1
|
He HY, Hodos W, Quinlan EM. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J Neurosci 2006; 26:2951-5. [PMID: 16540572 PMCID: PMC6673977 DOI: 10.1523/jneurosci.5554-05.2006] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brief monocular deprivation (< or =3 d) induces a rapid shift in the ocular dominance of binocular neurons in the juvenile rodent visual cortex but is ineffective in adults. Here, we report that persistent, rapid, juvenile-like ocular dominance plasticity can be reactivated in adult rodent visual cortex when monocular deprivation is preceded by visual deprivation. Ocular dominance shifts in visually deprived adults are caused by a rapid depression of the response to stimulation of the deprived eye, previously only reported in juveniles, and a simultaneous potentiation of the response to stimulation of the nondeprived eye. The enhanced ocular dominance plasticity induced by visual deprivation persists for days, even if binocular vision precedes monocular deprivation. Visual deprivation also induces a significant decrease in the level of GABAA receptors relative to AMPA receptors and a return to the juvenile form of NMDA receptors in the visual cortex, two molecular changes that we propose enable the persistent reactivation of rapid ocular dominance plasticity.
Collapse
MESH Headings
- Age Factors
- Animals
- Dominance, Ocular/genetics
- Dominance, Ocular/physiology
- Evoked Potentials, Visual
- Eye Proteins/biosynthesis
- Eye Proteins/genetics
- Eye Proteins/physiology
- Female
- Gene Expression Regulation
- Male
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Rats
- Rats, Long-Evans
- Receptors, AMPA/biosynthesis
- Receptors, AMPA/genetics
- Receptors, AMPA/physiology
- Receptors, GABA-A/biosynthesis
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Vision, Monocular/physiology
- Visual Cortex/physiology
Collapse
|
2
|
Van den Bergh G, Eysel UT, Vandenbussche E, Vandesande F, Arckens L. Retinotopic map plasticity in adult cat visual cortex is accompanied by changes in Ca2+/calmodulin-dependent protein kinase II alpha autophosphorylation. Neuroscience 2003; 120:133-42. [PMID: 12849747 DOI: 10.1016/s0306-4522(03)00291-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In adult cats, the induction of homonymous binocular central retinal lesions causes a dramatic reorganization of the topographic map in the sensory-deprived region of the primary visual cortex. To investigate the possible involvement of the alpha-subunit of the calcium/calmodulin dependent protein kinase type II (alphaCaMKII) in this form of brain plasticity, we performed in situ hybridization and Western blotting experiments to analyze mRNA, protein and autophosphorylation levels of this multifunctional kinase. No differences in the mRNA or protein levels were observed between the central, sensory-deprived and the peripheral, non-deprived regions of area 17 of retinal lesion animals or between corresponding cortical regions of normal control animals. Western blotting with an alphaCaMKII threonine-286 phosphorylation-state specific antiserum consistently showed a small, albeit not significant, increase of alphaCaMKII autophosphorylation in the central versus the peripheral region of cortical area 17, and this both in normal subjects as well as in retinal lesion animals with a 3-day post-lesion survival time. In contrast, a post-lesion survival time of 14 days resulted in a alphaCaMKII autophosphorylation level that was four times higher in visually-deprived area 17 than in the non-deprived cortical region. This increased phosphorylation state is not a direct consequence of the decrease in visual activity in these neurons, because we would have expected to see a similar change at shorter or longer post-lesion survival times or in the visually deprived visual cortex of animals in which the left optic tract and the corpus callosum were surgically cut. No such changes were observed, leading to the conclusion that the phosphorylation changes observed at 14 days are related to a delayed reorganization of the retinotopic map of the striate cortex.
Collapse
Affiliation(s)
- G Van den Bergh
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
3
|
Abstract
In a neuron's dendritic spine, the location of CaMKII is controlled by a number of interacting factors, including its ability to bind calcium/calmodulin, its phosphorylation state and the synthesis of new subunits in the dendrites. New studies have shown that the exact location of CaMKII is crucial for the form and endurance of synaptic plasticity.
Collapse
Affiliation(s)
- Kevin Fox
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| |
Collapse
|
4
|
Taha S, Hanover JL, Silva AJ, Stryker MP. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 2002; 36:483-91. [PMID: 12408850 DOI: 10.1016/s0896-6273(02)00966-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experience is a powerful sculptor of developing neural connections. In the primary visual cortex (V1), cortical connections are particularly susceptible to the effects of sensory manipulation during a postnatal critical period. At the molecular level, this activity-dependent plasticity requires the transformation of synaptic depolarization into changes in synaptic weight. The molecule alpha calcium-calmodulin kinase type II (alphaCaMKII) is known to play a central role in this transformation. Importantly, alphaCaMKII function is modulated by autophosphorylation, which promotes Ca(2+)-independent kinase activity. Here we show that mice possessing a mutant form of alphaCaMKII that is unable to autophosphorylate show impairments in ocular dominance plasticity. These results confirm the importance of alphaCaMKII in visual cortical plasticity and suggest that synaptic changes induced by monocular deprivation are stored specifically in glutamatergic synapses made onto excitatory neurons.
Collapse
Affiliation(s)
- Sharif Taha
- W.M. Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
5
|
Pinaudeau-Nasarre C, Gaillard A, Roger M. Timing and plasticity of specification of CaM-Kinase II alpha expression by neocortical neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:97-107. [PMID: 12354638 DOI: 10.1016/s0165-3806(02)00457-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, the differential expression of a chemical marker, the alpha-isoform of the calcium/calmodulin-dependent protein kinase II (CaM-Kinase II alpha) and the development of the spinal cord projection were used to determine in vivo the embryonic stages at which different aspects of the phenotype of neocortical cells are specified. We first performed a quantitative, immunocytochemical study on the levels of CaM-Kinase II alpha expression in the frontal, parietal and occipital cortical areas of control adult rats. We found that the levels of expression of CaM-Kinase II alpha were larger in the frontal and parietal areas than in the occipital areas. In addition, all layer V neurons identified as projecting to the spinal cord were CaM-Kinase II alpha immunopositive. We then grafted embryonic day (E) 12 or 14 cells from the presumptive frontal or occipital cortex of donor fetuses into the frontal or occipital cortex of newborn hosts. Cortical cells grafted at E12 differentiate neurons with molecular (CaM-Kinase II alpha) and connectivity (spinal cord projection) phenotypes appropriate to the cortical area where they complete their development whereas cells taken at E14 differentiate neurons with molecular and connectivity phenotypes appropriate to their cortical locus of origin. These findings suggest that E12 progenitors destined to generate layer V neurons are multipotent. The final phenotype of their progeny depends on regionalizing signals expressed in the environment. Later in corticogenesis, committed progenitors become unable to respond to regionalizing signals and generate neurons whose phenotype is appropriate to the initial cortical position of the precursor.
Collapse
|
6
|
Abstract
Most excitatory input in the hippocampus and cerebral cortex impinges on dendritic spines. Alterations in dendritic spine density or shape are suspected to be morphological manifestations of changes in physiology or behavior. The links between spine plasticity and physiological responses have probably been best studied in the hippocampus in the context of changes in the circulating levels of steroid hormones or long-term potentiation. Here we review and present data which indicate that both the age of the preparation and the timing of the analysis can dramatically effect the results obtained. Collectively the data suggest that different cellular and morphological strategies may be utilized at different ages and under different circumstances to effect similar physiological responses or behaviors.
Collapse
Affiliation(s)
- A Gazzaley
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, The Mount Sinai School of Medicine, P.O. Box 1065/Neurobiology, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
7
|
Jones EG, Woods TM, Manger PR. Adaptive responses of monkey somatosensory cortex to peripheral and central deafferentation. Neuroscience 2002; 111:775-97. [PMID: 12031404 DOI: 10.1016/s0306-4522(02)00028-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study deals with two kinds of activity-dependent phenomena in the somatosensory cortex of adult monkeys, both of which may be related: (1) mutability of representational maps, as defined electrophysiologically; (2) alterations in expression of genes important in the inhibitory and excitatory neurotransmitter systems. Area 3b of the cerebral cortex was mapped physiologically and mRNA levels or numbers of immunocytochemically stained neurons quantified after disrupting afferent input peripherally by section of peripheral nerves, or centrally by making lesions of increasing size in the somatosensory thalamus. Survival times ranged from a few weeks to many months. Mapping studies after peripheral nerve lesions replicated results of previous studies in showing the contraction of representations deprived of sensory input and expansion of adjacent representations. However, these changes in representational maps were in most cases unaccompanied by significant alterations in gene expression for calcium calmodulin-dependent protein kinase isoforms, for glutamic acid decarboxylase, GABA(A) receptor subunits, GABA(B) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or N-methyl-D-aspartate (NMDA) receptor subunits. Mapping studies after lesions in the ventral posterior lateral nucleus (VPL) of the thalamus revealed no changes in cortical representations of the hand or fingers until >15% of the thalamic representation was destroyed, and only slight changes until approximately 45% of the representation was destroyed, at which point the cortical representation of the finger at the center of a lesion began to shrink. Lesions destroying >60% of VPL resulted in silencing of the hand representation. Although all lesions were associated with a loss of parvalbumin-immunoreactive thalamocortical fiber terminations, and of cytochrome oxidase staining in a focal zone of area 3b, no changes in gene expression could be detected in the affected zone until >40-50% of VPL was destroyed, and even after that changes in mRNA levels or in numbers of GABA-immunoreactive neurons in the affected zone were remarkably small. The results of these studies differ markedly from the robust changes in gene expression detectable in the visual cortex of monkeys deprived of vision in one eye. The results confirm the view that divergence of the afferent somatosensory pathways from periphery to cerebral cortex is sufficiently great that many fibers can be lost before neuronal activity is totally silenced in area 3b. This divergence is capable of maintaining a high degree of cortical function in the face of diminishing inputs from the periphery and is probably an important element in promoting representational plasticity in response to altered patterns of afferent input.
Collapse
Affiliation(s)
- E G Jones
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95616, USA.
| | | | | |
Collapse
|
8
|
Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J Neurosci 2002. [PMID: 11923427 DOI: 10.1523/jneurosci.22-07-02617.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological studies have established that the adult cerebral cortex undergoes immediate functional reorganizations after perturbations of the sensory periphery. These activity-dependent modifications are thought to be mediated via the rapid regulation of the synaptic strength of existing connections. Recent studies have implicated synaptic zinc as contributing to activity-dependent mechanisms of cortical plasticity, such as long-term potentiation and long-term depression, by virtue of its potent ability to modulate glutamatergic neurotransmission. To investigate the role of synaptic zinc in cortical plasticity, we examined changes in the barrel-specific distribution of zinc in axon terminals innervating the primary somatosensory cortex of adult mice at different time points after whisker plucking. In layer IV of normal adult mice, zinc staining in the barrel field was characterized by intense staining in inter-barrel septae and low levels of staining in barrel hollows. Within 3 hr, and up to 1 week after the removal of a row of whiskers, zinc staining increased significantly in barrel hollows corresponding to the plucked whiskers. With longer survival times, levels of zinc staining gradually declined in deprived barrel hollows, returning to normal levels by 2-3 weeks after whisker removal. Increased levels of zinc staining in deprived barrel hollows were highly, negatively correlated with the length of whiskers as they regrew. These results indicate that levels of synaptic zinc in the neocortex are rapidly regulated by changes in sensory experience and suggest that zinc may participate in the plastic changes that normally occur in the cortex on a moment-to-moment basis.
Collapse
|
9
|
Zou DJ, Greer CA, Firestein S. Expression pattern of alpha CaMKII in the mouse main olfactory bulb. J Comp Neurol 2002; 443:226-36. [PMID: 11807833 DOI: 10.1002/cne.10125] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is highly enriched at synapses and has been implicated in regulating the formation and function of several sensory systems, including the visual and the somatosensory systems. Although there is evidence for CaMKII expression in the olfactory system, the cellular localization of CaMKII has not been well studied and its function remains unknown. In this study, we examined the normal expression patterns of the predominant alpha CaMKII in the mouse main olfactory bulb. We showed that alpha CaMKII expression levels were high in the olfactory bulb and were developmentally regulated. Immunoreactivity to alpha CaMKII was heavy in the external plexiform layer and the granule cell layer but minimal in the olfactory nerve layer and the glomerular layer. At the cellular level, alpha CaMKII was selectively expressed in the gamma-aminobutyric acid (GABA)ergic granule cells but not in the GABAergic periglomerular cells. Unexpectedly, alpha CaMKII was not detected in the glutamatergic mitral/tufted cells. At the ultrastructural level, alpha CaMKII immunoreactivity was positive in granule cell spines and dendrites, but negative in mitral/tufted cell dendrites. In contrast, in the piriform cortex, as in the majority of cortical regions, alpha CaMKII was expressed in the glutamatergic neurons but not in the GABAergic neurons. Our results set the stage for ongoing investigations of the roles of CaMKII in the formation and function of the olfactory system.
Collapse
Affiliation(s)
- Dong-Jing Zou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
10
|
Henkin RI, Levy LM. Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes. J Comput Assist Tomogr 2002; 26:39-61. [PMID: 11801904 DOI: 10.1097/00004728-200201000-00008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Our goal was to use functional MRI (fMRI) to define brain activation in response to odors and imagination ("memory") of odors and tastes in patients who never recognized odors (congenital hyposmia). METHOD Functional MR brain scans were obtained in nine patients with congenital hyposmia using multislice echo planar imaging (EPI) in response to odors of amyl acetate, menthone, and pyridine and to imagination ("memory") of banana and peppermint odors and to salt and sweet tastes. Functional MR brain scans were compared with those in normal subjects and patients with acquired hyposmia. Activation images were derived using correlation analysis, and ratios of areas of brain activated to total and hemispheric brain areas were calculated. Total and hemispheric activated pixel counts were used to quantitate regional brain activation. RESULTS Brain activation in response to odors was present in patients with congenital hyposmia. Activation was significantly lower than in normal subjects and patients with acquired hyposmia and did not demonstrate differential vapor pressure-dependent detection responsiveness or odor response lateralization. Regional activation localization was in anterior frontal and temporal cortex similar to that in normal subjects and patients with acquired hyposmia. Activation in response to presented odors was diverse, with a larger group exhibiting little or no activation with localization only in anterior frontal and temporal cortex and a smaller group exhibiting greater activation with localization extending to more complex olfactory integration sites. "Memory" of odors and tastes elicited activation in the same central nervous system (CNS) regions in which activation in response to presented odors occurred, but responses were significantly lower than in normal subjects and patients with acquired hyposmia and did not lateralize. CONCLUSION Odors induced CNS activation in patients with congenital hyposmia, which distinguishes olfaction from vision and audition since neither light nor acoustic stimuli induce CNS activation. Odor activation localized to anterior frontal and temporal cortex, consistent with the hypothesis that olfactory pathways are hard-wired into the CNS and that further pathways are undeveloped with primary olfactory system CNS connections but lack of secondary connections. However, some patients exhibited greater odor activation with response localization extending to cingulate and opercular cortex, indicating some olfactory signals impinge on and maintain secondary connections consistent with similar functions in vision and audition. Activation localization of taste "memory" to anterior frontal and temporal cortex is consistent with CNS plasticity and cross-modal CNS reorganization as described for vision and audition. Thus, there are differences and similarities between olfaction, vision, and audition, the differences dependent on unique qualities of olfaction, perhaps due to its diffuse, primitive, fundamental role in survival. Response heterogeneity to odors may reflect heterogeneous genetic abnormalities, independent of anatomic or hormonal changes but dependent on molecular abnormalities in growth factor function interfering with growth factor/stem cell interactions. Patients with congenital hyposmia offer an unique model system not previously explored in which congenital smell lack as measured by fMRI is reflective of congenital dysfunction of a major sensory system.
Collapse
|
11
|
Xue J, Li G, Laabich A, Cooper NG. Visual-mediated regulation of retinal CaMKII and its GluR1 substrate is age-dependent. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:95-104. [PMID: 11532343 DOI: 10.1016/s0169-328x(01)00168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) and one of its substrates, the glutamate receptor, are key players in experience-driven synaptic plasticity in several areas of the central nervous system (CNS). To determine if CaMKII and the glutamate receptor are regulated by visual activity in the retina, we compared dark-reared (DR; 1 week) rats with control rats raised in a diurnal light-dark cycle (LD), at the following ages: postnatal day 12 (P12d), 2-month (2m) and 6-month (6m) old. The mRNA levels of CaMKIIalpha and beta were determined by a competitive reverse transcription polymerase chain reaction (competitive RT-PCR) method. The protein levels of these two subunits were evaluated by immunoblots. The data show that the mRNAs for CaMKIIalpha and beta were increased about 8-fold and 10-fold, respectively, in the retinae of DR P12d rats. As for the proteins, 2- and 2.6-fold elevations for CaMKIIalpha and beta, respectively, were evident. The GluR1 subunit of the AMPAR (AMPAR-GluR1) was also evaluated in antibody-treated blots and found to be increased about 2-fold after 1 week of dark rearing in the retinae of P12d rats. This type of experience-driven molecular change was age-dependent, showing less increase in 2m old rats and not present in 6m old rats. Returning DR 2m old rats to the LD environment for 1 week was sufficient to restore the dark-induced changes to the levels of the age-matched LD controls. Based on the data, a theoretical model for activity-dependent modulation of the developing retinal synapses is proposed.
Collapse
Affiliation(s)
- J Xue
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
12
|
Solà C, Barrón S, Tusell JM, Serratosa J. The Ca2+/calmodulin system in neuronal hyperexcitability. Int J Biochem Cell Biol 2001; 33:439-55. [PMID: 11331200 DOI: 10.1016/s1357-2725(01)00030-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Calmodulin (CaM) is a major Ca2+-binding protein in the brain, where it plays an important role in the neuronal response to changes in the intracellular Ca2+ concentration. Calmodulin modulates numerous Ca2+-dependent enzymes and participates in relevant cellular functions. Among the different CaM-binding proteins, the Ca2+/CaM dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. Therefore, the role of the Ca2+/CaM signalling system in different neurotoxicological or neuropathological conditions associated to alterations in the intracellular Ca2+ concentration is a subject of interest. We here report different evidences showing the involvement of CaM and the CaM-binding proteins above mentioned in situations of neuronal hyperexcitability induced by convulsant agents. Signal transduction pathways mediated by specific CaM binding proteins warrant future study as potential targets in the development of new drugs to inhibit convulsant responses or to prevent or attenuate the alterations in neuronal function associated to the deleterious increases in the intracellular Ca2+ levels described in different pathological situations.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consell Superior d'Investigacions Científiques, Barcelona, Spain.
| | | | | | | |
Collapse
|
13
|
Tochitani S, Liang F, Watakabe A, Hashikawa T, Yamamori T. The occ1 gene is preferentially expressed in the primary visual cortex in an activity-dependent manner: a pattern of gene expression related to the cytoarchitectonic area in adult macaque neocortex. Eur J Neurosci 2001; 13:297-307. [PMID: 11168534 DOI: 10.1046/j.0953-816x.2000.01390.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marker molecules to visualize specific subsets of neurons are useful for studying the functional organization of the neocortex. One approach to identify such molecular markers is to examine the differences in molecular properties among morphologically and physiologically distinct neuronal cell types. We used differential display to compare mRNA expression in the anatomically and functionally distinct areas of the adult macaque neocortex. We found that a gene, designated occ1, was preferentially transcribed in the posterior region of the neocortex, especially in area 17. Complete sequence analysis revealed that occ1 encodes a macaque homolog of a secretable protein, TSC-36/follistatin-related protein (FRP). In situ hybridization histochemistry confirmed the characteristic neocortical expression pattern of occ1 and showed that occ1 transcription is high in layers II, III, IVA and IVC of area 17. In addition, occ1 transcription was observed selectively in cells of the magnocellular layers in the lateral geniculate nucleus (LGN). Dual labeling immunohistochemistry showed that the occ1-positive neurons in area 17 include both gamma-aminobutyric acid (GABA)-positive aspiny inhibitory cells and the alpha-subunit of type II calcium/calmodulin-dependent protein kinase (CaMKII alpha)-positive spiny excitatory cells. With brief periods of monocular deprivation, the occ1 mRNA level decreased markedly in deprived ocular dominance columns of area 17. From this we conclude that the expression of occ1 mRNA is present in a subset of neurons that are preferentially localized in particular laminae of area 17 and consist of various morphological and physiological neuronal types, and, furthermore, occ1 transcription is subject to visually driven activity-dependent regulation.
Collapse
Affiliation(s)
- S Tochitani
- Division of Speciation Mechanisms I, National Institute for Basic Biology, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Liu LO, Li G, McCall MA, Cooper NG. Photoreceptor regulated expression of Ca(2+)/calmodulin-dependent protein kinase II in the mouse retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:150-66. [PMID: 11042368 DOI: 10.1016/s0169-328x(00)00203-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this investigation is to determine mechanisms for regulation of retinal calmodulin kinase II (CaMKII). To this end, the expression and activity of CaMKII are examined in the retina of the rdta mouse, in which rod photoreceptors have been genetically ablated [47]. CaMKII levels are compared between rdta mice and the normal, littermate control mice. It is demonstrated that retinal CaMKII protein, enzyme activity and mRNA are significantly increased in response to the genetic ablation of rod photoreceptors. The data indicate that CaMKII expression/activity in amacrine and ganglion cells is negatively regulated by the rod photoreceptor-mediated visual input. The regulation appears to occur primarily at the transcriptional level. It is shown that the cytoplasmic polyadenylation element binding protein (CPEB), a regulatory factor for translation that is known to promote CaMKIIalpha translation in dendrites [83], is also present in the mouse retina. However, the polyadenylation-mediated translational control mechanism is not activated in this experimental paradigm.
Collapse
Affiliation(s)
- L O Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
15
|
Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 2000; 23:1-37. [PMID: 10845057 DOI: 10.1146/annurev.neuro.23.1.1] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After manipulations of the periphery that reduce or enhance input to the somatosensory cortex, affected parts of the body representation will contract or expand, often over many millimeters. Various mechanisms, including divergence of preexisting connections, expression of latent synapses, and sprouting of new synapses, have been proposed to explain such phenomena, which probably underlie altered sensory experiences associated with limb amputation and peripheral nerve injury in humans. Putative cortical mechanisms have received the greatest emphasis but there is increasing evidence for substantial reorganization in subcortical structures, including the brainstem and thalamus, that may be of sufficient extent to account for or play a large part in representational plasticity in somatosensory cortex. Recent studies show that divergence of ascending connections is considerable and sufficient to ensure that small alterations in map topography at brainstem and thalamic levels will be amplified in the projection to the cortex. In the long term, slow, deafferentation-dependent transneuronal atrophy at brainstem, thalamic, and even cortical levels are operational in promoting reorganizational changes, and the extent to which surviving connections can maintain a map is a key to understanding differences between central and peripheral deafferentation.
Collapse
Affiliation(s)
- E G Jones
- Center for Neuroscience, University of California, Davis 95616, USA.
| |
Collapse
|
16
|
Glazewski S, Giese KP, Silva A, Fox K. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat Neurosci 2000; 3:911-8. [PMID: 10966622 DOI: 10.1038/78820] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium/calmodulin kinase type II (CaMKII) is a major postsynaptic density protein. CaMKII is postulated to act as a 'molecular switch', which, when triggered by a transient rise in calcium influx, becomes active for prolonged periods because of its ability to autophosphorylate. We studied experience-dependent plasticity in the barrel cortex of mice carrying a point mutation of the alpha-CaMKII gene (T286A), which abolishes this enzyme's ability to autophosphorylate. Plasticity was prevented in adult and adolescent mice homozygous for the mutation, but was normal in heterozygotes and wild-type littermates. These results provide evidence that the molecular switch hypothesis is valid for neocortical experience-dependent plasticity.
Collapse
Affiliation(s)
- S Glazewski
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | | | | | | |
Collapse
|
17
|
Expression of GAP-43 and SCG10 mRNAs in lateral geniculate nucleus of normal and monocularly deprived macaque monkeys. J Neurosci 2000. [PMID: 10934252 DOI: 10.1523/jneurosci.20-16-06030.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We performed nonradioactive in situ hybridization histochemistry (ISH) in the lateral geniculate nucleus (LGN) of the macaque monkey to investigate the distribution of mRNA for two growth-associated proteins, GAP-43 and SCG10. GAP-43 and SCG10 mRNAs were coexpressed in most neurons of both magnocellular layers (layers I and II) and parvocellular layers (layers III-VI). Double-labeling using nonradioactive ISH and immunofluorescence revealed that both GAP-43 and SCG10 mRNAs were coexpressed with the alpha-subunit of type II calcium/calmodulin-dependent protein kinase, indicating that both mRNAs are expressed also in koniocellular neurons in the LGN. We also showed that GABA-immunoreactive neurons in the LGN did not contain GAP-43 and SCG10 mRNAs, indicating that neither GAP-43 nor SCG10 mRNAs were expressed in inhibitory interneurons in the LGN. GABA-immunoreactive neurons in the perigeniculate nucleus, however, contained both GAP-43 and SCG10 mRNAs, indicating that both mRNAs were expressed in inhibitory neurons in the perigeniculate nucleus, which project to relay neurons in the LGN. Furthermore, to determine whether the expression of GAP-43 and SCG10 mRNAs is regulated by visual input, we performed nonradioactive ISH in the LGN and the primary visual area of monkeys deprived of monocular visual input by intraocular injections of tetrodotoxin. Both mRNAs were downregulated in the LGN after monocular deprivation for 5 d or longer. From these results, we conclude that both GAP-43 and SCG10 mRNAs are expressed in the excitatory relay neurons of the monkey LGN in an activity-dependent manner.
Collapse
|
18
|
Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Expression of GAP-43 and SCG10 mRNAs in lateral geniculate nucleus of normal and monocularly deprived macaque monkeys. J Neurosci 2000; 20:6030-8. [PMID: 10934252 PMCID: PMC6772595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Revised: 06/01/2000] [Accepted: 06/01/2000] [Indexed: 02/17/2023] Open
Abstract
We performed nonradioactive in situ hybridization histochemistry (ISH) in the lateral geniculate nucleus (LGN) of the macaque monkey to investigate the distribution of mRNA for two growth-associated proteins, GAP-43 and SCG10. GAP-43 and SCG10 mRNAs were coexpressed in most neurons of both magnocellular layers (layers I and II) and parvocellular layers (layers III-VI). Double-labeling using nonradioactive ISH and immunofluorescence revealed that both GAP-43 and SCG10 mRNAs were coexpressed with the alpha-subunit of type II calcium/calmodulin-dependent protein kinase, indicating that both mRNAs are expressed also in koniocellular neurons in the LGN. We also showed that GABA-immunoreactive neurons in the LGN did not contain GAP-43 and SCG10 mRNAs, indicating that neither GAP-43 nor SCG10 mRNAs were expressed in inhibitory interneurons in the LGN. GABA-immunoreactive neurons in the perigeniculate nucleus, however, contained both GAP-43 and SCG10 mRNAs, indicating that both mRNAs were expressed in inhibitory neurons in the perigeniculate nucleus, which project to relay neurons in the LGN. Furthermore, to determine whether the expression of GAP-43 and SCG10 mRNAs is regulated by visual input, we performed nonradioactive ISH in the LGN and the primary visual area of monkeys deprived of monocular visual input by intraocular injections of tetrodotoxin. Both mRNAs were downregulated in the LGN after monocular deprivation for 5 d or longer. From these results, we conclude that both GAP-43 and SCG10 mRNAs are expressed in the excitatory relay neurons of the monkey LGN in an activity-dependent manner.
Collapse
Affiliation(s)
- N Higo
- Neuroscience Section, Information Science Division, Electrotechnical Laboratory, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | |
Collapse
|
19
|
Solà C, Barrón S, Tusell JM, Serratosa J. The Ca2+/calmodulin signaling system in the neural response to excitability. Involvement of neuronal and glial cells. Prog Neurobiol 1999; 58:207-32. [PMID: 10341361 DOI: 10.1016/s0301-0082(98)00082-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ plays a critical role in the normal function of the central nervous system. However, it can also be involved in the development of different neuropathological and neurotoxicological processes. The processing of a Ca2+ signal requires its union with specific intracellular proteins. Calmodulin is a major Ca(2+)-binding protein in the brain, where it modulates numerous Ca(2+)-dependent enzymes and participates in relevant cellular functions. Among the different calmodulin-binding proteins, the Ca2+/calmodulin-dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. We present an overview on different works aimed at the study of the Ca2+/calmodulin signalling system in the neural response to convulsant agents. Ca2+ and calmodulin antagonists inhibit the seizures induced by different convulsant agents, showing that the Ca2+/calmodulin signalling system plays a role in the development of the seizures induced by these agents. Processes occurring in association with seizures, such as activation of c-fos, are not always sensitive to calmodulin, but depend on the convulsant agent considered. We characterized the pattern of expression of the three calmodulin genes in the brain of control mice and detected alterations in specific areas after inducing seizures. The results obtained are in favour of a differential regulation of these genes. We also observed alterations in the expression of the Ca2+/calmodulin-dependent protein kinase II and calcineurin after inducing seizures. In addition, we found that reactive microglial cells increase the expression of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the brain after seizures.
Collapse
Affiliation(s)
- C Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consell, Superior d'Investigacions Cientifiques.
| | | | | | | |
Collapse
|
20
|
Laabich A, Cooper NG. Regulation of calcium/calmodulin-dependent protein kinase II in the adult rat retina is mediated by ionotropic glutamate receptors. Exp Eye Res 1999; 68:703-13. [PMID: 10375434 DOI: 10.1006/exer.1999.0664] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study is concerned with the transmitter-mediated regulation of the alpha(50 kDa) and beta(60 kDa) subunits of calcium calmodulin dependent protein kinase II (CamKII) in the adult rat retina. The level of antibody binding to the CamKII and the activity of CamKII were found to be increased after intravitreal injection of glutamate. Changes in the levels of the antibody-binding to the subunits of CamKII were observed in different subcellular fractions of the retina with a maximum response observed in crude synaptic membrane fractions. The glutamate mediated increases in CamKII were specific and blocked by 3,5-Dimethyl-1 adamantanamine; 3,5-Dimethylamantadine (Memantine), (+/-) 2-Amino-5-Phosphopentonic (AP-5) and 6-Cyano-7-Nitroquinoxaline-2,3-Dione (CNQX) but not with dl -2-Amino-3-Phosphono-Propionic (AP-3). The results indicate that the retinal neurotransmitter, glutamate, can regulate retinal CamKII activity through ionotropic but not metabotropic glutamate receptors. NMDA-receptors were found to be necessary but insufficient to stimulate CamKII. A model in which cooperative interaction between NMDA and non-NMDA glutamate receptors/ion channels is presented to explain the glutamate stimulated increases in CamKII activity in the retina.
Collapse
Affiliation(s)
- A Laabich
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, KY, 40202, USA
| | | |
Collapse
|
21
|
Nie F, Wong-Riley M. Nuclear respiratory factor-2 subunit protein: correlation with cytochrome oxydase and regulation by functional activity in the monkey primary visual cortex. J Comp Neurol 1999; 404:310-20. [PMID: 9952350 DOI: 10.1002/(sici)1096-9861(19990215)404:3<310::aid-cne3>3.0.co;2-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that a transcription factor of the Ets family, nuclear respiratory factor 2 (NRF-2), can activate in vitro the gene expression of cytochrome oxidase (CO), a mitochondrial enzyme of oxidative metabolism. The goals of our present study were to determine whether the distribution of NRF-2 alpha subunit proteins correlated with that of CO activity in the macaque monkey visual cortex and whether the level could be perturbed by visual deprivation. We generated polyclonal antibodies specifically against human NRF-2 alpha subunit. In normal monkeys, patterns of NRF-2 alpha distribution resembled closely that of CO activity: 1) NRF-2 alpha immunoreactivity was localized in both nuclei and cytoplasm of neurons, but the levels differed among various laminae; 2) layers IVA, IVC, and VI, which had high CO activity, were labeled more densely by NRF-2 alpha than layers I, IVB, and V, which contained lower levels of both NRF-2 alpha and CO activity; and 3) CO-rich puffs in layers II and III contained a higher level of NRF-2 alpha than CO-poor interpuffs. From 1 day to 7 days after monocular impulse blockade with tetrodotoxin, there was a progressive reduction of NRF-2 alpha in deprived ocular dominance columns, in parallel with decreases in CO activity. These results suggest that local levels of NRF-2 in the monkey visual cortex closely reflect neuronal physiological and metabolic levels revealed by CO activity and that the expression of NRF-2 alpha, like that of CO, is regulated tightly by neural functional activity.
Collapse
Affiliation(s)
- F Nie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
22
|
Bina KG, Park M, O'Dowd DK. Regulation of ?7 nicotinic acetylcholine receptors in mouse somatosensory cortex following whisker removal at birth. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980720)397:1<1::aid-cne1>3.0.co;2-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Rajan R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci 1998; 1:138-43. [PMID: 10195129 DOI: 10.1038/388] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following restricted peripheral damage, reorganization of adult sensory or motor cortex is believed to depend on loss of surround inhibition, which unmasks latent inputs to the deprived cortex. Here I demonstrate that limited damage to auditory receptors causes loss of functional surround inhibition in the cortex, unmasking of latent inputs and significantly altered neural coding. However, these changes do not lead to plasticity of the cortical map, defined by the most sensitive input from the receptor surface to each cortical location. Thus, in sensory cortex, loss of surround inhibition as a consequence of receptor organ damage does not necessarily result in cortical map plasticity.
Collapse
Affiliation(s)
- R Rajan
- Department of Physiology, Monash University, Clayton Vic., Australia.
| |
Collapse
|
24
|
Kennedy MB. Signal transduction molecules at the glutamatergic postsynaptic membrane. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:243-57. [PMID: 9651538 DOI: 10.1016/s0165-0173(97)00043-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have applied techniques from modern molecular biology and biochemistry to unravel the complex molecular structure of the postsynaptic membrane at glutamatergic synapses in the central nervous system. We have characterized a set of new proteins that are constituents of the postsynaptic density, including PSD-95, densin-180, citron (a rho/rac effector protein), and synaptic gp130 Ras GAP (a new Ras GTPase-activating protein). The structure of PSD-95 revealed a new protein motif, the PDZ domain, that plays an important role in the assembly of signal transduction complexes at intercellular junctions. More recently, we have used new imaging tools to observe the dynamics of autophosphorylation of CaM kinase II in intact hippocampal tissue. We have been able to detect changes in the amount of autophosphorylated CaM kinase II in dendrites, individual synapses, and somas of hippocampal neurons following induction of long-term potentiation by tetanic stimulation. In addition, we have observed a specific increase in the concentration of CaM kinase II in dendrites of neurons receiving tetanic stimulation. This increase appears to be the result of dendritic synthesis of new protein. Over the next several years we will apply similar methods to study regulatory changes that occur at the molecular level in glutamatergic synapses in the CNS as the brain processes and stores new information.
Collapse
Affiliation(s)
- M B Kennedy
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. J Neurosci 1998. [PMID: 9482799 DOI: 10.1523/jneurosci.18-06-02129.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ hybridization histochemistry and immunocytochemistry were used to study localization and activity-dependent regulation of alpha, beta, gamma, and delta isoforms of type II calcium/calmodulin-dependent protein kinase (CaMKII) and their mRNAs in areas 17 and 18 of normal and monocularly deprived adult macaques. CaMKII-alpha is expressed overall at levels three to four times higher than that of CaMKII-beta and at least 15 times higher than that of CaMKII-gamma and -delta. All isoforms are expressed primarily in pyramidal cells of both areas, especially those of layers II-III, IVA (in area 17), and VI, but are also expressed in nonpyramidal, non-GABAergic cells of layer IV of both areas and in interstitial neurons of the white matter. CaMKII-alpha and -beta are colocalized, suggesting the formation of heteromers. There was no evidence of expression in neuroglial cells. Each isoform has a unique pattern of laminar and sublaminar distribution, but cortical layers or sublayers enriched for one isoform do not correlate with layers receiving inputs only from isoform-specific layers of the lateral geniculate nucleus. CaMKII-alpha and -beta mRNA and protein levels in layer IVC of area 17 are subject to activity-dependent regulation, with brief periods of monocular deprivation caused by intraocular injections of tetrodotoxin leading to a 30% increase in CaMKII-alpha mRNA and a comparable decrease in CaMKII-beta mRNA in deprived ocular dominance columns, especially of layer IVCbeta. Expression in other layers and expression of CaMKII-gamma and delta were unaffected. Changes occurring in layer IVC may influence the formation of heteromers and protect supragranular layers from CaMKII-dependent plasticity in the adult.
Collapse
|
26
|
Wong-Riley M, Anderson B, Liebl W, Huang Z. Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1. Neuroscience 1998; 83:1025-45. [PMID: 9502244 DOI: 10.1016/s0306-4522(97)00432-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously, we found that cytochrome oxidase-rich zones in the supragranular layers of the macaque striate cortex had more asymmetric, glutamate-immunoreactive synapses than the surrounding, cytochrome oxidase-poor regions. A major glutamate receptor family is N-methyl-D-aspartate, which is implicated in the stimulation of nitric oxide synthase and in the production of nitric oxide, a gaseous intra- and inter-cellular messenger. To determine if energy-generating and energy-utilizing enzymes bore any spatial relationship with neurochemicals associated with glutamatergic neurotransmission in the monkey visual cortex, serial cortical sections were processed histochemically for cytochrome oxidase and NADPH-diaphorase, and immunohistochemically for sodium/potassium-ATPase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1 protein, respectively. The general patterns were similar among the five neurochemicals, with layers 4C, 6 and supragranular puffs being labelled, although the intensity of labelling differed among them. Monocular impulse blockade with tetrodotoxin for two to four weeks induced a down-regulation of all five neurochemicals not only in deprived layer 4C ocular dominance columns, but also in deprived rows of puffs. Thus, the regulation of all five neurochemicals in the mature visual cortex is activity-dependent. Combined cytochrome oxidase histochemistry and nitric oxide synthase immunohistochemistry in the same sections revealed that double-labelled cells were primarily medium-sized non-pyramidals in various cortical layers. Likewise, those that were double-labelled by N-methyl-D-aspartate receptor subunit 1 immunohistochemistry and nitric oxide synthase immunogold silver staining in the same sections were of the medium-sized non-pyramidal neurons. At the ultrastructural level, combined cytochrome oxidase cytochemistry and postembedding immunogold labelling for nitric oxide synthase showed that immunogold particles for nitric oxide synthase were more heavily concentrated in cytochrome oxidase-rich type C cells. These medium-sized non-pyramidal cells were previously found to be gamma aminobutyric acid-immunoreactive and received both gamma aminobutyric acid- and glutamate-immunoreactive axosomatic synapses. Thus, our results are consistent with an enrichment of excitatory synaptic interactions in metabolically active regions of the primate visual cortex that involves glutamate-related neurochemicals, such as N-methyl-D-aspartate receptors and nitric oxide synthase. These interactions impose a higher energy demand under normal conditions and are down-regulated by retinal impulse blockade.
Collapse
Affiliation(s)
- M Wong-Riley
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
27
|
Tighilet B, Hashikawa T, Jones EG. Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. J Neurosci 1998; 18:2129-46. [PMID: 9482799 PMCID: PMC6792922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1997] [Revised: 01/07/1998] [Accepted: 01/12/1998] [Indexed: 02/06/2023] Open
Abstract
In situ hybridization histochemistry and immunocytochemistry were used to study localization and activity-dependent regulation of alpha, beta, gamma, and delta isoforms of type II calcium/calmodulin-dependent protein kinase (CaMKII) and their mRNAs in areas 17 and 18 of normal and monocularly deprived adult macaques. CaMKII-alpha is expressed overall at levels three to four times higher than that of CaMKII-beta and at least 15 times higher than that of CaMKII-gamma and -delta. All isoforms are expressed primarily in pyramidal cells of both areas, especially those of layers II-III, IVA (in area 17), and VI, but are also expressed in nonpyramidal, non-GABAergic cells of layer IV of both areas and in interstitial neurons of the white matter. CaMKII-alpha and -beta are colocalized, suggesting the formation of heteromers. There was no evidence of expression in neuroglial cells. Each isoform has a unique pattern of laminar and sublaminar distribution, but cortical layers or sublayers enriched for one isoform do not correlate with layers receiving inputs only from isoform-specific layers of the lateral geniculate nucleus. CaMKII-alpha and -beta mRNA and protein levels in layer IVC of area 17 are subject to activity-dependent regulation, with brief periods of monocular deprivation caused by intraocular injections of tetrodotoxin leading to a 30% increase in CaMKII-alpha mRNA and a comparable decrease in CaMKII-beta mRNA in deprived ocular dominance columns, especially of layer IVCbeta. Expression in other layers and expression of CaMKII-gamma and delta were unaffected. Changes occurring in layer IVC may influence the formation of heteromers and protect supragranular layers from CaMKII-dependent plasticity in the adult.
Collapse
Affiliation(s)
- B Tighilet
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697-1280, USA
| | | | | |
Collapse
|
28
|
Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J Neurosci 1998. [PMID: 9412483 DOI: 10.1523/jneurosci.18-01-00026.1998] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study characterizes the differential targeting of recently synthesized immediate early gene (IEG) mRNAs to neuronal cell bodies versus dendrites and tests the hypothesis that this targeting is based on signals in the encoded proteins. A single electroconvulsive seizure induces the expression of a number of IEG mRNAs in granule cells of the dentate gyrus. Most of these IEG mRNAs remain in the cell body, including two that are characterized in the present study (the mRNAs for NGFI-A and COX-2). In contrast, the mRNA for Arc moved rapidly into dendrites at an apparent rate of approximately 300 micron/hr. Inhibiting protein synthesis with cycloheximide did not disrupt the differential mRNA sorting, demonstrating that the differential targeting of mRNAs is not dependent on translation.
Collapse
|
29
|
Tighilet B, Huntsman MM, Hashikawa T, Murray KD, Isackson PJ, Jones EG. Cell-specific expression of type II calcium/calmodulin-dependent protein kinase isoforms and glutamate receptors in normal and visually deprived lateral geniculate nucleus of monkeys. J Comp Neurol 1998; 390:278-96. [PMID: 9453671 DOI: 10.1002/(sici)1096-9861(19980112)390:2<278::aid-cne10>3.0.co;2-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In situ hybridization histochemistry and immunocytochemistry were used to map distributions of cells expressing mRNAs encoding alpha, beta, gamma, and delta isoforms of type II calcium/calmodulin-dependent protein kinase (CaMKII), alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA)/ kainate receptor subunits, (GluR1-7), and N-methyl-D-aspartate (NMDA) receptor subunits, NR1 and NR2A-D, or stained by subunit-specific immunocytochemistry in the dorsal lateral geniculate nuclei of macaque monkeys. Relationships of specific isoforms with particular glutamate receptor types may be important elements in neural plasticity. CaMKII-alpha is expressed only by neurons in the S laminae and interlaminar plexuses of the dorsal lateral geniculate nucleus, but may form part of a more widely distributed matrix of similar cells extending from the geniculate into adjacent nuclei. CaMKII-beta, -gamma, and -delta isoforms are expressed by all neurons in principal and S laminae and interlaminar plexuses. In principal laminae, they are down-regulated by monocular deprivation lasting 8-21 days. All glutamate receptor subunits are expressed by neurons in principal and S laminae and interlaminar plexuses. The AMPA/kainate subunits, GluR1, 2, 5, and 7, are expressed at low levels, although GluR1 immunostaining appears selectively to stain interneurons. GluR3 is expressed at weak, GluR 6 at moderate and GluR 4 at high levels. NMDA subunits, NR1 and NR2A, B, and D, are expressed at moderate to low levels. GluR4, GluR6 and NMDA subunits are down-regulated by visual deprivation. CaMKII-alpha expression is unique in comparison with other CaMKII isoforms which may, therefore, have more generalized roles in cell function. The results demonstrate that all of the isoforms are associated with NMDA receptors and with AMPA receptors enriched with GluR4 subunits, which implies high calcium permeability and rapid gating.
Collapse
Affiliation(s)
- B Tighilet
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| | | | | | | | | | | |
Collapse
|
30
|
Morrison J, Hof P, Huntley G. Neurochemical organization of the primate visual cortex. HANDBOOK OF CHEMICAL NEUROANATOMY 1998. [DOI: 10.1016/s0924-8196(98)80004-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Wallace CS, Lyford GL, Worley PF, Steward O. Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J Neurosci 1998; 18:26-35. [PMID: 9412483 PMCID: PMC6793378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study characterizes the differential targeting of recently synthesized immediate early gene (IEG) mRNAs to neuronal cell bodies versus dendrites and tests the hypothesis that this targeting is based on signals in the encoded proteins. A single electroconvulsive seizure induces the expression of a number of IEG mRNAs in granule cells of the dentate gyrus. Most of these IEG mRNAs remain in the cell body, including two that are characterized in the present study (the mRNAs for NGFI-A and COX-2). In contrast, the mRNA for Arc moved rapidly into dendrites at an apparent rate of approximately 300 micron/hr. Inhibiting protein synthesis with cycloheximide did not disrupt the differential mRNA sorting, demonstrating that the differential targeting of mRNAs is not dependent on translation.
Collapse
Affiliation(s)
- C S Wallace
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- J A Gordon
- Department of Physiology, Keck Center for Integrative Neuroscience, University of California San Francisco 94143-0444, USA
| |
Collapse
|
33
|
Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci 1997. [PMID: 9204925 DOI: 10.1523/jneurosci.17-14-05416.1997] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) at threonine-286 produces Ca2+-independent kinase activity and has been proposed to be involved in induction of long-term potentiation by tetanic stimulation in the hippocampus. We have used an immunocytochemical method to visualize and quantify the pattern of autophosphorylation of CaMKII in hippocampal slices after tetanization of the Schaffer collateral pathway. Thirty minutes after tetanic stimulation, autophosphorylated CaM kinase II (P-CaMKII) is significantly increased in area CA1 both in apical dendrites and in pyramidal cell somas. In apical dendrites, this increase is accompanied by an equally significant increase in staining for nonphosphorylated CaM kinase II. Thus, the increase in P-CaMKII appears to be secondary to an increase in the total amount of CaMKII. In neuronal somas, however, the increase in P-CaMKII is not accompanied by an increase in the total amount of CaMKII. We suggest that tetanic stimulation of the Schaffer collateral pathway may induce new synthesis of CaMKII molecules in the apical dendrites, which contain mRNA encoding its alpha-subunit. In neuronal somas, however, tetanic stimulation appears to result in long-lasting increases in P-CaMKII independent of an increase in the total amount of CaMKII. Our findings are consistent with a role for autophosphorylation of CaMKII in the induction and/or maintenance of long-term potentiation, but they indicate that the effects of tetanus on the kinase and its activity are not confined to synapses and may involve induction of new synthesis of kinase in dendrites as well as increases in the level of autophosphorylated kinase.
Collapse
|
34
|
Ouyang Y, Kantor D, Harris KM, Schuman EM, Kennedy MB. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci 1997; 17:5416-27. [PMID: 9204925 PMCID: PMC6793833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) at threonine-286 produces Ca2+-independent kinase activity and has been proposed to be involved in induction of long-term potentiation by tetanic stimulation in the hippocampus. We have used an immunocytochemical method to visualize and quantify the pattern of autophosphorylation of CaMKII in hippocampal slices after tetanization of the Schaffer collateral pathway. Thirty minutes after tetanic stimulation, autophosphorylated CaM kinase II (P-CaMKII) is significantly increased in area CA1 both in apical dendrites and in pyramidal cell somas. In apical dendrites, this increase is accompanied by an equally significant increase in staining for nonphosphorylated CaM kinase II. Thus, the increase in P-CaMKII appears to be secondary to an increase in the total amount of CaMKII. In neuronal somas, however, the increase in P-CaMKII is not accompanied by an increase in the total amount of CaMKII. We suggest that tetanic stimulation of the Schaffer collateral pathway may induce new synthesis of CaMKII molecules in the apical dendrites, which contain mRNA encoding its alpha-subunit. In neuronal somas, however, tetanic stimulation appears to result in long-lasting increases in P-CaMKII independent of an increase in the total amount of CaMKII. Our findings are consistent with a role for autophosphorylation of CaMKII in the induction and/or maintenance of long-term potentiation, but they indicate that the effects of tetanus on the kinase and its activity are not confined to synapses and may involve induction of new synthesis of kinase in dendrites as well as increases in the level of autophosphorylated kinase.
Collapse
Affiliation(s)
- Y Ouyang
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
35
|
Differential and time-dependent changes in gene expression for type II calcium/calmodulin-dependent protein kinase, 67 kDa glutamic acid decarboxylase, and glutamate receptor subunits in tetanus toxin-induced focal epilepsy. J Neurosci 1997. [PMID: 9045741 DOI: 10.1523/jneurosci.17-06-02168.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study potential molecular mechanisms of epileptogenesis in the neocortex, the motor cortex of rats was injected with tetanus toxin (TT), and gene expression for 67 kDa glutamic acid decarboxylase (GAD-67), type II calcium/calmodulin-dependent protein kinase (CaMKII), NMDA receptor subunit 1 (NR1), and AMPA receptor subunit 2 (GluR2) was investigated by in situ hybridization histochemistry. Injections of 20-35 ng TT induced recurrent seizures after a postoperative period ranging from 4 to 13 d. A majority of rats perfused 5-7 d after TT injection showed altered gene expression, but the changes varied in their areal extent, ranging from most neocortical areas on the injected side in some rats to mainly the frontoparietal cortex or the motor cortex in others. Epileptic rats perfused 14 d after TT injection showed a focus of increased GAD-67 and NR1, and of decreased alpha-CaMKII and GluR2 mRNA levels at the injection site. A zone of cortex surrounding the focus showed changes in alpha-CaMKII, GAD-67, and NR1 mRNA levels that were reciprocal to those in the focus. The results suggest that TT-induced seizure activity initially spread to a variable extent but was gradually restricted 2-3 d after seizure onset. The focus and the surround showing reciprocal changes in gene expression are thought to correspond to the electrophysiologically identified epileptic focus and inhibitory surround, respectively. The findings suggest that lateral inhibition between neighboring cortical regions will be affected and contribute to a neurochemical segregation of an epileptic focus from surrounding cortex.
Collapse
|
36
|
Longson D, Longson CM, Jones EG. Localization of CAM II kinase-alpha, GAD, GluR2 and GABA(A) receptor subunit mRNAs in the human entorhinal cortex. Eur J Neurosci 1997; 9:662-75. [PMID: 9153573 DOI: 10.1111/j.1460-9568.1997.tb01415.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human entorhinal cortex (ERC) is an important relay between neocortical association areas and the hippocampus. Pathology in this area, including disturbances in its unique cytoarchitecture and alterations in neurotransmitter receptor binding, has been implicated in several neuropsychiatric disorders but details of the patterns of gene expression for molecules involved in the major neurotransmitter systems in this cortex have been lacking. We used in situ hybridization histochemistry to localize the mRNAs for several proteins which are involved in excitatory and inhibitory neurotransmission in the human ERC. Labelling of mRNA for a glutamate receptor subunit (GluR2) and for a marker of glutamatergic cortical neurons (alpha type II calcium/calmodulin-dependent protein kinase) were distributed in a laminar manner which matched the cellular packing seen on the Nissl sections, with particularly high levels of labelling in the layer II (pre-alpha) cell clusters characteristic of this cortex. Cells labelled for the mRNA of 67 kDa glutamic acid decarboxylase, the synthesizing enzyme of GABA, were distributed diffusely throughout all layers, not concentrated in the cell clusters, and were present in higher numbers in layer III. The labelling of mRNAs for the alpha1, beta2 and gamma2 subunits of the GABA(A) receptor, however, was distributed in a laminar pattern similar to that for GluR2 and CAM II kinase mRNAs, implying a high concentration of inhibitory synapses on the excitatory cells which express these mRNAs.
Collapse
Affiliation(s)
- D Longson
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
37
|
Liang F, Jones EG. Differential and time-dependent changes in gene expression for type II calcium/calmodulin-dependent protein kinase, 67 kDa glutamic acid decarboxylase, and glutamate receptor subunits in tetanus toxin-induced focal epilepsy. J Neurosci 1997; 17:2168-80. [PMID: 9045741 PMCID: PMC6793755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To study potential molecular mechanisms of epileptogenesis in the neocortex, the motor cortex of rats was injected with tetanus toxin (TT), and gene expression for 67 kDa glutamic acid decarboxylase (GAD-67), type II calcium/calmodulin-dependent protein kinase (CaMKII), NMDA receptor subunit 1 (NR1), and AMPA receptor subunit 2 (GluR2) was investigated by in situ hybridization histochemistry. Injections of 20-35 ng TT induced recurrent seizures after a postoperative period ranging from 4 to 13 d. A majority of rats perfused 5-7 d after TT injection showed altered gene expression, but the changes varied in their areal extent, ranging from most neocortical areas on the injected side in some rats to mainly the frontoparietal cortex or the motor cortex in others. Epileptic rats perfused 14 d after TT injection showed a focus of increased GAD-67 and NR1, and of decreased alpha-CaMKII and GluR2 mRNA levels at the injection site. A zone of cortex surrounding the focus showed changes in alpha-CaMKII, GAD-67, and NR1 mRNA levels that were reciprocal to those in the focus. The results suggest that TT-induced seizure activity initially spread to a variable extent but was gradually restricted 2-3 d after seizure onset. The focus and the surround showing reciprocal changes in gene expression are thought to correspond to the electrophysiologically identified epileptic focus and inhibitory surround, respectively. The findings suggest that lateral inhibition between neighboring cortical regions will be affected and contribute to a neurochemical segregation of an epileptic focus from surrounding cortex.
Collapse
Affiliation(s)
- F Liang
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
38
|
Liang F, Jones EG. Peripheral nerve stimulation increases Fos immunoreactivity without affecting type II Ca2+/calmodulin-dependent protein kinase, glutamic acid decarboxylase, or GABAA receptor gene expression in cat spinal cord. Exp Brain Res 1996; 111:326-36. [PMID: 8911927 DOI: 10.1007/bf00228722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression patterns of the immediate early gene c-fos and of other genes including those for the alpha-subunit of type II Ca2+/calmodulin-dependent protein kinase (CaMKII alpha), 67-kDa glutamic acid decarboxylase (GAD), and the alpha 1-, beta 2-, and gamma 2-subunits of the GABAA receptor were described in the spinal cord of normal cats and following peripheral nerve stimulation. As revealed by in situ hybridization histochemistry, CaMKII alpha messenger RNA (mRNA) is normally distributed only in cells of Rexed's laminae I-IV, whereas GAD mRNA is expressed by subpopulations of cells in all laminae, with the heaviest hybridization signal found in laminae I-III and medial parts of laminae V and VI. The three GABAA receptor subunits have varying expression patterns in the laminae. All of them are expressed by many cells located in the base of the dorsal horn and the intermediate zone, but only the gamma 2-subunit is intensely expressed by motoneurons. Single-pulse, electrical stimulation of the sciatic or median and ulnar nerve of anesthetized cats at a pulse rate of 1/s for 6-8 h failed to induce observable changes in gene expression for CaMKII alpha, GAD, or for the three subunits of the GABAA receptor; although immunoreactivity for the protein products of c-fos (or c-fos-related genes) was markedly upregulated in some neurons of the dorsal horn and the intermediate zone. Therefore, under the present experimental conditions, upregulation of the immediate early gene c-fos (or c-fos-related genes) is not associated with changes in expression of late-effector genes potentially involved in central nervous system plasticity.
Collapse
Affiliation(s)
- F Liang
- Department of Anatomy and Neurobiology, University of California, Irvine 92717-1280, USA
| | | |
Collapse
|
39
|
Gordon JA, Cioffi D, Silva AJ, Stryker MP. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice. Neuron 1996; 17:491-9. [PMID: 8816712 DOI: 10.1016/s0896-6273(00)80181-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.
Collapse
Affiliation(s)
- J A Gordon
- Department of Physiology, University of california, San Francisco 94143-0444, USA
| | | | | | | |
Collapse
|
40
|
Visual stimulation regulates the expression of transcription factors and modulates the composition of AP-1 in visual cortex. J Neurosci 1996. [PMID: 8656291 DOI: 10.1523/jneurosci.16-12-03968.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is believed that long-term changes in neuronal function are orchestrated by transcription factors, such as AP-1 and ZIF 268, which are in turn regulated by synaptic stimulation. To further our understanding of the functional effects of such expression, we have examined the DNA-binding activities of both AP-1 and ZIF 268 by way of electrophoretic mobility shift assays (EMSA) on nuclear extracts from visual cortices of rats treated with selective light exposure. Visual stimulation after dark rearing increased the DNA-binding activities of both AP-1 and ZIF 268 to their highest levels within 2 hr. ZIF 268 thereafter dropped to levels similar to that observed in naive animals, whereas AP-1 DNA-binding activity continued to remain elevated even after 24 hr of stimulation. The components of the AP-1 complex, when assessed by EMSA-supershift analysis, showed considerable variability under different conditions of exposure. FosB and JunD were the major constituents of AP-1 in both naive and dark-reared animals. Brief visual stimulation (2 hr) added c-Fos, c-Jun, and JunB to this complex, whereas prolonged stimulation (6-24 hr) reduced c-Fos and c-Jun levels significantly, leaving only FosB, JunB, and JunD as the major components of AP-1. These results suggest that transcriptional control by AP-1 may be generated by selective combinatorial interactions of different members of the Fos and Jun families and that are guided by activity-dependent processes.
Collapse
|
41
|
Scheetz AJ, Prusky GT, Constantine-Paton M. Chronic NMDA receptor antagonism during retinotopic map formation depresses CaM kinase II differentiation in rat superior colliculus. Eur J Neurosci 1996; 8:1322-8. [PMID: 8758939 DOI: 10.1111/j.1460-9568.1996.tb01594.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effects of chronic NMDA receptor antagonism on the normal postnatal differentiation of calcium- and calmodulin-dependent kinase II (CaM kinase II) in the rat superior colliculus. At postnatal day (P) zero, most CaM kinase II protein, as well as CaM kinase II activity, was detected in the soluble fraction. In vitro phosphorylation of P0 superior colliculus revealed several prominent substrates in both the particulate and soluble fractions. At P19 there was more particulate enzyme than soluble enzyme, and CaM kinase II activity in the particulate fraction was higher than in P0 particulate tissue. Additionally, in vitro phosphorylation of P19 superior colliculus revealed many more CaM kinase II substrates. Chronic NMDA receptor antagonism with 2-amino-5-phosphonovalerate (DL-AP5) caused CaM kinase II to retain many of the characteristics of the enzyme found in P0 untreated superior colliculus. In P19 superior colliculus treated with LD-AP5 from birth, most of the protein was in the soluble fraction, CaM kinase II activity was largely restricted to the soluble fraction, and only a few substrates were observed by in vitro phosphorylation. These effects were not observed in tissue treated with the inactive isomer, L-AP5. These results suggest that synaptic maturation is slowed by antagonism of NMDA receptors during retinotopic map formation.
Collapse
Affiliation(s)
- A J Scheetz
- Yale University, Department of Biology, New Haven, CT 06520, USA
| | | | | |
Collapse
|
42
|
Nie F, Wong-Riley MT. Metabolic and neurochemical plasticity of gamma-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: quantitative electron microscopic analysis. J Comp Neurol 1996; 370:350-66. [PMID: 8799861 DOI: 10.1002/(sici)1096-9861(19960701)370:3<350::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effects of retinal impulse blockade on gamma-aminobutyric acid (GABA)-immunoreactive (GABA-IR) neurons in cytochrome oxidase (CO)-rich puffs of the adult monkey striate cortex. Specifically, we wished to know if changes occurred in their CO activity, GABA immunoreactivity, and synaptic organization. A double-labeling technique, which combined CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, was used to reveal simultaneously the distribution of the two markers. We quantitatively compared changes in GABA-IR neurons of deprived puffs (DPs) with respect to non-deprived puffs (NPs) 2 weeks after monocular tetrodotoxin treatment. We found that the proportion of darkly CO reactive mitochondria in GABA-IR neurons of DPs drastically decreased to about half of those in NPs. There was a greater reduction of CO levels in GABA-IR axon terminals than in their cell bodies and dendrites. In contrast, most non-GABA-IR neurons displayed no significant change in their CO levels. Morphologically, GABA-IR neurons and axon terminals in DPs showed a significant shrinkage in their mean size. GABA immunoreactivity, as indicated by the density of immunogold particles in GABA-IR neurons, declined in DPs, and a greater decrease was also found in axon terminals than in cell bodies or dendrites. Moreover, the numerical density of GABA-IR axon terminals and synapses in DPs was significantly reduced without changes in that of asymmetric and symmetric synapses. Thus, the present results support the following conclusions: 1) Oxidative metabolism and neurotransmitter expression in GABA-IR neurons are tightly regulated by neuronal activity in adult monkey striate cortex; 2) GABA-IR neurons are much more vulnerable to functional deprivation than non-GABA-IR ones, suggesting that these inhibitory neurons have stringent requirement for sustained excitatory input to maintain their heightened oxidative capacity; and 3) intracortical inhibition mediated by GABA transmission following afferent deprivation may be decreased in deprived puffs, because the oxidative capacity and transmitter level in GABAergic neurons, especially in their axon terminals, are dramatically reduced.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
43
|
Liang F, Isackson PJ, Jones EG. Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res 1996; 110:163-74. [PMID: 8836681 DOI: 10.1007/bf00228548] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-train tetanic stimulation of the cerebral cortex induces long-term changes in the excitability of cortical neurons, while short-train electrical stimulation does not. In the present study, we show that both forms of stimulation when applied to rat motor cortex for 4 h enhance c-fos expression, but only tetanic stimulation, when imposed upon short-train stimulation, modulates gene expression for 67-kDa glutamic acid decarboxylase (GAD) and alpha Ca2+/calmodulin-dependent protein kinase II (CaMKII alpha). Gene expression for beta Ca2+/calmodulin-dependent protein kinase II is not affected by either stimulation mode. GAD messenger RNA (mRNA) is increased from 1 h after the end of tetanization to the longest poststimulus survival time investigated (14 h). CaMKII alpha mRNA is decreased 1-3 h after the end of tetanization but thereafter returns to prestimulus levels. These results imply not only that mechanisms underlying neocortical plasticity are stimulus-dependent but also that they involve reciprocal changes in molecules regulating the balance of excitation and inhibition.
Collapse
Affiliation(s)
- F Liang
- Department of Anatomy and Neurobiology, University of California, Irvine 92717-1280, USA
| | | | | |
Collapse
|
44
|
Kaminska B, Kaczmarek L, Chaudhuri A. Visual stimulation regulates the expression of transcription factors and modulates the composition of AP-1 in visual cortex. J Neurosci 1996; 16:3968-78. [PMID: 8656291 PMCID: PMC6578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It is believed that long-term changes in neuronal function are orchestrated by transcription factors, such as AP-1 and ZIF 268, which are in turn regulated by synaptic stimulation. To further our understanding of the functional effects of such expression, we have examined the DNA-binding activities of both AP-1 and ZIF 268 by way of electrophoretic mobility shift assays (EMSA) on nuclear extracts from visual cortices of rats treated with selective light exposure. Visual stimulation after dark rearing increased the DNA-binding activities of both AP-1 and ZIF 268 to their highest levels within 2 hr. ZIF 268 thereafter dropped to levels similar to that observed in naive animals, whereas AP-1 DNA-binding activity continued to remain elevated even after 24 hr of stimulation. The components of the AP-1 complex, when assessed by EMSA-supershift analysis, showed considerable variability under different conditions of exposure. FosB and JunD were the major constituents of AP-1 in both naive and dark-reared animals. Brief visual stimulation (2 hr) added c-Fos, c-Jun, and JunB to this complex, whereas prolonged stimulation (6-24 hr) reduced c-Fos and c-Jun levels significantly, leaving only FosB, JunB, and JunD as the major components of AP-1. These results suggest that transcriptional control by AP-1 may be generated by selective combinatorial interactions of different members of the Fos and Jun families and that are guided by activity-dependent processes.
Collapse
Affiliation(s)
- B Kaminska
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Glazewski S, Chen CM, Silva A, Fox K. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 1996; 272:421-3. [PMID: 8602534 DOI: 10.1126/science.272.5260.421] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mammalian sensory neocortex exhibits experience-dependent plasticity such that neurons modify their response properties according to changes in sensory experience. The synaptic plasticity mechanism of long-term potentiation requiring calcium-calmodulin-dependent kinase type II (CaMKII) could underlie experience-dependent plasticity. Plasticity in adult mice can be induced by changes in the patterns of tactile input to the barrel cortex. This response is strongly depressed in adult mice that lack the gene encoding alpha-CaMKII, although adolescent animals are unaffected. Thus, alpha-CaMKII is necessary either for the induction or for the expression of plasticity in adult mice.
Collapse
Affiliation(s)
- S Glazewski
- Department of Physiology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
46
|
Abstract
In this paper, we review experimental evidence for a novel form of persistent synaptic plasticity we call metaplasticity. Metaplasticity is induced by synaptic or cellular activity, but it is not necessarily expressed as a change in the efficacy of normal synaptic transmission. Instead, it is manifest as a change in the ability to induce subsequent synaptic plasticity, such as long-term potentiation or depression. Thus, metaplasticity is a higher-order form of synaptic plasticity. Metaplasticity might involve alterations in NMDA-receptor function in some cases, but there are many other candidate mechanisms. The induction of metaplasticity complicates the interpretation of many commonly studied aspects of synaptic plasticity, such as saturation and biochemical correlates.
Collapse
Affiliation(s)
- W C Abraham
- Dept of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
47
|
Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 1996; 93:2317-21. [PMID: 8637870 PMCID: PMC39793 DOI: 10.1073/pnas.93.6.2317] [Citation(s) in RCA: 474] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Postnatal development and adult function of the central nervous system are dependent on the capacity of neurons to effect long-term changes of specific properties in response to neural activity. This neuronal response has been demonstrated to be tightly correlated with the expression of a set of regulatory genes which include transcription factors as well as molecules that can directly modify cellular signaling. It is hypothesized that these proteins play a role in activity-dependent response. Previously, we described the expression and regulation in brain of an inducible form of prostaglandin synthase/cyclooxygenase, termed COX-2. COX-2 is a rate-limiting enzyme in prostanoid synthesis and its expression is rapidly regulated in developing and adult forebrain by physiological synaptic activity. Here we demonstrate that COX-2 immunoreactivity is selectively expressed in a subpopulation of excitatory neurons in neo-and allocortices, hippocampus, and amygdala and is compartmentalized to dendritic arborizations. Moreover, COX-2 immunoreactivity is present in dendritic spines, which are specialized structures involved in synaptic signaling. The developmental profile of COX-2 expression in dendrites follows well known histogenetic gradients and coincides with the critical period for activity-dependent synaptic remodeling. These results suggest that COX-2, and its diffusible prostanoid products, may play a role in postsynaptic signaling of excitatory neurons in cortex and associated structures.
Collapse
Affiliation(s)
- W E Kaufmann
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
48
|
Zou DJ, Cline HT. Control of retinotectal axon arbor growth by postsynaptic CaMKII. PROGRESS IN BRAIN RESEARCH 1996; 108:303-12. [PMID: 8979810 DOI: 10.1016/s0079-6123(08)62548-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D J Zou
- Cold Spring Harbor Laboratory, NY 11724-0100, USA
| | | |
Collapse
|
49
|
Terashima T, Ochiishi T, Yamauchi T. Alpha calcium/calmodulin-dependent protein kinase II immunoreactivity in corticospinal neurons: combination of axonal transport method and immunofluorescence. ANATOMY AND EMBRYOLOGY 1995; 192:123-36. [PMID: 7486009 DOI: 10.1007/bf00186001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A combination of either retrograde or anterograde fluorescent tracer and immunofluorescence histochemistry using the monoclonal antibody specific for the alpha isoform of calcium/calmodulin-dependent protein kinase II (CaM kinase II alpha) was employed to test whether CaM kinase II alpha is expressed in somata of corticospinal neurons and their axons over their whole course. After the injection of carbocyanine dye DiI into the hindlimb area of the primary motor cortex of the rat, corticospinal axons and their terminal arbors were anterogradely labeled: DiI-labeled corticospinal fibers proceeded caudally in the ipsilateral internal capsule, cerebral peduncle and medullary pyramid, crossed at the pyramidal decussation and descended in the ventralmost area of the contralateral dorsal funiculus of the spinal cord. These DiI-labeled corticospinal axons expressed strong CaM kinase II alpha immunoreactivity along their course. However, their terminal arbors within the gray matter of the lumbar cord were very weakly immunostained. With the injection of Fast Blue into the lumbar enlargement of the rat, somata of corticospinal neurons in layer V of the motor cortex were retrogradely labeled. The subsequent immunofluorescent histochemistry revealed that more than 80% of Fast Blue-labeled corticospinal neurons were immunostained with CaM kinase II alpha antibody. The present immunohistochemical study demonstrated that CaM kinase II alpha is strongly expressed in both somata and axons of a majority of corticospinal neurons, although we could not detect this enzyme in the corticospinal terminals in the spinal target areas.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
50
|
Cooper NG, Wei X, Liu N. Onset of expression of the alpha subunit of Ca2+/calmodulin-dependent protein kinase II and a novel related protein in the developing retina. J Mol Neurosci 1995; 6:75-89. [PMID: 8746447 DOI: 10.1007/bf02736768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Calcium-calmodulin-dependent protein kinase II is an abundant protein in the nervous system and has been associated with many aspects of neuronal function, including events related to synaptic transmission. The purpose of this study is to correlate the onset of expression of this kinase with a specific developmental event in retinal morphogenesis using a monoclonal antibody to the 50-kDa alpha-subunit. Microscopy showed the antigen to be associated with the plexiform layers of the retina. Western blots demonstrated that the onset of expression of the alpha-subunit coincided in time with the initial formation of the plexiform layers. However, the onset of expression of the 50-kDa alpha-subunit was preceded by the earlier embryonic appearance of a related 82.5-kDa antigen that was recognized by the antibody. The amount of this latter protein declined as the amount of the alpha-subunit increased in retinal homogenates. Although this related 82.5 kDa protein disappeared from blots of retinal homogenates after embryonic d 14, it could be detected in concentrated supernatant fractions isolated from the retinae of hatched chicks. Microscopy showed that a subset of retinal cells and their processes contained this antigen in early embryonic chicks. Finally, the 50 kDa alpha-subunit of kinase II and the 82.5 kDa novel antigen were shown to be separable by differential centrifugation.
Collapse
Affiliation(s)
- N G Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY, USA
| | | | | |
Collapse
|