalies led us to hypothesize that these two Physarum mitochondrial tRNAs undergo additional editing events. Here, we show that tRNA(met1) and tRNA(met2) each has a nonencoded G at its 5' end. In contrast to the other nucleotides that are added to Physarum mitochondrial RNAs, these extra G residues are likely added post-transcriptionally based on (1) the absence of added G in precursor transcripts containing inserted C and AA residues, (2) the presence of potential intermediates characteristic of 5' replacement editing, and (3) preferential incorporation of GTP into tRNA molecules under conditions that do not support transcription. This is the first report of both post-transcriptional nucleotide insertions and the addition of single Gs in P. polycephalum mitochondrial transcripts. We postulate that tRNA(met1) and tRNA(met2) are acted upon by an activity similar to that present in the mitochondria of certain other amoebozoons and chytrid fungi, suggesting that enzymes that repair the 5' end of tRNAs may be widespread.
Collapse
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
46
|
Template-dependent 3'-5' nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A 2009; 107:674-9. [PMID: 20080734 DOI: 10.1073/pnas.0910961107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of an additional 5' guanosine residue (G(-1)) is a unique feature of tRNA(His). G(-1) is incorporated posttranscriptionally in eukarya via an unusual 3'-5' nucleotide addition reaction catalyzed by the tRNA(His) guanylyltransferase (Thg1). Yeast Thg1 catalyzes an unexpected second activity: Watson-Crick-dependent 3'-5' nucleotide addition that occurs in the opposite direction to nucleotide addition by all known DNA and RNA polymerases. This discovery led to the hypothesis that there are alternative roles for Thg1 family members that take advantage of this unusual enzymatic activity. Here we show that archaeal homologs of Thg1 catalyze G(-1) addition, in vitro and in vivo in yeast, but only in a templated reaction, i.e. with tRNA(His) substrates that contain a C(73) discriminator nucleotide. Because tRNA(His) from archaea contains C(73), these findings are consistent with a physiological function for templated nucleotide addition in archaeal tRNA(His) maturation. Moreover, unlike yeast Thg1, archaeal Thg1 enzymes also exhibit a preference for template-dependent U(-1) addition to A(73)-containing tRNA(His). Taken together, these results demonstrate that Watson-Crick template-dependent 3'-5' nucleotide addition is a shared catalytic activity exhibited by Thg1 family members from multiple domains of life, and therefore, that this unusual reaction may constitute an ancestral activity present in the earliest members of the Thg1 enzyme family.
Collapse
|
47
|
The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution. Proc Natl Acad Sci U S A 2009; 106:21103-8. [PMID: 19965368 DOI: 10.1073/pnas.0912072106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
tRNA(His) guanylyltransferase (Thg1) post-transcriptionally adds a G (position -1) to the 5'-terminus of tRNA(His). The Methanosarcina acetivorans Thg1 (MaThg1) gene contains an in-frame TAG (amber) codon. Although a UAG codon typically directs translation termination, its presence in Methanosarcina mRNA may lead to pyrrolysine (Pyl) incorporation achieved by Pyl-tRNA(Pyl), the product of pyrrolysyl-tRNA synthetase. Sequencing of the MaThg1 gene and transcript confirmed the amber codon. Translation of MaThg1 mRNA led to a full-length, Pyl-containing, active enzyme as determined by immunoblotting, mass spectrometry, and biochemical analysis. The nature of the inserted amino acid at the position specified by UAG is not critical, as Pyl or Trp insertion yields active MaThg1 variants in M. acetivorans and equal amounts of full-length protein. These data suggest that Pyl insertion is akin to natural suppression and unlike the active stop codon reassignment that is required for selenocysteine insertion. Only three Pyl-containing proteins have been characterized previously, a set of methylamine methyltransferases in which Pyl is assumed to have specifically evolved to be a key active-site constituent. In contrast, Pyl in MaThg1 is a dispensable residue that appears to confer no selective advantage. Phylogenetic analysis suggests that Thg1 is becoming dispensable in the archaea, and furthermore supports the hypothesis that Pyl appeared in MaThg1 as the result of neutral evolution. This indicates that even the most unusual amino acid can play an ordinary role in proteins.
Collapse
|
48
|
Jackman JE, Phizicky EM. Identification of critical residues for G-1 addition and substrate recognition by tRNA(His) guanylyltransferase. Biochemistry 2008; 47:4817-25. [PMID: 18366186 DOI: 10.1021/bi702517q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The yeast tRNA(His) guanylyltransferase (Thg1) is an essential enzyme in yeast. Thg1 adds a single G residue to the 5' end of tRNA(His) (G(-1)), which serves as a crucial determinant for aminoacylation of tRNA(His). Thg1 is the only known gene product that catalyzes the 3'-5' addition of a single nucleotide via a normal phosphodiester bond, and since there is no identifiable sequence similarity between Thg1 and any other known enzyme family, the mechanism by which Thg1 catalyzes this unique reaction remains unclear. We have altered 29 highly conserved Thg1 residues to alanine, and using three assays to assess Thg1 catalytic activity and substrate specificity, we have demonstrated that the vast majority of these highly conserved residues (24/29) affect Thg1 function in some measurable way. We have identified 12 Thg1 residues that are critical for G(-1) addition, based on significantly decreased ability to add G(-1) to tRNA(His) in vitro and significant defects in complementation of a thg1Delta yeast strain. We have also identified a single Thg1 alteration (D68A) that causes a dramatic decrease in the rigorous specificity of Thg1 for tRNA(His). This single alteration enhances the k(cat)/K(M) for ppp-tRNA(Phe) by nearly 100-fold relative to that of wild-type Thg1. These results suggest that Thg1 substrate recognition is at least in part mediated by preventing recognition of incorrect substrates for nucleotide addition.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
49
|
Abstract
tRNA(His) has thus far always been found with one of the most distinctive of tRNA features, an extra 5' nucleotide that is usually a guanylate. tRNA(His) genes in a disjoint alphaproteobacterial group comprising the Rhizobiales, Rhodobacterales, Caulobacterales, Parvularculales, and Pelagibacter generally fail to encode this extra guanylate, unlike those of other alphaproteobacteria and bacteria in general. Rather than adding an extra 5' guanylate posttranscriptionally as eukaryotes do, evidence is presented here that two of these species, Sinorhizobium meliloti and Caulobacter crescentus, simply lack any extra nucleotide on tRNA(His). This loss correlates with changes at the 3' end sequence of tRNA(His) and at many sites in histidyl-tRNA synthetase that might be expected to affect tRNA(His) recognition, in the flipping loop, the insertion domain, the anticodon-binding domain, and the motif 2 loop. The altered tRNA charging system may have affected other tRNA charging systems in these bacteria; for example, a site in tRNA(Glu) sequences was found to covary with tRNA(His) among alphaproteobacteria.
Collapse
Affiliation(s)
- Chunxia Wang
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, USA
| | | | | |
Collapse
|
50
|
Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA (NEW YORK, N.Y.) 2006; 12:1007-14. [PMID: 16625026 PMCID: PMC1464847 DOI: 10.1261/rna.54706] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA
| | | |
Collapse
|