1
|
Guo L, Zhang Y. Cholecystokinin-mediated effect of insulin pathway on the steroidogenic activity of follicular granulosa cells in Camelus bactrianus: In vitro study. Reprod Domest Anim 2024; 59:e14586. [PMID: 38757644 DOI: 10.1111/rda.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The current study aimed to explore the molecular mechanism by which the cholecystokinin (CCK)-mediated CCKAR and CCKBR, as well as the molecular mechanisms of CCK-mediated insulin signalling pathway, regulate oestrogen in the granulosa cells. Also, the expression of CCK in ovaries, uterus, hypothalamus and pituitary gland was investigated in Camelus bactrianus. Ovaries, uterus, hypothalamus and pituitary gland were collected from six, three before ovulation (control) and three after ovulation, slaughtered Camelus bactrianus. Ovulation was induced by IM injection of seminal plasma before slaughtering in the ovulated group. The results showed that there were differences in the transcription and protein levels of CCK in various tissues before and after ovulation (p < .05, p < .01). After transfection with p-IRES2-EGFP-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly upregulated (p < .05, p < .01), and the content of E2 was significantly upregulated (p < .01); On the contrary, after transfection with si-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly downregulated (p < .05, p < .01), and the content of E2 was significantly downregulated (p < .01). Regulating CCK can affect the mRNA levels of INS, INSR, IGF and IGF-R. In summary, regulating the expression level of CCK can activate insulin-related signalling pathways by CCKR, thereby regulating the steroidogenic activity of granulosa cells.
Collapse
Affiliation(s)
- Lusha Guo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive, Lanzhou, China
| |
Collapse
|
2
|
Ly T, Oh JY, Sivakumar N, Shehata S, La Santa Medina N, Huang H, Liu Z, Fang W, Barnes C, Dundar N, Jarvie BC, Ravi A, Barnhill OK, Li C, Lee GR, Choi J, Jang H, Knight ZA. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature 2023; 624:130-137. [PMID: 37993711 PMCID: PMC10700140 DOI: 10.1038/s41586-023-06758-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.
Collapse
Affiliation(s)
- Truong Ly
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Y Oh
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nilla Sivakumar
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi Huang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengya Liu
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wendy Fang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Naz Dundar
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brooke C Jarvie
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anagh Ravi
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Olivia K Barnhill
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chelsea Li
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Grace R Lee
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jaewon Choi
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heeun Jang
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Chao B, Li BX, Xiao X. Design, synthesis and evaluation of antitumor acylated monoaminopyrroloquinazolines. Bioorg Med Chem Lett 2017; 27:3107-3110. [PMID: 28552339 DOI: 10.1016/j.bmcl.2017.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
Pyrroloquinazoline is a privileged chemical scaffold with diverse biological activities. We recently described a series of N-3 acylated 1,3-diaminopyrroloquinazolines with potent anticancer activities. The N-1 primary amino group in 1,3-diaminopyrroloquinazoline is critical for its inhibitory activity against dihydrofolate reductase (DHFR). In order to design out this unnecessary DHFR inhibition activity and further expand the chemical space associated with pyrroloquinazoline, we removed the N-1 primary amino group. In this report, we describe our design and synthesis of a series of N-3 acylated monoaminopyrroloquinazolines. Biological evaluation of these compounds identified a naphthamide 4a as a potent anticancer agent (GI50=88-200nM), suggesting that removing the N-1 primary amino group in 1,3-diaminopyrroloquinazoline is a useful chemical modification that can be introduced to improve the anticancer activity.
Collapse
Affiliation(s)
- Bo Chao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Bingbing X Li
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Wang HH, Portincasa P, Wang DQH. The cholecystokinin-1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. Eur J Clin Invest 2016; 46:158-69. [PMID: 26683129 PMCID: PMC6037422 DOI: 10.1111/eci.12580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND A defect in gallbladder contraction function plays a key role in the pathogenesis of gallstones. The cholecystokinin-1 receptor (CCK-1R) antagonists have been extensively investigated for their therapeutic effects on gastrointestinal and metabolic diseases in animal studies and clinical trials. However, it is still unknown whether they have a potential effect on gallstone formation. DESIGN To study whether the CCK-1R antagonists enhance cholelithogenesis, we investigated cholesterol crystallization, gallstone formation, hepatic lipid secretion, gallbladder emptying function and intestinal cholesterol absorption in male C57BL/6J mice treated by gavage with devazepide (4 mg/day/kg) or vehicle (as controls) twice per day and fed the lithogenic diet for 21 days. RESULTS During 21 days of feeding, oral administration of devazepide significantly accelerated cholesterol crystallization and crystal growth to microlithiasis, with 40% of mice forming gallstones, whereas only agglomerated cholesterol monohydrate crystals were found in mice receiving vehicle. Compared to the vehicle group, fasting and postprandial residual gallbladder volumes in response to the high-fat meal were significantly larger in the devazepide group during cholelithogenesis, showing reduced gallbladder emptying and bile stasis. Moreover, devazepide significantly increased hepatic secretion of biliary cholesterol, but not phospholipids or bile salts. The percentage of intestinal cholesterol absorption was higher in devazepide-treated mice, increasing the bioavailability of chylomicron-derived cholesterol in the liver for biliary hypersecretion into bile. These abnormalities induced supersaturated bile and rapid cholesterol crystallization. CONCLUSIONS The potent CCK-1R antagonist devazepide increases susceptibility to gallstone formation by impairing gallbladder emptying function, disrupting biliary cholesterol metabolism and enhancing intestinal cholesterol absorption in mice.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell. Sci Rep 2015; 5:15725. [PMID: 26510380 PMCID: PMC4625164 DOI: 10.1038/srep15725] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023] Open
Abstract
Taste receptors on enteroendocrine cells sense nutrients and transmit signals that control gut hormone release. This study aimed to investigate the amino acid (AA) sensing mechanisms of the ghrelin cell in a gastric ghrelinoma cell line, tissue segments and mice. Peptone and specific classes of amino acids stimulate ghrelin secretion in the ghrelinoma cell line. Sensing of L-Phe occurs via the CaSR, monosodium glutamate via the TAS1R1-TAS1R3 while L-Ala and peptone act via 2 different amino acid taste receptors: CaSR &TAS1R1-TAS1R3 and CaSR &GPRC6A, respectively. The stimulatory effect of peptone on ghrelin release was mimicked ex vivo in gastric but not in jejunal tissue segments, where peptone inhibited ghrelin release. The latter effect could not be blocked by receptor antagonists for CCK, GLP-1 or somatostatin. In vivo, plasma ghrelin levels were reduced both upon intragastric (peptone or L-Phe) or intravenous (L-Phe) administration, indicating that AA- sensing is not polarized and is due to inhibition of ghrelin release from the stomach or duodenum respectively. In conclusion, functional AA taste receptors regulate AA-induced ghrelin release in vitro. The effects differ between stomach and jejunum but these local nutrient sensing mechanisms are overruled in vivo by indirect mechanisms inhibiting ghrelin release.
Collapse
|
6
|
Kondo M, Nishi T, Hatanaka T, Funahashi Y, Nakamura S. Catalytic Enantioselective Reaction of α-Aminoacetonitriles Using Chiral Bis(imidazoline) Palladium Catalysts. Angew Chem Int Ed Engl 2015; 54:8198-202. [DOI: 10.1002/anie.201503098] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Indexed: 11/09/2022]
|
7
|
Kondo M, Nishi T, Hatanaka T, Funahashi Y, Nakamura S. Catalytic Enantioselective Reaction of α-Aminoacetonitriles Using Chiral Bis(imidazoline) Palladium Catalysts. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chao B, Li BX, Xiao X. The chemistry and pharmacology of privileged pyrroloquinazolines. MEDCHEMCOMM 2015; 6:510-520. [PMID: 25937878 PMCID: PMC4412478 DOI: 10.1039/c4md00485j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The advent of next-generation sequencing (NGS) technology has plummeted the cost of whole genome sequencing, which has provided a long list of putative drug targets for a variety of diseases ranging from infectious diseases to cancers. The majority of these drug targets are still awaiting high-quality small molecule ligands to validate their therapeutic potential and track their druggability. Screening compound libraries based on privileged scaffolds is an efficient strategy to identify potential ligands to distinct biological targets. 7H-Pyrrolo[3,2-f]quinazoline (PQZ) is a potential privileged heterocyclic scaffold with diverse pharmacological properties. A number of biological targets have been identified for different derivatives of PQZ. This review summarized the synthetic strategies to access the chemical space associated with PQZ and discussed their unique biological profiles.
Collapse
Affiliation(s)
- Bo Chao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bingbing X. Li
- Program in Chemical Biology, Department of Physiology and Pharmacology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
9
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
10
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
COMMUNICATION. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1987.tb16603.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
ORAL COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1991.tb14725.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
|
14
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1989.tb16584.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
|
16
|
Donald JR, Wood RR, Martin SF. Application of a sequential multicomponent assembly process/huisgen cycloaddition strategy to the preparation of libraries of 1,2,3-triazole-fused 1,4-benzodiazepines. ACS COMBINATORIAL SCIENCE 2012; 14:135-43. [PMID: 22273436 DOI: 10.1021/co2002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy featuring a multicomponent assembly process followed by an intramolecular azide-alkyne dipolar (Huisgen) cycloaddition was implemented for the facile synthesis of three different 1,2,3-triazolo-1,4-benzodiazepine scaffolds. A diverse library of 170 compounds derived from these scaffolds was then created through N-functionalizations, palladium-catalyzed cross-coupling reactions, and several applications of α-aminonitrile chemistry.
Collapse
Affiliation(s)
- James R. Donald
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Rebekah R. Wood
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Kumari S, Chowdhury J, Mishra AK, Chandna S, Saluja D, Chopra M. Synthesis and evaluation of a fluorescent non-peptidic cholecystokinin-B/gastrin receptor specific antagonist for cancer cell imaging. Chembiochem 2011; 13:282-92. [PMID: 22162268 DOI: 10.1002/cbic.201100593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 11/09/2022]
Abstract
Fluorescent labeling has enabled a better understanding of the relationships between receptor location, function, and life cycle. Each of these perspectives contributes new insights into drug action, particularly for G protein-coupled receptors (GPCRs). The aim of this study was to develop a fluorescein derivative, FLUO-QUIN-a novel antagonist of the cholecystokinin-B/gastrin receptor. A radioligand-binding experiment revealed an IC(50) of 4.79 nm, and the antagonist inhibited gastric acid secretion in an isolated lumen-perfused mouse stomach assay (up to 51 % at 100 nm). The fluorescence properties altered upon binding to the receptor, and the fluorophore was quenched to a greater extent when free than in the bound form. FLUO-QUIN specifically bound to human pancreatic carcinoma cells, MiaPaca-2, which are known to express the receptor, as evidenced by rapid clustering followed by time-dependent receptor internalization. This proves the stability of FLUO-QUIN and its ability to penetrate vesicular membranes and reach various cell targets. Hence it might be used as an agent for the detection of CCK-B-receptor-positive tumors by fluorescence imaging.
Collapse
Affiliation(s)
- Saroj Kumari
- Dr. BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
18
|
Pavan MV, Lassiani L, Berti F, Stefancich G, Ciogli A, Gasparrini F, Mennuni L, Ferrari F, Escrieut C, Marco E, Makovec F, Fourmy D, Varnavas A. New Anthranilic Acid Based Antagonists with High Affinity and Selectivity for the Human Cholecystokinin Receptor 1 (hCCK1-R). J Med Chem 2011; 54:5769-85. [DOI: 10.1021/jm200438b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michela V. Pavan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lucia Lassiani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giorgio Stefancich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Alessia Ciogli
- Department of Chemistry and Technology of Biologically Active Substances, University “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Gasparrini
- Department of Chemistry and Technology of Biologically Active Substances, University “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Mennuni
- Rottapharm—Madaus SpA, Via Valosa di Sopra 7, 20052 Monza, Italy
| | - Flora Ferrari
- Rottapharm—Madaus SpA, Via Valosa di Sopra 7, 20052 Monza, Italy
| | - Chantal Escrieut
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | - Esther Marco
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | | | - Daniel Fourmy
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | - Antonio Varnavas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| |
Collapse
|
19
|
|
20
|
Hermkens PHH, Ottenheijm HCJ, van der Werf-Pieters JML, Broekkamp CLE, de Boer T, van Nispen JW. CCK-A Agonists: Endeavours involving structure-activity relationship studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19931120205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Control of somatostatin (SS) secretion by CCK-1 and CCK-2 receptors' occupation in RIN-14B cells, a rat pancreatic islet cell line. Pancreas 2010; 39:127-34. [PMID: 19959964 DOI: 10.1097/mpa.0b013e3181bea475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES This study evaluated the role played by cholecystokinin (CCK) receptors' occupation in the control of somatostatin (SS) secretion in RIN-14B cells. METHODS The presence of the CCK receptors 1 and 2 was confirmed by immunofluorescence, and SS secretion was evaluated by enzyme-linked immunosorbent assay. RESULTS By immunofluorescence, 95% of the cell population was composed of SS cells bearing both CCK-R subtypes with 5% of beta cells (data not shown). Cerulein (Cae), a CCK-1R agonist, and pentagastrin, a CCK-2R agonist, dose-dependently increased SS release, 3-fold at 1 mumol/L Cae, 2.5-fold at 10 mumol/L pentagastrin, with occupation of both CCKRs confirmed by L-364,178 and L-365,260 inhibition of CCK receptors 1 and 2. The occupation of high-affinity CCK-1R by Cae was confirmed on SS release with JMV-180, a high-affinity CCK-1R agonist, and absence of SS release inhibition at high Cae concentration occupying the low-affinity CCK-1R. These cells release more than 60% of their SS content by constitutive secretion, confirmed by cycloheximide and brefeldin inhibiting SS synthesis and intracellular trafficking, respectively. CONCLUSIONS Both CCKR subtypes occupy RIN-14B cells and initiate SS secretion through constitutive secretion controlled at SS synthesis level. Somatostatin secretion via the CCK-1R occupation mobilizes its high-affinity sites.
Collapse
|
22
|
Abstract
Studies on the control of pancreatic secretion in humans of all ages have been a difficult task over the years because of patients' availability and ethic committee rules. Nevertheless, studies were performed and the objectives of this review are to summarize our knowledge on the development of secretory process in newborns, on the different phases of the pancreatic responses to a meal, on the pancreatic responses to the different components of the diet, on the mechanisms involved in the control of the pancreatic responses, and finally on the receptors involved in these controls.
Collapse
|
23
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
24
|
Weber BC, Manfredo HN, Rinaman L. A potential gastrointestinal link between enhanced postnatal maternal care and reduced anxiety-like behavior in adolescent rats. Behav Neurosci 2009; 123:1178-84. [PMID: 20001102 PMCID: PMC2881464 DOI: 10.1037/a0017659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early life experience impacts emotional development in the infant. In rat pups, repeated, brief (i.e., 15 min) maternal separation (MS15) during the first 1-2 postnatal weeks has been shown to increase active maternal care and to reduce later anxiety-like behavior in the offspring. We hypothesized that the anxiolytic effect of MS15 is partly due to increased intestinal release of cholecystokinin (CCK) in rat pups as a result of increased maternal contact. We predicted that rats with a history of MS15 would display less anxiety in the elevated plus maze (EPMZ) and novelty-suppressed feeding (NSF) tests, as compared with nonseparated (NS) controls, and that the anxiolytic effect of MS15 would be attenuated in rats in which daily MS15 was accompanied by systemic administration of a CCK-1 receptor antagonist (i.e., devazepide). Treatment groups included NS control litters, litters exposed to MS15 from postnatal days (P)1-10, inclusive, and litters exposed to MS15 with concurrent subcutaneous injection of devazepide or vehicle. Litters were undisturbed after P10 and were weaned on P21. Subsets of adolescent males from each litter were tested in the EPMZ on P40-41, while others were tested for NSF on P50-52. As predicted, rats with a developmental history of MS15 displayed reduced anxiety-like behavior in the EPMZ and NSF tests. The anxiolytic effect of MS15 was preserved in vehicle-treated rats, but was reversed in devazepide-treated rats. These results support the view that endogenous CCK-1 receptor signaling in infants is a potential pathway through which maternal-pup interactions regulate the development and functional organization of emotional circuits that control anxiety-like behavior in the offspring.
Collapse
Affiliation(s)
- Brittany C. Weber
- Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260
| | | | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260
| |
Collapse
|
25
|
Akgün E, Körner M, Gao F, Harkumar KG, Waser B, Reubi JC, Portoghese PS, Miller LJ. Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J Med Chem 2009; 52:2138-47. [PMID: 19271701 PMCID: PMC2666544 DOI: 10.1021/jm801439x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.
Collapse
Affiliation(s)
- Eyup Akgün
- University of Minnesota, Department of Medicinal Chemistry, College of Pharmacy, Minneapolis, MN 55455
| | - Meike Körner
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Fan Gao
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Kaleeckal G. Harkumar
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| | - Beatrice Waser
- Institute of Pathology of the University of Berne, Division of Cell Biology and Experimental Cancer Research, 3010 Berne, Switzerland
| | - Jean Claude Reubi
- Institute of Pathology of the University of Berne, Division of Cell Biology and Experimental Cancer Research, 3010 Berne, Switzerland
| | - Philip S. Portoghese
- University of Minnesota, Department of Medicinal Chemistry, College of Pharmacy, Minneapolis, MN 55455
| | - Laurence J. Miller
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, AZ 85259
| |
Collapse
|
26
|
Abstract
This review article has for major objective to summarize the old and latest developments on the hormonal controls of pancreatic growth. The article deals with hormonal controls during the fetal, neonatal and adult periods of pancreas development, growth and regeneration. During the fetal period, comparisons were made between studies performed with pancreatic explants and those designed in vivo. After birth, the effects of glucocorticoids, thyroxine, gastrin, bombesin, secretin, cholecystokinin alone or with secretin are reported. In the adults, similar studies were reported on hormones with addition of the effects of neuropeptides, the cell types targeted by hormones and the hormonal control after pancreatectomy and pancreatitis.
Collapse
|
27
|
MARSEIGNE I, DOR A, PELAPRAT D, REIBAUD M, ZUNDEL J, BLANCHARD J, ROQUES B. Structure-activity relationships of CCK26-33-related analogues modified in position 33. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1989.tb00214.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Watson S. Section Review: Oncologic, Endocrine & Metabolic: Gastrin antagonists and gastrointestinal tumours. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.12.1253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Savastano DM, Covasa M. Intestinal nutrients elicit satiation through concomitant activation of CCK1 and 5-HT3 receptors. Physiol Behav 2007; 92:434-42. [PMID: 17531277 DOI: 10.1016/j.physbeh.2007.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/08/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Previous studies demonstrate that cholecystokinin type-1 (CCK(1)) and serotonin type-3 (5-HT(3)) dependent pathways are independently involved in intestinal nutrient-induced meal termination. In the current study, we employed selective antagonists to investigate the relative contribution of CCK(1) and 5-HT(3) receptors in mediating the anorexia produced by duodenal infusion of Polycose or Intralipid in rats. Combined administration of 1 mg/kg ondansetron (Ond) and 1 mg/kg devazepide (Dev) reversed 132 mM Polycose-induced suppression to the level of control intake and significantly attenuated 263 mM Polycose-induced suppression greater than either antagonist alone. Similar results were observed when subthreshold doses of Ond (500 microg/kg) and Dev (5 microg/kg) were co-administered prior to 263 mM Polycose infusion. Suppression of intake resulting from 130 mM Intralipid was reversed to the level of control when Ond and Dev were co-administered at both independent effective doses (1 mg/kg each) and subthreshold doses (500 microg/kg and 5 microg/kg, respectively). Finally, combined administration of the antagonists increased sucrose intakes beyond intakes following control or treatment with either antagonist alone when rats were infused with saline. These data demonstrate that intestinal carbohydrates and lipids inhibit food intake through simultaneous CCK(1) and 5-HT(3) receptor activation and that these receptors appear to completely mediate the Intralipid-induced suppression of intake.
Collapse
Affiliation(s)
- David M Savastano
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, 126 South Henderson, University Park, PA 16802, United States
| | | |
Collapse
|
30
|
Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem 2007; 7:1211-31. [PMID: 17584143 PMCID: PMC2718729 DOI: 10.2174/156802607780960519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, the established and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
32
|
Niebergall-Roth E, Singer MV. Enteropancreatic reflexes mediating the pancreatic enzyme response to nutrients. Auton Neurosci 2006; 125:62-9. [PMID: 16490403 DOI: 10.1016/j.autneu.2006.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 01/13/2023]
Abstract
The observation that in dogs electrical stimulation of the vagus nerve elicited a strong secretory activity of the pancreas, prompted I. P. Pavlov in 1888 to conclude that the pancreatic secretory response to nutrients is mediated by enteropancreatic reflexes involving the vagus nerves. It took, however, more than 90 years until by studying the latency of pancreatic amylase response to exogenous and endogenous stimuli for the first time experimental evidence was provided for the actual existence of cholinergic vago-vagal enteropancreatic reflexes. Follow-up studies, based on stepwise extrinsic denervation of the pancreas, ruled out possible splanchnic pathways for enteropancreatic reflexes. In more recent years, experiments utilizing specific antagonists demonstrated a physiological role for both cholinergic M1 and cholecystokinin (CCK) receptors within the enteropancreatic reflex. At least a significant portion of the cholinergic fibres of the enteropancreatic reflex end on muscarinic receptors of the subtype M1. CCK, the most important hormone stimulating pancreatic enzyme secretion, appears to act at least in part on CCK receptors located on vagal afferent nerves, which in turn elicit a vago-vagal reflex, implying that CCK exerts its effect on the pancreas at least in part through vago-vagal reflexes. Furthermore, pharmacological blockade of CCK receptors totally abolished the early pancreatic amylase response to intestinal nutrients, suggesting that the activation of (probably vagal) CCK receptors is essential to run the enteropancreatic reflex.
Collapse
Affiliation(s)
- Elke Niebergall-Roth
- Department of Medicine II, University Hospital of Heidelberg at Mannheim, Mannheim, Germany
| | | |
Collapse
|
33
|
González-Puga C, García-Navarro A, Escames G, León J, López-Cantarero M, Ros E, Acuña-Castroviejo D. Selective CCK-A but not CCK-B receptor antagonists inhibit HT-29 cell proliferation: synergism with pharmacological levels of melatonin. J Pineal Res 2005; 39:243-50. [PMID: 16150104 DOI: 10.1111/j.1600-079x.2005.00239.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some data suggest that cholecystokinin (CCK) receptor agonists stimulate the growth of colon cancer. Melatonin, an endogenous indoleamine with strong antioxidant properties, displays antiproliferative and proapoptotic properties both in vivo or in vitro in several types of tumors. We used HT-29 human colon cancer cells, expressing CCK receptors, to test the antiproliferative effects of several antagonists of CCK-A and/or CCK-B and their possible synergism with melatonin. HT-29 cells were cultured in RPMI 1640 medium supplemented with fetal bovine serum at 37 degrees C. Cell proliferation was assessed by the incorporation of [3H]-thymidine into DNA. Annexin V-FITC plus propidium iodine were used for flow cytometry apoptosis/necrosis evaluation. The following drugs were tested: gastrin (CCK-B agonist); CCK-8s (CCK-A agonist); proglumide (CCK-A plus CCK-B antagonist); lorglumide (CCK-A antagonist); PD 135,158 (CCK-B antagonist and weak CCK-A agonist); devazepide or L 364,718 (CCK-A antagonist); L 365,260 (CCK-B antagonist), and melatonin. The results shown a lack of effects of gastrin on HT-29 cell proliferation, whereas CCK-8s induced proliferation at high doses. The order of the antiproliferative effect of the other drugs was devazepide > lorglumide > proglumide. These drugs produce cell death mainly inducing apoptosis. Melatonin showed strong antiproliferative effect at millimolar concentrations, and it induced apoptotic cell death. Melatonin generally enhanced the antiproliferative effects of devazepide, lorglumide and proglumide and increased the proglumide-induced apoptosis. These results suggest that melatonin and CCK-A antagonists are useful for controlling human colon cancer cell growth in culture and in combined therapy significantly increases their efficiency.
Collapse
|
34
|
Cohen H, Kaplan Z, Matar MA, Buriakovsky I, Bourin M, Kotler M. Different pathways mediated by CCK1 and CCK2 receptors: effect of intraperitonal mrna antisense oligodeoxynucleotides to cholecystokinin on anxiety-like and learning behaviors in rats. Depress Anxiety 2005; 20:139-52. [PMID: 15487014 DOI: 10.1002/da.20032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholecystokinin (CCK) and its analogs generate anxiety in humans and measurable anxiety-like behaviors in rats. CCK receptor blockers have been reported to have variable effects in the treatment of anxiety disorders. In a prior study, intracerebroventricular administration of CCK-antisense oligodeoxynucleotides (ASODN) for 3 days significantly diminished anxiety-like behavior in rats. Counter to our expectations, intraperitoneal (i.p.) administration of CCK-ASODN significantly increased anxiety-like behavior and impaired retention performance in the Morris water maze. The aim of the present study was to manipulate CCK-mediated anxiety-like behavior and spatial memory in rats by peripheral (i.p.) administration of ASODN to preproCCK in the presence of antagonists to CCK1 and CCK2 receptor subtypes to further elucidate the roles of these two receptors and better understand the effects of i.p. CCK-ASODN. CCK-ASODN was injected i.p. to rats five times at 24-hr intervals with and without administration of CCK1R antagonist PD135158 or CCK2 antagonist benzotrip. Control groups received injections of either a scrambled oligodeoxynucleotide (ScrODN) or vehicle. On Day 6, the rats were assessed in the elevated plus maze paradigm and in the Morris water maze. The rats were sacrificed and their blood was assessed for corticosterone, ACTH, and prolactin levels. The results show that i.p. CCK-ASODN significantly increased anxiety-like behavior and impaired retention performance in the Morris water maze, compared to both control groups, accompanied by increased plasma corticosterone and plasma ACTH concentrations. In contrast, administration of CCK-ASODN together with CCK2R antagonist, but not with CCK1R antagonist, significantly decreased anxiety-like behavior in rats, but still impaired retention performance in the Morris water maze paradigm. Lower levels of plasma corticosterone and ACTH in CCK-ASODN+CCK2R antagonist-treated rats accompanied the reduced anxiety-like behavior. The present study showed an anxiolytic effect of i.p. CCK-ASODN in the presence of CCK2R, but not CCK1R.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
35
|
Morel C, Ibarz G, Oiry C, Carnazzi E, Bergé G, Gagne D, Galleyrand JC, Martinez J. Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase. J Biol Chem 2005; 280:21384-93. [PMID: 15772081 DOI: 10.1074/jbc.m408851200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.
Collapse
Affiliation(s)
- Caroline Morel
- Laboratoire des Aminoacides, Peptides, et Protéines, CNRS Unite Mixte de Recherche-5810, UMI et UMII, UFR Pharmacie, 15, Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Bombesin is an endogenous gut peptide that is prominent in the stomach. In addition to its effects on modulating acid and gut peptide secretion, recent evidence indicates that bombesin is a potent gastroprotective agent. This review article examines the ability of bombesin to prevent gastric injury. Its protective actions appear to be mediated primarily via the release of endogenous gastrin, as gastroprotection is negated by blockade of gastrin receptors. Bombesin-induced gastroprotection and gastrin release are modified by somatostatin. Immunoneutralization of endogenous somatostatin increases the ability of bombesin to prevent gastric injury by increasing gastrin release. In mechanistic studies, ablation of capsaicin-sensitive afferent neurons abolishes bombesin-induced gastroprotection while cyclo-oxygenase inhibition partially reverses this effect. Nitric oxide synthase inhibition also negates bombesin-induced gastroprotection as well as the ability of bombesin to increase gastric mucosal blood flow. Taken together, the available evidence indicates that bombesin causes release of endogenous gastrin that activates sensory neurons located in the gastric mucosa. Activation of sensory neurons causes increased production of nitric oxide through activation of constitutive nitric oxide synthase, which leads to a resultant increase in gastric mucosal blood flow and renders the stomach less susceptible to damage from luminal irritants.
Collapse
Affiliation(s)
- Sonlee D West
- Department of Surgery, University of Texas Medical School, Houston, TX 77026, USA
| | | |
Collapse
|
37
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004. [PMID: 15100163 DOI: 10.1038/sj.bjp.0705769141/8/1275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
38
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004; 141:1275-84. [PMID: 15100163 PMCID: PMC1574909 DOI: 10.1038/sj.bjp.0705769] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
39
|
Kumari S, Kalra N, Mishra P, Chutani K, Mishra A, Chopra M. Novel 99mTcradiolabeled quinazolinone derivative [Qn-In]: synthesis, evaluation and biodistribution studies in mice and rabbit. Nucl Med Biol 2004; 31:1087-95. [PMID: 15607491 DOI: 10.1016/j.nucmedbio.2004.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2003] [Revised: 03/09/2004] [Accepted: 03/22/2004] [Indexed: 11/19/2022]
Abstract
A quinazolinone derivative as a novel non-peptidic CCK-B receptor antagonist designated as Qn-In, was synthesized, characterized by spectroscopic techniques and evaluated for radiopharmaceutical potential. The efficiency of labeling with (99m)Tc was greater than 98% and the complex was stable for about 7 hours at 37 degrees C in presence of serum. Affinity of Qn-In was determined to be in nanomolar range by competitive binding studies on cancer cell line MDA-MB-468. Bio-distribution of (99m)Tc labeled Qn-In in mice was examined by intravenous administration and time-activity curves were generated. The ligand showed binding to most of the organs, known to express CCK-B receptor. The lack of uptake in brain may be due to the inability of the complex to cross the blood-brain barrier. Our results show that (99m)Tc labeled Qn-In ligand provides a new template for further development of non-peptidic ligands for diagnosis and therapy of diseases related with CCK-B receptor.
Collapse
Affiliation(s)
- Saroj Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
40
|
Bellier B, Crété D, Million ME, Beslot F, Bado A, Garbay C, Daugé V. New CCK2 agonists confirming the heterogeneity of CCK2 receptors: characterisation of BBL454. Naunyn Schmiedebergs Arch Pharmacol 2004; 370:404-13. [PMID: 15480577 DOI: 10.1007/s00210-004-0969-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Pharmacological studies were undertaken with a new series of cholecystokinin(2) CCK(2) agonists in order to assign to them a CCK(2A) or CCK(2B) pharmacological profile. The open-field test was chosen as the discrimination test of CCK(2B) agonists. The most interesting agonist, BBL454 (0.03-300 microg/kg) induced hyperactivity which was blocked by a CCK(2) antagonist, the D1 antagonist SCH23390, the delta-opioid antagonist naltrindole, but not a CCK(1) antagonist. All compounds active in the open-field test are characterised by a common structural feature, -COCH(2)CO-Trp-NMeNle-Asp-Phe-NH(2), whereas inactive compounds do not possess such a motive. Therefore, this feature can be considered crucial for CCK(2B) activity. BBL454 (0.03-3 microg/kg) improved memory in a two-trial memory test while it was very weakly active on the peripheral CCK(2) receptor, and did not evoke anxiogenic effects in the plus-maze test. The synthesis of BBL454 is simple, its minimal active dose is 30 ng/kg and no "bell-shaped" responses were observed. These results suggest that BBL454 could be considered to be the new CCK(2B) reference agonist.
Collapse
Affiliation(s)
- Bruno Bellier
- Faculté des Sciences Pharmaceutiques et Biologiques, U266 INSERM, FRE 2463CNRS, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Evidence for implication of cholecystokinin (CCK) in the neurobiology of panic disorder is reviewed through animal and human pharmacological studies. The results of these investigations raise two issues: (i) selectivity of action of CCK-2 agonists in anxiety disorders; and (ii) aberrations of the CCK system in anxiety disorders, both of which are discussed.
Collapse
Affiliation(s)
- Michel Bourin
- 1EA 3256 "Neurobiologie de l'Anxiété et de la Dépression", Faculté de Médecine, Nantes cedex 1, France
| | - Eric Dailly
- 1EA 3256 "Neurobiologie de l'Anxiété et de la Dépression", Faculté de Médecine, Nantes cedex 1, France
| |
Collapse
|
42
|
Niebergall-Roth E, Singer MV. Control of pancreatic exocrine secretion via muscarinic receptors: which subtype(s) are involved? A review. Pancreatology 2004; 3:284-92. [PMID: 12890990 DOI: 10.1159/000071766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present report gives an overview of the experimental, pharmacological and molecular investigations that have been undertaken during the past two decades to characterize and identify the muscarinic receptor subtype(s) involved in the cholinergic control of pancreatic exocrine secretion in humans and different animal species. The results published in the literature clearly indicate that both M1 and M3 receptors contribute to the regulation of pancreatic enzyme secretion, although contradictory conclusions have been drawn from secretory studies using specific M1 and M3 receptor antagonists in vivo and in vitro. Binding studies using specific M1 and M3 receptor antagonists have supported the existence of both M1 and M3 receptors on pancreatic acinar cells, which was confirmed by the demonstration of specific mRNA for both receptor subtypes in rat pancreatic acinar cells. In addition, experimental evidence exists that nonacinar (possibly presynaptic) M1 receptors also contribute to the control of pancreatic enzyme secretion. The role of the different muscarinic receptor subtypes in the control of pancreatic fluid and bicarbonate output, however, still needs to be clarified. Future research should cover the evaluation of the relative contribution of the different receptor subtypes to the regulation of pancreatic exocrine function, the localization of the receptors involved as well as possible species differences.
Collapse
Affiliation(s)
- Elke Niebergall-Roth
- Department of Medicine II, University Hospital of Heidelberg at Mannheim, Mannheim, Germany
| | | |
Collapse
|
43
|
Adelson DW, Million M, Kanamoto K, Palanca T, Taché Y. Coordinated gastric and sphincter motility evoked by intravenous CCK-8 as monitored by ultrasonomicrometry in rats. Am J Physiol Gastrointest Liver Physiol 2004; 286:G321-32. [PMID: 14715522 DOI: 10.1152/ajpgi.00057.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric and sphincter motility evoked by intravenous injection of CCK-8 were investigated in urethane-anesthetized rats. Digital ultrasonomicrometry was used to monitor pyloric (PYL), antral (ANT), corpus (COR), and lower esophageal sphincter (LES) movements while simultaneously measuring intragastric pressure (IGP) and, in some experiments, subdiaphragmatic intraesophageal pressure (sIEP). Intracrystal distances (ICD) were measured continuously between pairs of piezoelectric crystals affixed to the serosa of PYL, ANT, COR (circular and longitudinal), and LES. Consecutive intravenous injections of CCK-8 (0.3, 1, and 3 microg/kg) at 30-min intervals caused dose-dependent simultaneous tonic contractions of PYL and ANT, LES opening, and drops in IGP with peak changes at 3 microg/kg of -17.9 +/- 2.1, -7.7 +/- 2.5, 6.5 +/- 1.4, and -29.2 +/- 3.8%, respectively, whereas intravenous saline had no effect. Rhythmic contractile activity was inhibited by CCK-8. COR responses were not significantly different from vehicle controls for most metrics, and the direction of response for circular COR varied between preparations, although not for repeated trials in a single preparation. During the LES response to CCK-8, sIEP rose in parallel with drops in IGP, indicating formation of a common cavity. Recovery of LES ICD after intravenous CCK occurred more rapidly than recovery of PYL ICD, suggesting the importance of preventing simultaneous patency of gastroesophageal and gastroduodenal passages. The CCK(A) receptor antagonist devazepide (500 microg/kg intravenous) inhibited motion responses evoked by intravenous CCK-8. These data revealed CCK-8-induced gastric and sphincter activity consistent with retropulsion of gastric content.
Collapse
Affiliation(s)
- David W Adelson
- Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
44
|
Reubi JC, Waser B, Gugger M, Friess H, Kleeff J, Kayed H, Büchler MW, Laissue JA. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue. Gastroenterology 2003; 125:98-106. [PMID: 12851875 DOI: 10.1016/s0016-5085(03)00697-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The localization and functional role of cholecystokinin (CCK) receptor proteins in normal and diseased human pancreas, particularly in ductal pancreatic carcinomas, remain unclear. METHODS Tissue samples of normal human pancreas, chronic pancreatitis, and ductal pancreatic carcinomas were investigated under carefully controlled conditions for expression of CCK1 and CCK2 receptor messenger RNA (mRNA) and proteins using in situ hybridization and in vitro CCK receptor autoradiography by means of subtype-selective analogues. Synaptophysin immunohistochemistry was used concomitantly for optimal identification of islets, nerves, and tumor areas with neuroendocrine features. RESULTS CCK2 receptor mRNA and proteins were found abundantly in human pancreatic islets in normal pancreas and chronic pancreatitis. CCK1 receptor proteins were found occasionally in small-sized pancreatic nerves, whereas acini expressed a low density of CCK2 receptors in a few cases of chronic pancreatitis. Ductal pancreatic carcinomas rarely expressed CCK receptors; a few receptor-positive tumors, often characterized by neuroendocrine differentiation, expressed the CCK2 receptor at the mRNA or protein level. However, the main source of CCK receptors in the pancreatic tumor samples consisted of CCK2-expressing islets and/or CCK1-expressing nerves rather than neoplastic tissue. CONCLUSIONS These data indicate that the presence of CCK receptors in human ductal pancreatic tumor samples is mainly due to CCK2 expression in residual pancreatic islets and CCK1 in pancreatic nerves. Pancreatic acini and ductal pancreatic tumor cells very rarely express CCK2 receptors. These observations suggest that CCK analogues may not be of clinical use to target most of these cancers.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Herrero S, Garcı́a-López M, Cenarruzabeitia E, Rı́o JD, Herranz R. Versatile synthesis of chiral 2-substituted-5-oxo-1,2,3,4-tetrahydro-5H-1,4-benzodiazepines as novel scaffolds for peptidomimetic building. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00681-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 101:2412-8. [PMID: 12433690 DOI: 10.1182/blood-2002-05-1433] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A prominent feature of sickle cell anemia is the presence of dehydrated red blood cells (RBCs) in circulation. Loss of potassium (K(+)), chloride (Cl(-)), and water from RBCs is thought to contribute to the production of these dehydrated cells. One main route of K(+) loss in the RBC is the Gardos channel, a calcium (Ca(2+))-activated K(+) channel. Clotrimazole (CLT), an inhibitor of the Gardos channel, has been shown to reduce RBC dehydration in vitro and in vivo. We have developed a chemically novel compound, ICA-17043, that has greater potency and selectivity than CLT in inhibiting the Gardos channel. ICA-17043 blocked Ca(2+)-induced rubidium flux from human RBCs with an IC(50) value of 11 +/- 2 nM (CLT IC(50) = 100 +/- 12 nM) and inhibited RBC dehydration with an IC(50) of 30 +/- 20 nM. In a transgenic mouse model of sickle cell disease (SAD), treatment with ICA-17043 (10 mg/kg orally, twice a day) for 21 days showed a marked and constant inhibition of the Gardos channel activity (with an average inhibition of 90% +/- 27%, P <.005), an increase in RBC K(+) content (from 392 +/- 19.9 to 479.2 +/- 40 mmol/kg hemoglobin [Hb], P <.005), a significant increase in hematocrit (Hct) (from 0.435 +/- 0.007 to 0.509 +/- 0.022 [43.5% +/- 0.7% to 50.9% +/- 2.2%], P <.005), a decrease in mean corpuscular hemoglobin concentration (MCHC) (from 340 +/- 9.0 to 300 +/- 15 g/L [34.0 +/- 0.9 to 30 +/- 1.5 g/dL], P <.05), and a left-shift in RBC density curves. These data indicate that ICA-17043 is a potent inhibitor of the Gardos channel and ameliorates RBC dehydration in the SAD mouse.
Collapse
Affiliation(s)
- Jonathan W Stocker
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Ebenezer IS. The effects of a peripherally acting cholecystokinin1 receptor antagonist on food intake in rats: implications for the cholecystokinin-satiety hypothesis. Eur J Pharmacol 2003; 461:113-8. [PMID: 12586206 DOI: 10.1016/s0014-2999(02)02916-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The observation that systemic administration of the peptide cholecystokinin (CCK) inhibits food intake in mammalian species has led to the hypothesis that endogenous peripheral CCK released from the small intestine during a meal acts as a satiety factor. It was predicted that if CCK does play an important role in satiety, then systemic administration of a specific CCK receptor antagonist should block the effects of the endogenous peptide released during a meal and increase food intake. The present study was undertaken to test the hypothesis by investigating the effects of the cholecystokinin(1) (CCK(1)) receptor antagonist N-alpha-3'-quinolinoyl-D-Glu-N,N-dipentylamide dicyclohexylammonium (A70104), which is unlikely to cross the blood-brain barrier, on food intake in rats. A70104 (20-200 microg/kg, i.p.) had no any significant effect on the intake of a test meal in rats under different experimental conditions. However, pretreatment of rats with A70104 (50 microg/kg, i.p.) abolished the inhibitory effects of exogenous peripheral CCK (5 microg/kg, i.p.) on food intake. The findings that A70104 had no effect on food intake when administered on its own, but abolishes the suppressant effect of exogenous peripheral CCK, suggest that endogenously released peripheral CCK does not play an important role as a satiety factor in rats.
Collapse
Affiliation(s)
- Ivor S Ebenezer
- Neuropharmacology Research Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, England, UK.
| |
Collapse
|
48
|
Fourmy D, Escrieut C, Archer E, Galès C, Gigoux V, Maigret B, Moroder L, Silvente-Poirot S, Martinez J, Fehrentz JA, Pradayrol L. Structure of cholecystokinin receptor binding sites and mechanism of activation/inactivation by agonists/antagonists. PHARMACOLOGY & TOXICOLOGY 2002; 91:313-20. [PMID: 12688374 DOI: 10.1034/j.1600-0773.2002.910608.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Delineation of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for ligand recognition, partial agonism, ligand-induced traffiking of receptor signalling. In the current paper, we illustrate how, in the past 5 years, studies from our laboratory and others have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. Available data on CCK1 and CCK2R binding sites indicate that 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs; 2) binding sites of non-peptide agonists/antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK and 3) residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.
Collapse
Affiliation(s)
- Daniel Fourmy
- INSERM U 531, Louis Bugnard Institute, CHU Rangueil, Bat. L3, 31403 Toulouse Cedex 4, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agrawal VK, Sharma R, Khadikar PV. Quantitative structure-activity relationship studies on 5-phenyl-3-ureido-1,5-benzodiazepine as cholecystokinin-A receptor antagonists. Bioorg Med Chem 2002; 10:3571-81. [PMID: 12213472 DOI: 10.1016/s0968-0896(02)00167-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quantitative structure-activity relationship (QSAR) studies on a series of 5-phenyl-3-ureido-1,5-benzodiazepine-2,4-diones has been carried out using a pool of distance-based topological indices. Step-wise regression analysis indicated that penta-parametric regression expression containing Sz, B, Ip1, Ip2 and Ip3 is the most potent and selective for CCK-A affinity. The predictive potential of the model is discussed on the basis of cross-validation parameters as well as by estimating root mean square (RMSR) of the residuals.
Collapse
Affiliation(s)
- Vijay K Agrawal
- QSAR and Computer Chemical Laboratories, Department of Chemistry, A. P. S. University, -486 003, Rewa, India
| | | | | |
Collapse
|
50
|
Zhang W, Segura BJ, Mulholland MW. Cholecystokinin-8 induces intracellular calcium signaling in cultured myenteric neurons from neonatal guinea pigs. Peptides 2002; 23:1793-1801. [PMID: 12383867 DOI: 10.1016/s0196-9781(02)00136-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The responsiveness of cultured myenteric neurons to cholecystokinin (CCK-8) was examined using fura-2-based digital microfluorimetric measurement of intracellular calcium ([Ca(2+)](i)). CCK-8 (10(-10)-10(-6)M) evoked concentration-dependent increases in percentage of neurons responding (8-52%) and delta[Ca(2+)](i) (76-169 nM). Gastrin (1 microM) also induced an increase in [Ca(2+)](i) in 29+/-6% of neurons (delta[Ca(2+)](i): 71+/-3 nM). L-364,718, an antagonist for the CCK-A receptor, blocked [Ca(2+)](i) response to CCK-8. Removal of extracellular calcium eliminated CCK-induced [Ca(2+)](i) increments, as did the addition of the calcium channel inhibitors nickel (1mM) and lanthanum (5mM). Nifedipine (1-50 microM) dose-dependently attenuated CCK-caused [Ca(2+)](i) responses. CCK evokes [Ca(2+)](i) signaling in myenteric neurons by the influx of extracellular calcium, likely through L-type calcium channels.
Collapse
Affiliation(s)
- Weizhen Zhang
- Department of Surgery, Michigan Gastrointestinal Peptide Center, University of Michigan, Ann Arbor, MI 48109-0331, USA
| | | | | |
Collapse
|