1
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
2
|
Chan-Andersen PC, Romanova EV, Rubakhin SS, Sweedler JV. Profiling 26,000 Aplysia californica neurons by single cell mass spectrometry reveals neuronal populations with distinct neuropeptide profiles. J Biol Chem 2022; 298:102254. [PMID: 35835221 PMCID: PMC9396074 DOI: 10.1016/j.jbc.2022.102254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Neuropeptides are a chemically diverse class of cell-to-cell signaling molecules that are widely expressed throughout the central nervous system, often in a cell-specific manner. While cell-to-cell differences in neuropeptides is expected, it is often unclear how exactly neuropeptide expression varies among neurons. Here we created a microscopy-guided, high-throughput single cell matrix-assisted laser desorption/ionization mass spectrometry approach to investigate the neuropeptide heterogeneity of individual neurons in the central nervous system of the neurobiological model Aplysia californica, the California sea hare. In all, we analyzed more than 26,000 neurons from 18 animals and assigned 866 peptides from 66 prohormones by mass matching against an in silico peptide library generated from known Aplysia prohormones retrieved from the UniProt database. Louvain-Jaccard (LJ) clustering of mass spectra from individual neurons revealed 40 unique neuronal populations, or LJ clusters, each with a distinct neuropeptide profile. Prohormones and their related peptides were generally found in single cells from ganglia consistent with the prohormones' previously known ganglion localizations. Several LJ clusters also revealed the cellular colocalization of behaviorally related prohormones, such as an LJ cluster exhibiting achatin and neuropeptide Y, which are involved in feeding, and another cluster characterized by urotensin II, small cardiac peptide, sensorin A, and FRFa, which have shown activity in the feeding network or are present in the feeding musculature. This mass spectrometry-based approach enables the robust categorization of large cell populations based on single cell neuropeptide content and is readily adaptable to the study of a range of animals and tissue types.
Collapse
Affiliation(s)
- Peter C Chan-Andersen
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
3
|
Matsuo R, Matsuo Y. Regional expression of neuropeptides in the retina of the terrestrial slug Limax valentianus (Gastropoda, Stylommatophora, Limacidae). J Comp Neurol 2022; 530:1551-1568. [PMID: 34979594 DOI: 10.1002/cne.25296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022]
Abstract
Gastropods use lens-bearing eyes to detect ambient light. The retina contains photoreceptors that directly project to the brain. Here we identified the neurotransmitters that the retinal cells use for projection to the brain in the terrestrial slug Limax. We identified 12 genes encoding neuropeptides as well as a novel vesicular glutamate transporter, a marker of glutamatergic neuron, expressed in the retinal cells. Spatial expression profiles of the neuropeptide genes were determined by in situ hybridization. WWamide/MIP1/Pedal peptide2 were co-expressed in the neurons of the accessory retina. In the main retina, prohormone-4 was expressed in the ventro-lateral region. Clionin was expressed in the ventro-medial region. Pedal peptide was expressed in the anterior region of the main retina and in the accessory retina. Enterin was expressed in many neurons, including the accessory retina, but not in the dorsal region. FxRIamide1 and 2 were co-expressed in the posterior region. Prohormone-4 variant was uniformly expressed in many neurons but scarcely in the accessory retina. MIP2 was widely expressed throughout the dorso-ventral axis in the posterio-lateral region of the main retina. Myo1 was expressed in many neurons of the main retina but predominantly in the dorsal region. These expression patterns were confirmed by immunohistochemistry with specific antibodies against the neuropeptides. Projections of these peptidergic retinal neurons were confirmed by immunostaining of the optic nerve. Our present study revealed regional differentiation of the retina with respect to the neurotransmitters that the retinal cells use. neuropeptides, retina, neurotransmitter, gastropod, Lehmannia This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University
| |
Collapse
|
4
|
Neuromodulation Can Be Simple: Myoinhibitory Peptide, Contained in Dedicated Regulatory Pathways, Is the Only Neurally-Mediated Peptide Modulator of Stick Insect Leg Muscle. J Neurosci 2021; 41:2911-2929. [PMID: 33531417 DOI: 10.1523/jneurosci.0188-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.
Collapse
|
5
|
Zhang G, Yuan WD, Vilim FS, Romanova EV, Yu K, Yin SY, Le ZW, Xue YY, Chen TT, Chen GK, Chen SA, Cropper EC, Sweedler JV, Weiss KR, Jing J. Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. ACS Chem Neurosci 2018. [PMID: 29543430 DOI: 10.1021/acschemneuro.7b00513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.
Collapse
Affiliation(s)
- Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Wang-ding Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ferdinand S. Vilim
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Elena V. Romanova
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Si-yuan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Zi-wei Le
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ying-yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ting-ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Guo-kai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Song-an Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
6
|
Cropper EC, Jing J, Vilim FS, Barry MA, Weiss KR. Multifaceted Expression of Peptidergic Modulation in the Feeding System of Aplysia. ACS Chem Neurosci 2018; 9:1917-1927. [PMID: 29309115 DOI: 10.1021/acschemneuro.7b00447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are present in species throughout the animal kingdom and generally exert actions that are distinct from those of small molecule transmitters. It has, therefore, been of interest to define the unique behavioral role of this class of substances. Progress in this regard has been made in experimentally advantageous invertebrate preparations. We focus on one such system, the feeding circuit in the mollusc Aplysia. We review research conducted over several decades that played an important role in establishing that peptide cotransmitters are released under behaviorally relevant conditions. We describe how this was accomplished. For example, we describe techniques developed to purify novel peptides, localize them to identified neurons, and detect endogenous peptide release. We also describe physiological experiments that demonstrated that peptides are bioactive under behaviorally relevant conditions. The feeding system is like others in that peptides exert effects that are both convergent and divergent. Work in the feeding system clearly illustrates how this creates potential for behavioral flexibility. Finally, we discuss experiments that determined physiological consequences of one of the hallmark features of peptidergic modulation, its persistence. Research in the feeding system demonstrated that this persistence can change network state and play an important role in determining network output.
Collapse
Affiliation(s)
- Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ferdinand S. Vilim
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Michael A. Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
7
|
Zhang G, Vilim FS, Liu DD, Romanova EV, Yu K, Yuan WD, Xiao H, Hummon AB, Chen TT, Alexeeva V, Yin SY, Chen SA, Cropper EC, Sweedler JV, Weiss KR, Jing J. Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. J Biol Chem 2017; 292:18775-18789. [PMID: 28924050 DOI: 10.1074/jbc.m117.795450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of neuromodulation in a behavioral system requires identification of active modulatory transmitters. Here, we used identifiable neurons in a neurobiological model system, the mollusc Aplysia, to study neuropeptides, a diverse class of neuromodulators. We took advantage of two types of feeding neurons, B48 and B1/B2, in the Aplysia buccal ganglion that might contain different neuropeptides. We performed a representational difference analysis (RDA) by subtraction of mRNAs in B48 versus mRNAs in B1/B2. The RDA identified an unusually long (2025 amino acids) peptide precursor encoding Aplysia leucokinin-like peptides (ALKs; e.g. ALK-1 and ALK-2). Northern blot analysis revealed that, compared with other ganglia (e.g. the pedal-pleural ganglion), ALK mRNA is predominantly present in the buccal ganglion, which controls feeding behavior. We then used in situ hybridization and immunohistochemistry to localize ALKs to specific neurons, including B48. MALDI-TOF MS on single buccal neurons revealed expression of 40 ALK precursor-derived peptides. Among these, ALK-1 and ALK-2 are active in the feeding network; they shortened the radula protraction phase of feeding motor programs triggered by a command-like neuron. We also found that this effect may be mediated by the ALK-stimulated enhancement of activity of an interneuron, which has previously been shown to terminate protraction. We conclude that our multipronged approach is effective for determining the structure and defining the diverse functions of leucokinin-like peptides. Notably, the ALK precursor is the first verified nonarthropod precursor for leucokinin-like peptides with a novel, marked modulatory effect on a specific parameter (protraction duration) of feeding motor programs.
Collapse
Affiliation(s)
- Guo Zhang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ferdinand S Vilim
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Dan-Dan Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Elena V Romanova
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Ke Yu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wang-Ding Yuan
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Xiao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Amanda B Hummon
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Ting-Ting Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Vera Alexeeva
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Si-Yuan Yin
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Song-An Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Elizabeth C Cropper
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Jonathan V Sweedler
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Klaudiusz R Weiss
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Jian Jing
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China, .,the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| |
Collapse
|
8
|
Cropper EC, Jing J, Perkins MH, Weiss KR. Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophysiol 2017; 118:1861-1870. [PMID: 28679841 DOI: 10.1152/jn.00373.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Many central pattern generator (CPG)-mediated behaviors are episodic, meaning that they are not continuously ongoing; instead, there are pauses between bouts of activity. This raises an interesting possibility, that the neural networks that mediate these behaviors are not operating under "steady-state" conditions; i.e., there could be dynamic changes in motor activity as it stops and starts. Research in the feeding system of the mollusk Aplysia californica has demonstrated that this can be the case. After a pause, initial food grasping responses are relatively weak. With repetition, however, responses strengthen. In this review we describe experiments that have characterized cellular/molecular mechanisms that produce these changes in motor activity. In particular, we focus on cumulative effects of modulatory neuropeptides. Furthermore, we relate Aplysia research to work in other systems and species, and develop a hypothesis that postulates that changes in response magnitude are a reflection of an efficient feeding strategy.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and.,State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Matthew H Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
9
|
McManus JM, Lu H, Cullins MJ, Chiel HJ. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function. J Neurophysiol 2014; 112:778-91. [PMID: 24805081 DOI: 10.1152/jn.00148.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hui Lu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Miranda J Cullins
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio; Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio; and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Abstract
All nervous systems are subject to neuromodulation. Neuromodulators can be delivered as local hormones, as cotransmitters in projection neurons, and through the general circulation. Because neuromodulators can transform the intrinsic firing properties of circuit neurons and alter effective synaptic strength, neuromodulatory substances reconfigure neuronal circuits, often massively altering their output. Thus, the anatomical connectome provides a minimal structure and the neuromodulatory environment constructs and specifies the functional circuits that give rise to behavior.
Collapse
Affiliation(s)
- Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
11
|
Feedforward compensation mediated by the central and peripheral actions of a single neuropeptide discovered using representational difference analysis. J Neurosci 2011; 30:16545-58. [PMID: 21147994 DOI: 10.1523/jneurosci.4264-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Compensatory mechanisms are often used to achieve stability by reducing variance, which can be accomplished via negative feedback during homeostatic regulation. In principle, compensation can also be implemented through feedforward mechanisms where a regulator acts to offset the anticipated output variation; however, few such neural mechanisms have been demonstrated. We provide evidence that an Aplysia neuropeptide, identified using an enhanced representational difference analysis procedure, implements feedforward compensation within the feeding network. We named the novel peptide "allatotropin-related peptide" (ATRP) because of its similarity to insect allatotropin. Mass spectrometry confirmed the peptide's identity, and in situ hybridization and immunostaining mapped its distribution in the Aplysia CNS. ATRP is present in the higher-order cerebral-buccal interneuron (CBI) CBI-4, but not in CBI-2. Previous work showed that CBI-4-elicited motor programs have a shorter protraction duration than those elicited by CBI-2. Here we show that ATRP shortens protraction duration of CBI-2-elicited ingestive programs, suggesting a contribution of ATRP to the parametric differences between CBI-4-evoked and CBI-2-evoked programs. Importantly, because Aplysia muscle contractions are a graded function of motoneuronal activity, one consequence of the shortening of protraction is that it can weaken protraction movements. However, this potential weakening is offset by feedforward compensatory actions exerted by ATRP. Centrally, ATRP increases the activity of protraction motoneurons. Moreover, ATRP is present in peripheral varicosities of protraction motoneurons and enhances peripheral motoneuron-elicited protraction muscle contractions. Therefore, feedforward compensatory mechanisms mediated by ATRP make it possible to generate a faster movement with an amplitude that is not greatly reduced, thereby producing stability.
Collapse
|
12
|
Kiss T, Hernádi L, László Z, Fekete ZN, Elekes K. Peptidergic modulation of serotonin and nerve elicited responses of the salivary duct muscle in the snail, Helix pomatia. Peptides 2010; 31:1007-18. [PMID: 20307609 DOI: 10.1016/j.peptides.2010.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022]
Abstract
In the present study, the ability of a range of endogenous neuropeptides to modulate neuromuscular transmission was examined in the salivary duct neuromuscular preparation of the terrestrial snail, Helix pomatia. Immunohistochemical and physiological techniques were used to localize the neuropeptides (GSPYFVamide, CARP, FMRFamide and APGWamide) and to investigate whether contractions elicited by the stimulation of the salivary nerve or by exogenously applied 5-HT are subject to peptidergic modulation. All of the neuropeptides studied decreased the tonus by a direct action on the muscle fibers in a concentration dependent manner in a range of 10(-9) to 10(-6)M. Neuropeptides distinctly affected the 5-HT evoked contraction or relaxation and GSPYFVa and APGWa decreased also the amplitude of contractions elicited by the stimulation of the salivary nerve. All four neuropeptides facilitated the relaxation phase providing further evidence for the postsynaptic action of neuropeptides. Low Ca(2+)/high Mg(2+) saline abolished the nerve-elicited contractions, however the denervated muscle retained the ability to contract due to the mobilization of the Ca(2+) from intracellular stores. It was concluded, that peptides belonging to different peptide families exerted their effects through pre- and postsynaptic mechanisms. The modulatory effect of neuropeptides can be assigned to the partial co-localization of 5-HT and neuropeptides in the nerves innervating muscles of the salivary duct, as it was demonstrated by double-labeling immunohistochemistry. A double origin of the 5-HTergic innervation was demonstrated, including efferents originating from both the cerebral and visceral ganglia.
Collapse
Affiliation(s)
- T Kiss
- Department of Experimental Zoology, Balaton Limnological Research Institute Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary.
| | | | | | | | | |
Collapse
|
13
|
Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci 2010; 30:131-47. [PMID: 20053896 DOI: 10.1523/jneurosci.3282-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bioactive neuropeptides containing RFamide at their C terminus have been described in both invertebrates and vertebrates. To obtain insight into the functional logic of RFamide signaling, we investigate it here in the feeding system of Aplysia. We focus on the expression, localization, and actions of two families of RFamide peptides, the FRFamides and FMRFamide, in the central neuronal circuitry and the peripheral musculature that generate the feeding movements. We describe the cloning of the FRFamide precursor protein and show that the FRFamides and FMRFamide are derived from different precursors. We map the expression of the FRFamide and FMRFamide precursors in the feeding circuitry using in situ hybridization and immunostaining and confirm proteolytic processing of the FRFamide precursor by mass spectrometry. We show that the two precursors are expressed in different populations of sensory neurons in the feeding system. In a representative feeding muscle, we demonstrate the presence of both FRFamides and FMRFamide and their release, probably from the processes of the sensory neurons in the muscle. Both centrally and in the periphery, the FRFamides and FMRFamide act in distinct ways, apparently through distinct mechanisms, and nevertheless, from an overall functional perspective, their actions are complementary. Together, the FRFamides and FMRFamide convert feeding motor programs from ingestive to egestive and depress feeding muscle contractions. We conclude that these structurally related peptides, although derived from different precursors, expressed in different neurons, and acting through different mechanisms, remain related to each other in the functional roles that they play in the system.
Collapse
|
14
|
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J Neurosci 2009; 29:4109-19. [PMID: 19339606 DOI: 10.1523/jneurosci.5510-08.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stick insect (Carausius morosus) leg muscles contract and relax slowly. Control of stick insect leg posture and movement could therefore differ from that in animals with faster muscles. Consistent with this possibility, stick insect legs maintained constant posture without leg motor nerve activity when the animals were rotated in air. That unloaded leg posture was an intrinsic property of the legs was confirmed by showing that isolated legs had constant, gravity-independent postures. Muscle ablation experiments, experiments showing that leg muscle passive forces were large compared with gravitational forces, and experiments showing that, at the rest postures, agonist and antagonist muscles generated equal forces indicated that these postures depended in part on leg muscles. Leg muscle recordings showed that stick insect swing motor neurons fired throughout the entirety of swing. To test whether these results were specific to stick insect, we repeated some of these experiments in cockroach (Periplaneta americana) and mouse. Isolated cockroach legs also had gravity-independent rest positions and mouse swing motor neurons also fired throughout the entirety of swing. These data differ from those in human and horse but not cat. These size-dependent variations in whether legs have constant, gravity-independent postures, in whether swing motor neurons fire throughout the entirety of swing, and calculations of how quickly passive muscle force would slow limb movement as limb size varies suggest that these differences may be caused by scaling. Limb size may thus be as great a determinant as phylogenetic position of unloaded limb motor control strategy.
Collapse
|
15
|
Serotonergic and SCPb-like innervation of the atrial complex in Gyratrix hermaphroditus (Platyhelminthes, Kalyptorhynchia) revealed with CLSM. ZOOMORPHOLOGY 2009. [DOI: 10.1007/s00435-009-0086-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Zhurov Y, Brezina V. Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia. J Neurosci 2006; 26:7056-70. [PMID: 16807335 PMCID: PMC6673911 DOI: 10.1523/jneurosci.5277-05.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The accessory radula closer (ARC) muscle of Aplysia has long been studied as a typical "slow" muscle, one that would be assumed to respond only to the overall, integrated spike rate of its motor neurons, B15 and B16. The precise timing of the individual spikes should not much matter. However, but real B15 and B16 spike patterns recorded in vivo show great variability that extends down to the timing of individual spikes. By replaying these real as well as artificially constructed spike patterns into ARC muscles in vitro, we examined the consequences of this spike-level variability for contraction. Replaying the same pattern several times reproduces precisely the same contraction shape: the B15/B16-ARC neuromuscular transform is deterministic. However, varying the timing of the spikes produces very different contraction shapes and amplitudes. The transform in fact operates at an interface between "fast" and "slow" regimens. It is fast enough that the timing of individual spikes greatly influences the detailed contraction shape. At the same time, slow integration of the spike pattern through the nonlinear transform allows the variable spike timing to determine also the overall contraction amplitude. Indeed, the variability appears to be necessary to maintain the contraction amplitude at a robust level. This phenomenon is tuned by neuromodulators that tune the speed and nonlinearity of the transform. Thus, the variable timing of individual spikes does matter, in at least two, functionally significant ways, in this "slow" neuromuscular system.
Collapse
|
17
|
Díaz-Ríos M, Miller MW. Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? THE BIOLOGICAL BULLETIN 2006; 210:215-29. [PMID: 16801496 DOI: 10.2307/4134559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contributions to this symposium are unified by their focus on the role of synaptic plasticity in sensorimotor learning. Synaptic plasticities are also known to operate within the central pattern generator (CPG) circuits that produce repetitive motor programs, where their relation to adaptive behavior is less well understood. This study examined divergent synaptic plasticity in the signaling of an influential interneuron, B20, located within the CPG that controls consummatory feeding-related behaviors in Aplysia. Previously, B20 was shown to contain markers for catecholamines and GABA (Díaz-Ríos et al., 2002), and its rapid synaptic signaling to two follower motor neurons, B16 and B8, was found to be mediated by dopamine (Díaz-Ríos and Miller, 2005). In this investigation, two incremental forms of increased synaptic efficacy, facilitation and summation, were both greater in the signaling from B20 to B8 than in the signaling from B20 to B16. Manipulation of the membrane potentials of the two postsynaptic motor neurons did not affect facilitation of excitatory postsynaptic potentials (EPSPs) to either follower cell. Striking levels of summation in B8, however, were eliminated at hyperpolarized membrane potentials and could be attributed to distinctive membrane properties of this postsynaptic cell. GABA and the GABAB agonist baclofen increased facilitation and summation of EPSPs from B20 to B8, but not to B16. The enhanced facilitation was not affected when the membrane potential of B8 was pre-set to hyperpolarized levels, but GABAergic effects on summation were eliminated by this manipulation. These observations demonstrate a target-specific amplification of synaptic efficacy that can contribute to channeling the flow of divergent information from an intrinsic interneuron within the buccal CPG. They further suggest that GABA, acting as a cotransmitter in B20, could induce coordinated and target-specific pre- and postsynaptic modulation of these signals. Finally, we speculate that target-specific plasticity and its modulation could be efficient, specific, and flexible substrates for learning-related modifications of CPG function.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico, 201 Blvd. del Valle, San Juan, Puerto Rico 00901
| | | |
Collapse
|
18
|
Abstract
Central pattern generators (CPGs) are circuits that generate organized and repetitive motor patterns, such as those underlying feeding, locomotion and respiration. We summarize recent work on invertebrate CPGs which has provided new insights into how rhythmic motor patterns are produced and how they are controlled by higher-order command and modulatory interneurons.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center, MS 013, Brandeis University, Watham, Massachusetts 02454-9110, USA.
| | | | | | | |
Collapse
|
19
|
Jiménez CR, Spijker S, de Schipper S, Lodder JC, Janse CK, Geraerts WPM, van Minnen J, Syed NI, Burlingame AL, Smit AB, Li K. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J Neurosci 2006; 26:518-29. [PMID: 16407549 PMCID: PMC6674408 DOI: 10.1523/jneurosci.2566-05.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In contrast to classical transmitters, the detailed structures and cellular and synaptic actions of neuropeptides are less well described. Peptide mass profiling of single identified neurons of the mollusc Lymnaea stagnalis indicated the presence of 17 abundant neuropeptides in the cardiorespiratory neuron, visceral dorsal 1 (VD1), and a subset of 14 peptides in its electrically coupled counterpart, right parietal dorsal 2. Altogether, based on this and previous work, we showed that the high number of peptides arises from the expression and processing of four distinct peptide precursor proteins, including a novel one. Second, we established a variety of posttranslational modifications of the generated peptides, including phosphorylation, disulphide linkage, glycosylation, hydroxylation, N-terminal pyroglutamylation, and C-terminal amidation. Specific synapses between VD1 and its muscle targets were formed, and their synaptic physiology was investigated. Whole-cell voltage-clamp analysis of dissociated heart muscle cells revealed, as tested for a selection of representative family members and their modifications, that the peptides of VD1 exhibit convergent activation of a high-voltage-activated Ca current. Moreover, the differentially glycosylated and hydroxylated alpha2 peptides were more potent than the unmodified alpha2 peptide in enhancing these currents. Together, this study is the first to demonstrate that single neurons exhibit such a complex pattern of peptide gene expression, precursor processing, and differential peptide modifications along with a remarkable degree of convergence of neuromodulatory actions. This study thus underscores the importance of a detailed mass spectrometric analysis of neuronal peptide content and peptide modifications related to neuromodulatory function.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Calcium Channels/physiology
- Calcium Channels, L-Type/metabolism
- Cells, Cultured/physiology
- Chromatography, High Pressure Liquid
- Coculture Techniques
- Ganglia, Invertebrate/cytology
- Gene Expression
- Glycosylation
- Hydroxylation
- Ion Transport/drug effects
- Lymnaea/chemistry
- Lymnaea/cytology
- Molecular Sequence Data
- Molecular Weight
- Myocytes, Cardiac/physiology
- Neurons/chemistry
- Neurons/physiology
- Neuropeptides/analysis
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Neuropeptides/physiology
- Patch-Clamp Techniques
- Peptide Fragments/analysis
- Phosphoproteins/metabolism
- Phosphoproteins/pharmacology
- Phosphorylation
- Protein Precursors/analysis
- Protein Processing, Post-Translational
- Proteomics
- RNA, Messenger/analysis
- Sequence Analysis, Protein
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Connie R Jiménez
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Proekt A, Vilim FS, Alexeeva V, Brezina V, Friedman A, Jing J, Li L, Zhurov Y, Sweedler JV, Weiss KR. Identification of a new neuropeptide precursor reveals a novel source of extrinsic modulation in the feeding system of Aplysia. J Neurosci 2006; 25:9637-48. [PMID: 16237168 PMCID: PMC6725720 DOI: 10.1523/jneurosci.2932-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Aplysia feeding system is advantageous for investigating the role of neuropeptides in behavioral plasticity. One family of Aplysia neuropeptides is the myomodulins (MMs), originally purified from one of the feeding muscles, the accessory radula closer (ARC). However, two MMs, MMc and MMe, are not encoded on the only known MM gene. Here, we identify MM gene 2 (MMG2), which encodes MMc and MMe and four new neuropeptides. We use matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to verify that these novel MMG2-derived peptides (MMG2-DPs), as well as MMc and MMe, are synthesized from the precursor. Using antibodies against the MMG2-DPs, we demonstrate that neuronal processes that stain for MMG2-DPs are found in the buccal ganglion, which contains the feeding network, and in the buccal musculature including the ARC muscle. Surprisingly, however, no immunostaining is observed in buccal neurons including the ARC motoneurons. In situ hybridization reveals only few MMG2-expressing neurons that are mostly located in the pedal ganglion. Using immunohistochemical and electrophysiological techniques, we demonstrate that some of these pedal neurons project to the buccal ganglion and are the likely source of the MMG2-DP innervation of the feeding network and musculature. We show that the MMG2-DPs are bioactive both centrally and peripherally: they bias egestive feeding programs toward ingestive ones, and they modulate ARC muscle contractions. The multiple actions of the MMG2-DPs suggest that these peptides play a broad role in behavioral plasticity and that the pedal-buccal projection neurons that express them are a novel source of extrinsic modulation of the feeding system of Aplysia.
Collapse
Affiliation(s)
- Alex Proekt
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Birmingham JT. Simple mechanism for stabilizing motor output. Focus on "temperature compensation of neuromuscular modulation in aplysia". J Neurophysiol 2005; 94:2997-8. [PMID: 16222070 DOI: 10.1152/jn.00636.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Tobin AE, Calabrese RL. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 2005; 94:3938-50. [PMID: 16093342 PMCID: PMC1560091 DOI: 10.1152/jn.00340.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern-generating network. The neuropeptide myomodulin decreases the period of this bursting and increases the intraburst spike frequency when applied to isolated ganglia containing these oscillator interneurons. Myomodulin also decreases period, increases spike frequency, and increases the robustness of endogenous bursting in synaptically isolated (with bicuculline) oscillator interneurons. In voltage-clamp experiments using hyperpolarizing ramps, we identify an increase in membrane conductance elicited by myomodulin with the properties of a hyperpolarization-activated current. Voltage steps confirm that myomodulin indeed increases the maximum conductance of the hyperpolarization-activated current I(h). In similar experiments using Cs(+) to block I(h), we demonstrate that myomodulin also causes a steady offset in the ramp current that is not associated with an increase in conductance. This current offset is blocked by ouabain, indicating that myomodulin inhibits the Na/K pump. In current-clamp experiments, when I(h) is blocked with Cs(+), myomodulin decreases period and increases spike frequency of alternating bursting in synaptically connected oscillator interneurons, suggesting that inhibiting the Na/K pump modulates these burst characteristics. These observations indicate that myomodulin decreases period and increases spike frequency of endogenous bursting in synaptically isolated oscillator heart interneurons and alternating bursting of reciprocally inhibitory pairs of interneurons, at least in part, by increasing I(h) and by decreasing the Na/K pump.
Collapse
Affiliation(s)
| | - Ronald L. Calabrese
- Address for reprint requests and other correspondence: R. L. Calabrese, Department of Biology, Emory University, 1510 Clifton Road N.E., Atlanta, GA 30322 (E-mail: )
| |
Collapse
|
23
|
Abstract
Physiological systems that must operate over a range of temperatures often incorporate temperature-compensatory mechanisms to maintain their output within a relatively narrow, functional range of values. We analyze here an example in the accessory radula closer (ARC) neuromuscular system, a representative part of the feeding neuromusculature of the sea slug Aplysia. The ARC muscle's two motor neurons, B15 and B16, release, in addition to ACh that contracts the muscle, modulatory peptide cotransmitters that, through a complex network of effects in the muscle, shape the ACh-induced contractions. It is believed that this modulation is critical in optimizing the performance of the muscle for successful, efficient feeding behavior. However, previous work has shown that the release of the modulatory peptides from the motor neurons decreases dramatically with increasing temperature. From 15 to 25 degrees C, for example, release decreases 20-fold. Yet Aplysia live and feed successfully not only at 15 degrees C, but at 25 degrees C and probably at higher temperatures. Here, working with reduced B15/B16-ARC preparations in vitro as well as a mathematical model of the system, we have found a resolution of this apparent paradox. Although modulator release decreases 20-fold when the temperature is raised from 15 to 25 degrees C, the observed modulation of contraction shape does not decrease at all. Two mechanisms are responsible. First, further downstream within the modulatory network, the modulatory effects themselves-experimentally dissected by exogenous modulator application-have temperature dependencies opposite to that of modulator release, increasing with temperature. Second, the saturating curvature of the dose-response relations within the network diminishes the downstream impact of the decrease of modulator release. Thus two quite distinct mechanisms, one depending on the characteristics of the individual components of the network and the other emerging from the network's structure, combine to compensate for temperature changes to maintain the output of this physiological system.
Collapse
Affiliation(s)
| | - Vladimir Brezina
- Author for correspondence and proofs: Dr. Vladimir Brezina, Department of Neuroscience, Box 1218, Mt. Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, tel. (212) 241-6532; fax (212) 860-3369, email
| |
Collapse
|
24
|
Brezina V, Horn CC, Weiss KR. Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior. J Neurophysiol 2004; 93:1523-56. [PMID: 15469963 DOI: 10.1152/jn.00475.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent work in computational neuroethology has emphasized that "the brain has a body": successful adaptive behavior is not simply commanded by the nervous system, but emerges from interactions of nervous system, body, and environment. Here we continue our study of these issues in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in the animal's feeding behaviors, a set of cyclical, rhythmic behaviors driven by a central pattern generator (CPG). Patterned firing of the ARC muscle's two motor neurons, B15 and B16, releases not only ACh to elicit the muscle's contractions but also peptide neuromodulators that then shape the contractions through a complex network of actions on the muscle. These actions are dynamically complex: some are fast, but some are slow, so that they are temporally uncoupled from the motor neuron firing pattern in the current cycle. Under these circumstances, how can the nervous system, through just the narrow channel of the firing patterns of the motor neurons, control the contractions, movements, and behavior in the periphery? In two earlier papers, we developed a realistic mathematical model of the B15/B16-ARC neuromuscular system and its modulation. Here we use this model to study the functional performance of the system in a realistic behavioral task. We run the model with two kinds of inputs: a simple set of regular motor neuron firing patterns that allows us to examine the entire space of patterns, and the real firing patterns of B15 and B16 previously recorded in a 2 1/2-h-long meal of 749 cycles in an intact feeding animal. These real patterns are extremely irregular. Our main conclusions are the following. 1) The modulation in the periphery is necessary for superior functional performance. 2) The components of the modulatory network interact in nonlinear, context- and task-dependent combinations for best performance overall, although not necessarily in any particular cycle. 3) Both the fast and the slow dynamics of the modulatory state make important contributions. 4) The nervous system controls different components of the periphery to different degrees. To some extent the periphery operates semiautonomously. However, the structure of the peripheral modulatory network ensures robust performance under all circumstances, even with the irregular motor neuron firing patterns and even when the parameters of the functional task are randomly varied from cycle to cycle to simulate a variable feeding environment. In the variable environment, regular firing patterns, which are fine-tuned to one particular task, fail to provide robust performance. We propose that the CPG generates the irregular firing patterns, which nevertheless are guaranteed to give robust performance overall through the actions of the peripheral modulatory network, as part of a trial-and-error feeding strategy in a variable, uncertain environment.
Collapse
Affiliation(s)
- Vladimir Brezina
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, Box 1218, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
25
|
Fort TJ, Brezina V, Miller MW. Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 2004; 92:3455-70. [PMID: 15295014 DOI: 10.1152/jn.00550.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theoretical studies have suggested that the output of a central pattern generator (CPG) must be matched to the properties of its peripheral effector system to ensure production of functional behavior. One way that such matching could be achieved is through coordinated central and peripheral modulation. In this study, morphological and physiological methods were used to examine the sources and actions of dopaminergic modulation in the cardiac system of the blue crab, Callinectes sapidus. Immunohistochemical localization of tyrosine hydroxylase (TH) revealed a prominent neuron in the commissural ganglion, the L-cell, that projected a large-diameter axon to the pericardial organ (PO) by an indirect and circuitous route. Within the PO, the L-cell axon gave rise to fine varicose fibers, suggesting that it releases dopamine in a neurohormonal fashion onto the heart musculature. In addition, one branch of the axon continued beyond the PO to the heart, where it innervated the anterior motor neurons and the posterior pacemaker region of the cardiac ganglion (CG). In physiological experiments, exogenous dopamine produced multiple effects on contraction and motor neuron burst parameters that corresponded to the dual central-peripheral modulation suggested by the L-cell morphology. Interestingly, parameters of the ganglionic motor output were modulated differently in the isolated CG and in a novel semi-intact system where the CG remained embedded within the heart musculature. These observations suggest a critical role of feedback from the periphery to the CG and underscore the requirement for integration of peripheral (neurohormonal) actions and direct ganglionic modulation in the regulation of this exceptionally simple system.
Collapse
Affiliation(s)
- Timothy J Fort
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico Medical Services Campus, San Juan, Puerto Rico 00901
| | | | | |
Collapse
|
26
|
Gainey LF, Greenberg MJ. Nitric oxide mediates seasonal muscle potentiation in clam gills. J Exp Biol 2003; 206:3507-20. [PMID: 12939381 DOI: 10.1242/jeb.00573] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The physiology and timing of gill muscle potentiation were explored in the clam Mercenaria mercenaria. When isolated demibranchs were exposed twice (with an intervening wash) to the same concentration of 5-hydroxytryptamine, the second contraction was larger than the first. This potentiation was seasonal: it was present from November through June, and absent from July through October. Potentiation was not affected by the geographic origin of the clams, nor by their acclimation temperature. Potentiation was inhibited by the nitric oxide synthase (NOS) inhibitor L-NAME and mimicked by the nitric oxide (NO) donor DEANO. During the season of potentiation, immunoreactive NOS appeared in the gill muscles and the gill filament epithelium, but during the off-season, the enzyme occurred at the base of the gill filaments. Potentiation was inhibited by ODQ, which inhibits soluble guanylate cyclase (sGC), and it was mimicked by dibutyryl-cGMP, an analog of cyclic GMP (cGMP). Moreover, potentiation was inhibited by the protein kinase G (PKG) inhibitor Rp-8-CPT-cGMPS. During the season of potentiation, immunoreactive sGC was concentrated in the gill muscles and the gill filament epithelium; but during the off-season, immunoreactive sGC was found in the gill filament epithelium. These data suggest that the potentiation of gill muscle is mediated by a NO/cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Louis F Gainey
- Department of Biological Sciences, University of Southern Maine, Portland, ME 04104, USA.
| | | |
Collapse
|
27
|
Brezina V, Orekhova IV, Weiss KR. Neuromuscular modulation in Aplysia. I. Dynamic model. J Neurophysiol 2003; 90:2592-612. [PMID: 12853443 DOI: 10.1152/jn.01091.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many physiological systems are regulated by complex networks of modulatory actions. Here we use mathematical modeling and complementary experiments to study the dynamic behavior of such a network in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in several types of rhythmic consummatory feeding behavior. The muscle's motor neurons release acetylcholine to produce basal contractions, but also modulatory peptide cotransmitters that, through multiple cellular effects, shape the contractions to meet behavioral demands. We construct a dynamic model of the modulatory network and examine its operation as the motor neurons fire in realistic patterns that change gradually over an hour-long meal and abruptly with switches between the different feeding behaviors. The modulatory effects have very disparate dynamical time scales. Some react to the motor neuron firing only over many cycles of the behavior, but one key effect is fast enough to respond to each individual cycle. Switches between the behaviors are therefore followed by rapid relaxations along some modulatory dimensions but not others. The trajectory of the modulatory state is a transient throughout the meal, ranging widely over regions of the modulatory space not accessible in the steady state. There is a pronounced history-dependency: the modulatory state associated with a cycle of a particular behavior depends on when that cycle occurs and what behaviors preceded it. On average, nevertheless, each behavior is associated with a different modulatory state. In the following companion study, we add a model of the neuromuscular transform to reconstruct and evaluate the actual modulated contraction shapes.
Collapse
Affiliation(s)
- Vladimir Brezina
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
28
|
Furukawa Y, Nakamaru K, Sasaki K, Fujisawa Y, Minakata H, Ohta S, Morishita F, Matsushima O, Li L, Alexeeva V, Ellis TA, Dembrow NC, Jing J, Sweedler JV, Weiss KR, Vilim FS. PRQFVamide, a novel pentapeptide identified from the CNS and gut of Aplysia. J Neurophysiol 2003; 89:3114-27. [PMID: 12612009 DOI: 10.1152/jn.00014.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have purified a novel pentapeptide from the Aplysia nervous system using bioassay on gut contractions. The structure of the peptide is Pro-Arg-Gln-Phe-Val-amide (PRQFVa). The precursor for PRQFVa was found to code for 33 copies of PRQFVamide and four related pentapeptides. Peaks corresponding to the predicted masses of all five pentapeptides were detected in Aplysia neurons by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Northern analysis revealed that expression of the precursor is abundant in the abdominal ganglion, much less in the pedal and cerebral ganglia, and rarely seen in the buccal and pleural ganglia. PRQFVa-positive neurons, mapped by immunohistochemistry and in situ hybridization, were present in all the central ganglia. PRQFVa immunopositive processes were observed in the gut, particularly in association with the vasculature. Some arteries and other highly vascularized tissues, such as the gill and the kidney, also contain numerous PRQFVa immunopositive processes. Application of synthetic PRQFVa suppresses not only contractions of the gut but also contractions of vasculature. PRQFVa is expressed in some of the neurons within the feeding circuitry and application of synthetic PRQFVa was found to decrease the excitability of some (B4/5 and B31/32) but not all (B8) neurons of the buccal feeding circuit. Our findings suggest that PRQFVa may act as a modulator within the feeding system as well as in other systems of Aplysia.
Collapse
Affiliation(s)
- Y Furukawa
- Graduate School of Science, Department of Biological Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Robie A, Díaz-Ríos M, Miller MW. A population of pedal-buccal projection neurons associated with appetitive components of Aplysia feeding behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:231-44. [PMID: 12664099 DOI: 10.1007/s00359-003-0396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 09/05/2002] [Accepted: 01/11/2003] [Indexed: 11/24/2022]
Abstract
Backfills of the cerebral-buccal connective (CBC) of Aplysia californica revealed a cluster of five to seven pedal-buccal projection neurons in the anterolateral quadrant of the ventral surface of each pedal ganglion. Intra- and extracellular recordings showed that the pedal-buccal projection neurons shared common electrophysiological properties and synaptic inputs. However, they exhibited considerable heterogeneity with respect to their projection patterns. All pedal-buccal projection neurons that were tested received a slow excitatory postsynaptic potential from the ipsi- and contralateral cerebral-pedal regulator (C-PR) neuron, a cell that is thought to play a key role in the generation of a food-induced arousal state. Tests were conducted to identify potential synaptic follower neurons of the pedal-buccal projection neurons in the cerebral and buccal ganglia, but none were detected. Finally, nerve recordings revealed projections from the pedal-buccal projection neurons in the nerves associated with the buccal ganglion. In tests designed to determine the functional properties of these peripheral projections, no evidence was obtained supporting a mechanosensory or proprioceptive role and no movements were observed when they were fired. It is proposed that peripheral elements utilized in consummatory phases of Aplysia feeding may be directly influenced by a neuronal pathway that is activated during the food-induced arousal state.
Collapse
Affiliation(s)
- Alice Robie
- Institute of Neurobiology, University of Puerto Rico, 201 Blvd. del Valle, 00901, San Juan, Puerto Rico
| | | | | |
Collapse
|
30
|
Orekhova IV, Alexeeva V, Church PJ, Weiss KR, Brezina V. Multiple presynaptic and postsynaptic sites of inhibitory modulation by myomodulin at ARC neuromuscular junctions of Aplysia. J Neurophysiol 2003; 89:1488-502. [PMID: 12626624 DOI: 10.1152/jn.00140.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional activity of even simple cellular ensembles is often controlled by surprisingly complex networks of neuromodulators. One such network has been extensively studied in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle is innervated by two motor neurons, B15 and B16, which release modulatory peptide cotransmitters to shape ACh-mediated contractions of the muscle. Previous analysis has shown that key to the combinatorial ability of B15 and B16 to control multiple parameters of the contraction is an asymmetry in their peptide modulatory actions. B16, but not B15, releases myomodulin, which, among other actions, inhibits the contraction. Work in single ARC muscle fibers has identified a distinctive myomodulin-activated K current as a candidate postsynaptic mechanism of the inhibition. However, definitive evidence for this mechanism has been lacking. Here, working with the single fibers and then motor neuron-elicited excitatory junction potentials (EJPs) and contractions of the intact ARC muscle, we have confirmed two central predictions of the K-current hypothesis: the myomodulin inhibition of contraction is associated with a correspondingly large inhibition of the underlying depolarization, and the inhibition of both contraction and depolarization is blocked by 4-aminopyridine (4-AP), a potent and selective blocker of the myomodulin-activated K current. However, in the intact muscle, the experiments revealed a second, 4-AP-resistant component of myomodulin inhibition of both B15- and B16-elicited EJPs. This component resembles, and mutually occludes with, inhibition of the EJPs by another peptide modulator released from both B15 and B16, buccalin, which acts by a presynaptic mechanism, inhibition of ACh release from the motor neuron terminals. Direct measurements of peptide release showed that myomodulin also inhibits buccalin release from B15 terminals. At the level of contractions, nevertheless, the postsynaptic K-current mechanism is responsible for much of the myomodulin inhibition of peak contraction amplitude. The presynaptic mechanism, which is most evident during the initial build-up of the EJP waveform, underlies instead an increase of contraction latency.
Collapse
Affiliation(s)
- Irina V Orekhova
- Department of Physiology and Biophysics, and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York City, New York 10029, USA
| | | | | | | | | |
Collapse
|
31
|
Vehovszky A, Elliott CJH. Heterosynaptic modulation by the octopaminergic OC interneurons increases the synaptic outputs of protraction phase interneurons (SO, N1L) in the feeding system of Lymnaea stagnalis. Neuroscience 2003; 115:483-94. [PMID: 12421615 DOI: 10.1016/s0306-4522(02)00414-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the cholinergic synapses between protraction phase interneurons (SO or N1L) and their targets (N1M interneuron, B1 motoneuron) in the buccal ganglia of the pond snail Lymnaea stagnalis. We have tested the hypothesis that the OC (octopamine-containing) interneuron, an intrinsic modulator of the feeding network, can increase the synaptic efficacy from the SO or N1L to their targets. Prestimulation of the OC interneuron, 4 s before the activation of the SO or N1L increases the strength of their output synapses by 75% (SO)-110% (N1L). The individual excitatory postsynaptic potentials evoked by SO or N1L stimulation increase in size. OC prestimulation also produces an increase in the firing rate of these presynaptic interneurons: SO 40%; N1L 33%. The facilitation lasts up to 6 s after the end of the OC burst. The enhancement of PSPs is seen at all the output synapses (both excitatory and inhibitory) of the SO and N1L interneurons. The output synapses of the non-cholinergic swallowing phase N3p interneuron are not affected, even when the same postsynaptic target is selected. The SO-->N1M, SO-->B1 and N1L-->N1M synapses are also strengthened by bath application of 1-5 microM octopamine (average increase 60%). The major effect is an increased excitability of the SO; the B1 motoneuron response to the main transmitter of the SO, acetylcholine, is unaffected. Increased synaptic outputs of the protraction phase SO and N1L interneurons is functionally significant for generation of feeding pattern in the Lymnaea CNS. Strengthening the connections of SO and N1L to the central pattern generator (N1M) interneurons enhances their ability to drive fictive feeding. Thus heterosynaptic facilitation by the octopaminergic OC interneurons in the central pattern generator network may contribute to the behavioral plasticity of feeding in the intact animal.
Collapse
Affiliation(s)
- A Vehovszky
- Department of Biology, University of York, P.O. Box 373, UK.
| | | |
Collapse
|
32
|
Abstract
A myomodulin peptide has been suggested to mediate the response of the giant glial cells to stimulation of the Leydig interneuron in the central nervous system of the leech Hirudo medicinalis [Eur. J. Neurosci. 11 (1999) 3125]. We have now studied the glial response to the endogenous leech MM peptide (GMGALRL-NH(2), MMHir). The peptide evokes a membrane outward current (EC(50) approximately 2 microM), which neither desensitizes nor shows any sign of run-down, and elicits a K(+) conductance increase of the glial cell membrane. The peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF) enhances the glial current response, suggesting the presence of endogenous extracellular peptidases.
Collapse
Affiliation(s)
- Frank C Britz
- Abteilung für Allgemeine Zoologie, FB Biologie, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
| | | |
Collapse
|
33
|
Abstract
All network dynamics emerge from the complex interaction between the intrinsic membrane properties of network neurons and their synaptic connections. Nervous systems contain numerous amines and neuropeptides that function to both modulate the strength of synaptic connections and the intrinsic properties of network neurons. Consequently network dynamics can be tuned and configured in different ways, as a function of the actions of neuromodulators. General principles of the organization of modulatory systems in nervous systems include: (a) many neurons and networks are multiply modulated, (b) there is extensive convergence and divergence in modulator action, and (c) some modulators may be released extrinsically to the modulated circuit, while others may be released by some of the circuit neurons themselves, and act intrinsically. Some of the computational consequences of these features of modulator action are discussed.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
34
|
Britz FC, Lohr C, Schmidt J, Deitmer JW. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system. Glia 2002; 38:215-27. [PMID: 11968059 DOI: 10.1002/glia.10062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cross-talk between neurons and glial cells is receiving increased attention because of its potential role in information processing in nervous systems. Stimulation of a single identifiable neuron, the neurosecretory Leydig interneuron in segmental ganglia of the leech Hirudo medicinalis, which modulates specific behaviors in the leech, evokes membrane hyperpolarization directly in the giant glial cell (Schmidt and Deitmer. Eur J Neurosci 11:3125-3133, 1999). We have studied the neuron-to-glia signal transmission in the voltage-clamped giant glial cell to determine whether this interaction exhibits properties of a chemical synapse. The glial response had a mean latency of 4.9 s and was dependent on the action potential frequency; the glial cell responded to as few as five Leydig neuron action potentials in 50% of the trials. The glial current was sustained for minutes during repetitive Leydig neuron activity without any sign of desensitization. The current was sensitive to tetraethylammonium, and its reversal potential of -78 mV shifted with the external K+ concentration. The glial response increased with the duration of the neuronal action potentials and was sensitive to the external Ca2+/Mg2+ concentration ratio. The results suggest that Leydig neuron activity leads to a Ca2+-dependent release of transmitter from the neuronal dendrites, evoking an K+ outward current in the giant glial cell, implying a synapse-like transmission between a neuron and a glial cell.
Collapse
Affiliation(s)
- Frank C Britz
- Abteilung für Allgemeine Zoologie, FB Biologie, Universität Kaiserslautern, Germany
| | | | | | | |
Collapse
|
35
|
Díaz-Ríos M, Oyola E, Miller MW. Colocalization of gamma-aminobutyric acid-like immunoreactivity and catecholamines in the feeding network of Aplysia californica. J Comp Neurol 2002; 445:29-46. [PMID: 11891652 DOI: 10.1002/cne.10152] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional consequences of neurotransmitter coexistence and cotransmission can be readily studied in certain experimentally favorable invertebrate motor systems. In this study, whole-mount histochemical methods were used to identify neurons in which gamma-aminobutyric acid (GABA)-like immunoreactivity (GABAli) was colocalized with catecholamine histofluorescence (CAh; FaGlu method) and tyrosine hydroxylase (TH)-like immunoreactivity (THli) in the feeding motor circuitry (buccal and cerebral ganglia) of the marine mollusc Aplysia californica. In agreement with previous reports, five neurons in the buccal ganglia were found to exhibit CAh. These included the paired B20 buccal-cerebral interneurons (BCIs), the paired B65 buccal interneurons, and an unpaired cell with projections to both cerebral-buccal connectives (CBCs). Experiments in which the FaGlu method was combined with the immunohistochemical detection of GABA revealed double labeling of all five of these neurons. An antibody generated against TH, the rate-limiting enzyme in the biosynthesis of catecholamines, was used to obtain an independent determination of GABA-CA colocalization. Biocytin backfills of the CBC performed in conjunction with TH immunohistochemistry revealed labeling of the rostral B20 cell pair and the unpaired CBI near the caudal surface of the right hemiganglion. THli was also present in a prominent bilateral pair of caudal neurons that were not stained with CBC backfills. On the basis of their position, size, shape, and lack of CBC projections, the lateral THli neurons were identified as B65. Double-labeling immunohistochemical experiments revealed GABAli in all five buccal THli neurons. Finally, GABAli was observed in individual B20 and B65 neurons that were identified using electrophysiological criteria and injected with a marker (neurobiotin). Similar methods were used to demonstrate that a previously identified catecholaminergic cerebral-buccal interneuron (CBI) designated CBI-1 contained THli but did not contain GABAli. Although numerous THli and GABAli neurons and fibers were present in the cerebral and buccal ganglia, additional instances of their colocalization were not observed. These findings indicate that GABA and a catecholamine (probably dopamine) are colocalized in a limited number of interneurons within the central pattern generator circuits that control feeding-related behaviors in Aplysia.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Institute of Neurobiology, Department of Anatomy, University of Puerto Rico, 201 Blvd. del Valle, San Juan, Puerto Rico 00901
| | | | | |
Collapse
|
36
|
Masino MA, Calabrese RL. Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. J Neurophysiol 2002; 87:1603-15. [PMID: 11877529 DOI: 10.1152/jn.00338.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Considerable experimental and theoretical effort has been exerted to understand how constant intersegmental phase relationships are produced between oscillators in segmentally organized pattern generating networks. The phase relationship between the segmental oscillators in the isolated timing network of the leech heartbeat central pattern generator is quite regular within individual preparations. However, it varies considerably among different preparations. Our goal is to determine how the phase relationships in this network are established. Here we assess whether inherent period differences, as suggested by the excitability-gradient hypothesis, play a role in establishing the phase relationships between the two coupled segmental oscillators of the leech heartbeat timing network. To do this we developed methods for reversibly uncoupling the segmental oscillators (sucrose knife) and pharmacological manipulation of the individual oscillators (split bath). Differences in inherent cycle periods between the third and fourth segmental oscillators (G3 and G4) were present in most (20 of 26) preparations. These period differences correlated with the phase differences observed between the segmental oscillators in the recoupled timing network, such that the oscillator with the faster cycle period, regardless of the segment in which it was located, led in phase in proportion to its period difference with the other oscillator. The phase differences between the original (coupled) and recoupled states of individual preparations were similar. Thus application and removal of the sucrose knife did not alter the period difference between the segmental oscillators in the timing network. Pharmacological manipulation of the uncoupled oscillators to alter the period difference between the oscillators led to similar correlated phase differences in the recoupled timing network. Across all experiments the uncoupled segmental oscillator with the faster cycle period established the cycle period of the timing network when recoupled. In conclusion, our findings indicate that an excitability-gradient plays a role in establishing the phase relationship between the segmental oscillators of the leech heartbeat central pattern generator since inherent period differences present between the oscillators are correlated to the phase relationships of the coupled/recoupled timing network.
Collapse
Affiliation(s)
- Mark A Masino
- Biology Department, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Elliott CJ. Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea. J Neurophysiol 2001; 86:792-808. [PMID: 11495951 DOI: 10.1152/jn.2001.86.2.792] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe the role of the octopamine-containing OC interneurons in the buccal feeding system of Lymnaea stagnalis. OC neurons are swallowing phase interneurons receiving inhibitory inputs in the N1 and N2 phases, and excitatory inputs in the N3 phase of fictive feeding. Although the OC neurons do not always fire during feeding, the feeding rate is significantly (P < 0.001) higher when both SO and OC fire in each cycle than when only the SO fires. In 28% of silent preparations, a single stimulation of an OC interneuron evokes the feeding pattern. Repetitive stimulation of the OC interneuron increases the proportion of responsive preparations to 41%. The OC interneuron not only changes both the feeding rate and reconfigures the pattern. Depolarization of the OC interneurons increases the feeding rate and removes the B3 motor neuron from the firing sequence. Hyperpolarization slows it down (increasing the duration of N1 and N3 phases) and recruits the B3 motor neuron. OC interneurons form synaptic connections onto buccal motor neurons and interneurons but not onto the cerebral (cerebral giant cell) modulatory neurons. OC interneurons are electrically coupled to all N3 phase (B4, B4Cl, B8) feeding motor neurons. They form symmetrical connections with the N3p interneurons having dual electrical (excitatory) and chemical (inhibitory) components. OC interneurons evoke biphasic synaptic inputs on the protraction phase interneurons (SO, N1L, N1M), with a short inhibition followed by a longer lasting depolarization. N2d interneurons are hyperpolarized, while N2v interneurons are slowly depolarized and often fire a burst after OC stimulation. Most motor neurons also receive synaptic responses from the OC interneurons. Although OC and N3p interneurons are both swallowing phase interneurons, their synaptic contacts onto follower neurons are usually different (e.g., the B3 motor neurons are inhibited by OC, but excited by N3p interneurons). Repetitive stimulation of OC interneuron facilitates the excitatory component of the biphasic responses evoked on the SO, N1L, and N1M interneurons, but neither the N2 nor the N3 phase interneurons display a similar longer-lasting excitatory effect. OC interneurons are inhibited by all the buccal feeding interneurons, but excited by the serotonergic modulatory CGC neurons. We conclude that OC interneurons are a new kind of swallowing phase interneurons. Their connections with the buccal feeding interneurons can account for their modulatory effects on the feeding rhythm. As they contain octopamine, this is the first example in Lymnaea that monoaminergic modulation and reconfiguration are provided by an intrinsic member of the buccal feeding network.
Collapse
|
38
|
Orekhova IV, Jing J, Brezina V, DiCaprio RA, Weiss KR, Cropper EC. Sonometric measurements of motor-neuron-evoked movements of an internal feeding structure (the radula) in Aplysia. J Neurophysiol 2001; 86:1057-61. [PMID: 11495975 DOI: 10.1152/jn.2001.86.2.1057] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many systems used to study rhythmic motor programs, the structures that generate behavior are at least partially internal. In these systems, it is often difficult to directly monitor neurally evoked movements. As a consequence, although motor programs are relatively well characterized, it is generally less clear how neural activity is translated into functional movements. This is the case for the feeding system of the mollusk Aplysia. Here we used sonomicrometry to monitor neurally evoked movements of the food-grasping organ in Aplysia, the radula. Movements were evoked by intracellular stimulation of motor neurons that innervate radula muscles that have been extensively studied in reduced preparations. Nevertheless our results indicate that the movements and neural control of the radula are more complex than has been assumed. We demonstrate that motor neurons previously characterized as radula openers (B48) and closers (B8, B15, B16) additionally produce other movements. Moreover, we show that the size of the movement evoked by a motor neuron can depend on the preexisting state of the radula. Specifically, the motor neurons B15 and B16 produce large closing movements when the radula is partially open but produce relatively weak closing movements in a preparation at rest. Thus the efficacy of B15 and B16 as radula closers is context dependent.
Collapse
Affiliation(s)
- I V Orekhova
- Department of Physiology and Biophysics, Mt. Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
39
|
Li L, Floyd PD, Rubakhin SS, Romanova EV, Jing J, Alexeeva VY, Dembrow NC, Weiss KR, Vilim FS, Sweedler JV. Cerebrin prohormone processing, distribution and action in Aplysia californica. J Neurochem 2001; 77:1569-80. [PMID: 11413240 DOI: 10.1046/j.1471-4159.2001.00360.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isolation, characterization, and bioactivity in the feeding circuitry of a novel neuropeptide in the Aplysia californica central nervous system are reported. The 17-residue amidated peptide, NGGTADALYNLPDLEKIamide, has been termed cerebrin due to its primary location in the cerebral ganglion. Liquid chromatographic purification guided by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry allowed the isolation of the peptide with purity adequate for Edman sequencing. The cerebrin cDNA has been characterized and encodes an 86 amino acid prohormone that predicts cerebrin and one additional peptide. Mapping using in situ hybridization and immunocytochemistry showed that cerebrin containing neuronal somata are localized almost exclusively in the cerebral ganglion, mostly in the F- and C-clusters. Both immunostaining and mass spectrometry demonstrated the presence of cerebrin in the neurohemal region of the upper labial nerve. In addition, immunoreactive processes were detected in the neuropil of all of the ganglia, including the buccal ganglia, and in some interganglionic connectives, including the cerebral-buccal connective. This suggests that cerebrin may also function as a local signaling molecule. Cerebrin has a profound effect on the feeding motor pattern elicited by the command-like neuron CBI-2, dramatically shortening the duration of the radula protraction in a concentration-dependent manner, mimicking the motor-pattern alterations observed in food induced arousal states. These findings suggest that cerebrin may contribute to food-induced arousal in the animal. Cerebrin-like immunoreactivity is also present in Lymnaea stagnalis suggesting that cerebrin-like peptides may be widespread throughout gastropoda.
Collapse
Affiliation(s)
- L Li
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hurwitz I, Cropper EC, Vilim FS, Alexeeva V, Susswein AJ, Kupfermann I, Weiss KR. Serotonergic and peptidergic modulation of the buccal mass protractor muscle (I2) in aplysia. J Neurophysiol 2000; 84:2810-20. [PMID: 11110811 DOI: 10.1152/jn.2000.84.6.2810] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity of Aplysia feeding has largely been measured by noting changes in radula protraction. On the basis of previous work, it has been suggested that peripheral modulation may contribute to behavioral plasticity. However, peripheral plasticity has not been demonstrated in the neuromuscular systems that participate in radula protraction. Therefore in this study we investigated whether contractions of a major radula protraction muscle (I2) are subject to modulation. We demonstrate, first, that an increase in the firing frequency of the cholinergic I2 motoneurons will increase the amplitude of the resulting muscle contraction but will not modulate its relaxation rate. We show, second, that neuronal processes on the I2 muscle are immunoreactive to myomodulin (MM), RFamide, and serotonin (5-HT), but not to small cardioactive peptide (SCP) or buccalin. The I2 motoneurons B31, B32, B61, and B62 are not immunoreactive to RFamide, 5-HT, SCP, or buccalin. However, all four cells are MM immunoreactive and are capable of synthesizing MMa. Third, we show that the bioactivity of the different modulators is somewhat different; while the MMs (i.e., MMa and MMb) and 5-HT increase I2 muscle relaxation rate, and potentiate muscle contraction amplitude, MMa, at high concentrations, depresses muscle contractions. Fourth, our data suggest that cAMP at least partially mediates effects of modulators on contraction amplitude and relaxation rate.
Collapse
Affiliation(s)
- I Hurwitz
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In this paper we construct, on the basis of existing experimental data, a mathematical model of firing-elicited release of peptide transmitters from motor neuron B15 in the accessory radula closer neuromuscular system of Aplysia. The model consists of a slow "mobilizing" reaction and the fast release reaction itself. Experimentally, however, it was possible to measure only the mean, heavily averaged release, lacking fast kinetic information. Considered in the conventional way, the data were insufficient to completely specify the details of the model, in particular the relative properties of the slow and the unobservable fast reaction. We illustrate here, with our model and with additional experiments, how to approach such a problem by considering another dimension of release, namely its pattern dependence. The mean release is sensitive to the temporal pattern of firing, even to pattern on time scales much faster than the time scale on which the release is averaged. The mean release varies with the time scale and magnitude of the pattern, relative to the time scale and nonlinearity of the release reactions with which the pattern interacts. The type and magnitude of pattern dependence, especially when correlated systematically over a range of patterns, can therefore yield information about the properties of the release reactions. Thus, temporal pattern can be used as a probe of the release process, even of its fast, directly unobservable components. More generally, the analysis provides insights into the possible ways in which such pattern dependence, widespread especially in neuropeptide- and hormone-releasing systems, might arise from the properties of the underlying cellular reactions.
Collapse
|
42
|
Brezina V, Church PJ, Weiss KR. Temporal pattern dependence of neuronal peptide transmitter release: models and experiments. J Neurosci 2000; 20:6760-72. [PMID: 10995819 PMCID: PMC6772811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In this paper we construct, on the basis of existing experimental data, a mathematical model of firing-elicited release of peptide transmitters from motor neuron B15 in the accessory radula closer neuromuscular system of Aplysia. The model consists of a slow "mobilizing" reaction and the fast release reaction itself. Experimentally, however, it was possible to measure only the mean, heavily averaged release, lacking fast kinetic information. Considered in the conventional way, the data were insufficient to completely specify the details of the model, in particular the relative properties of the slow and the unobservable fast reaction. We illustrate here, with our model and with additional experiments, how to approach such a problem by considering another dimension of release, namely its pattern dependence. The mean release is sensitive to the temporal pattern of firing, even to pattern on time scales much faster than the time scale on which the release is averaged. The mean release varies with the time scale and magnitude of the pattern, relative to the time scale and nonlinearity of the release reactions with which the pattern interacts. The type and magnitude of pattern dependence, especially when correlated systematically over a range of patterns, can therefore yield information about the properties of the release reactions. Thus, temporal pattern can be used as a probe of the release process, even of its fast, directly unobservable components. More generally, the analysis provides insights into the possible ways in which such pattern dependence, widespread especially in neuropeptide- and hormone-releasing systems, might arise from the properties of the underlying cellular reactions.
Collapse
Affiliation(s)
- V Brezina
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
43
|
Angers A, Zappulla JP, Zollinger M, DesGroseillers L. Gene products from LUQ neurons in the abdominal ganglion are present at the renal pore of Aplysia californica. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:435-43. [PMID: 11007186 DOI: 10.1016/s0305-0491(00)00217-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The L2-4,6 and L5 cells located in the left upper quadrant of the abdominal ganglion of Aplysia californica express the L5-67 and LUQ-1 genes, respectively, in a nonoverlapping manner. These cells send major neurites to the kidney and at least some of them were shown to innervate the renal pore closer muscle, and thereby control its function. By using in-situ hybridization and immunofluorescence, the presence of L5-67 and LUQ-1 mRNAs and peptides was studied in the kidney, with emphasis on the region of the renal pore. We detected immunoreactive materials in many small varicose nerve fibers running along the central epithelium in the inner parts of the kidney, and in neurites located within a large nerve associated with muscles inside the renal pore. Our observations represent the first direct evidence of the presence of gene products from LUQ cells at the renal pore, suggesting that they may be responsible for mediating LUQ cell signals. Furthermore, mRNAs coding for the L5-67 and LUQ-1 peptides were also found in the nerve structure inside the renal pore. Our report documents a striking example of neuropeptide mRNA targeting nerve terminals that are very distant from their cell bodies.
Collapse
Affiliation(s)
- A Angers
- Département de Biochimie, Université de Montréal, Station Centre-Ville, Québec, Canada
| | | | | | | |
Collapse
|
44
|
Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications. J Neurosci 2000. [PMID: 10684904 DOI: 10.1523/jneurosci.20-05-02036.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many neurons contain multiple peptide cotransmitters in addition to their classical transmitters. We are using the accessory radula closer neuromuscular system of Aplysia, which participates in feeding in these animals, to define the possible consequences of multiple modulators converging on single targets. How these modulators are released onto their targets is of critical importance in understanding the outcomes of their modulatory actions and their physiological role. Here we provide direct evidence that the partially antagonistic families of modulatory peptides, the myomodulins and buccalins, synthesized by motorneuron B16 are costored and coreleased in fixed ratios. We show that this release is calcium-dependent and independent of muscle contraction. Furthermore, we show that peptide release is initiated at the low end of the physiological range of motorneuron firing frequency and that it increases with increasing motorneuron firing frequency. The coordination of peptide release with the normal operating range of a neuron may be a general phenomenon and suggests that the release of peptide cotransmitters may exhibit similar types of regulation and plasticity as have been observed for classical transmitters. Stimulation paradigms that increase muscle contraction amplitude or frequency also increase peptide release from motor neuron B16. The net effect of the modulatory peptide cotransmitters released from motorneuron B16 would be to increase relaxation rate and therefore allow more frequent and/or larger contractions to occur without increased resistance to antagonist muscles. The end result of this modulation could be to maximize the efficiency of feeding.
Collapse
|
45
|
Vilim FS, Cropper EC, Price DA, Kupfermann I, Weiss KR. Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications. J Neurosci 2000; 20:2036-42. [PMID: 10684904 PMCID: PMC6772917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Many neurons contain multiple peptide cotransmitters in addition to their classical transmitters. We are using the accessory radula closer neuromuscular system of Aplysia, which participates in feeding in these animals, to define the possible consequences of multiple modulators converging on single targets. How these modulators are released onto their targets is of critical importance in understanding the outcomes of their modulatory actions and their physiological role. Here we provide direct evidence that the partially antagonistic families of modulatory peptides, the myomodulins and buccalins, synthesized by motorneuron B16 are costored and coreleased in fixed ratios. We show that this release is calcium-dependent and independent of muscle contraction. Furthermore, we show that peptide release is initiated at the low end of the physiological range of motorneuron firing frequency and that it increases with increasing motorneuron firing frequency. The coordination of peptide release with the normal operating range of a neuron may be a general phenomenon and suggests that the release of peptide cotransmitters may exhibit similar types of regulation and plasticity as have been observed for classical transmitters. Stimulation paradigms that increase muscle contraction amplitude or frequency also increase peptide release from motor neuron B16. The net effect of the modulatory peptide cotransmitters released from motorneuron B16 would be to increase relaxation rate and therefore allow more frequent and/or larger contractions to occur without increased resistance to antagonist muscles. The end result of this modulation could be to maximize the efficiency of feeding.
Collapse
Affiliation(s)
- F S Vilim
- Department of Physiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
46
|
Fox LE, Lloyd PE. Role of cAMP in the short-term modulation of a neuromuscular system in aplysia. J Neurophysiol 2000; 83:1567-79. [PMID: 10712480 DOI: 10.1152/jn.2000.83.3.1567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular synapses in buccal muscle I3a of Aplysia are modulated by the small cardioactive peptide (SCP), a peptide cotransmitter that is intrinsic to the motor neurons, and by serotonin (5-HT) released from modulatory neurons that are extrinsic to the motor circuit. Although the modulation of excitatory junction potentials (EJPs) and contractions by 5-HT and SCP has been studied extensively in this muscle, little is known about the mechanisms that underlie the modulation. 5-HT and SCP, at 1 microM, were found to potently increase the level of cAMP in I3a. Therefore we investigated whether the activation of the cAMP pathway was sufficient to modulate EJPs and contractions. The direct activation of adenylyl cyclase with forskolin increased the level of cAMP, facilitated EJPs, and potentiated contractions. Indeed, the short-term effects of forskolin were very similar to all aspects of the short-term effects of 5-HT and SCP. Membrane-permeable cAMP analogues also mimicked the effects of 5-HT and SCP on EJPs and contractions. However, it seems likely that some effects of 5-HT are also mediated through other second-messenger pathways because low concentrations of 5-HT modulate EJPs and contractions but do not significantly increase cAMP levels in I3a. It is possible that lower concentrations of 5-HT function through receptors linked to protein kinase C (PKC) because phorbol, an activator of PKC, modulated EJPs and contractions without increasing the levels of cAMP. In conclusion, we provide evidence that pharmacological agents that activate the cAMP pathway mimicked most of the effects of 5-HT or SCP and that more than one second-messenger system appears to be involved in the modulation of the I3a neuromuscular system.
Collapse
Affiliation(s)
- L E Fox
- Committee on Neurobiology and Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
47
|
Rosen SC, Miller MW, Evans CG, Cropper EC, Kupfermann I. Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia. J Neurophysiol 2000; 83:1605-20. [PMID: 10712483 DOI: 10.1152/jn.2000.83.3.1605] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The buccal ganglion of Aplysia contains a heterogeneous population of peptidergic, radula mechanoafferent (RM) neurons. To investigate their function, two of the larger RM cells (B21, B22) were identified by morphological and electrophysiological criteria. Both are low-threshold, rapidly adapting, mechanoafferent neurons that responded to touch of the radula, the structure that grasps food during ingestive and egestive feeding movements. Sensory responses of the cells consisted of spike bursts at frequencies of 8-35 Hz. Each cell was found to make chemical, electrical, or combined synapses with other sensory neurons, motor neurons and interneurons involved in radula closure and/or protraction-retraction movements of the odontophore. Motor neurons receiving input included the following: B8a/b, B15, and B16, which innervate muscles contributing to radula closing; and B82, a newly identified neuron that innervates the anterodorsal region of the I1/I3 muscles of the buccal mass. B21 and B22 can affect buccal motor programs by way of their connections to interneurons such as B19 and B64. Fast, chemical, excitatory postsynaptic potentials (EPSPs) produced by RM neurons, such as B21, exhibited strong, frequency-dependent facilitation, a form of homosynaptic plasticity. Firing B21 also produced a slow EPSP in B15 that increased the excitability of the cell. Thus a sensory neuron mediating a behavioral response may have modulatory effects. The data suggest multiple functions for RM neurons including 1) triggering of phase transitions in rhythmic motor programs, 2) adjusting the force of radula closure, 3) switching from biting to swallowing or swallowing to rejection, and 4) enhancing food-induced arousal.
Collapse
Affiliation(s)
- S C Rosen
- Center for Neurobiology and Behavior, New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Gamma-aminobutyric acid (GABA) is present in the central nervous system of Aplysia californica (Gastropoda, Opisthobranchia) where its role as a neurotransmitter is supported by pharmacological, biochemical, and anatomical investigations. In this study, the distribution of GABA-immunoreactive (GABAi) neurons and fiber systems in Aplysia was examined by using wholemount immunohistochemistry and nerve backfill methods. GABAi neurons were located in the buccal, cerebral, and pedal ganglia. Major commissural fiber systems were present in each of these ganglia, whereas more limited fiber systems were observed in the ganglionic connectives. Some of the interganglionic fibers were found to originate from two unpaired GABAi neurons, one in the buccal ganglion and one in the right pedal ganglion, each of which exhibited bilateral projections. No GABAi fibers were found in the nerves that innervate peripheral sensory, motor, or visceral organs. Although GABAi cells were not observed in the pleural or abdominal ganglia, these ganglia did receive limited projections of GABAi fibers originating from neurons in the pedal ganglia. The distribution of GABAi neurons suggests that this transmitter system may be primarily involved in coordinating certain bilateral central pattern generator (CPG) systems related to feeding and locomotion. In addition, the presence of specific interganglionic GABAi projections also suggests a role in the regulation or coordination of circuits that produce components of complex behaviors.
Collapse
Affiliation(s)
- M Díaz-Ríos
- Institute of Neurobiology, University of Puerto Rico, San Juan 00901
| | | | | |
Collapse
|
49
|
Gainey LF, Vining KJ, Doble KE, Waldo JM, Candelario-Martinez A, Greenberg MJ. An endogenous SCP-related peptide modulates ciliary beating in the gills of a venerid clam, Mercenaria mercenaria. THE BIOLOGICAL BULLETIN 1999; 197:159-173. [PMID: 10573837 DOI: 10.2307/1542612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The activities of both the lateral and frontal cilia of Mercenaria mercenaria were unaffected, either by the two endogenous SCP-related peptides AMSFYFPRMamide and YFAFPRQamide, or by FMRFamide (all at 10(-6) M). Dopamine (DA) inhibited the lateral cilia; the mean EC50 was 2 x 10(-6) M. The peptide YFAFPRQamide--but neither AMSFYFPRMamide nor FMRFamide--antagonized the inhibition induced by DA; this effect was dependent on both time and dose. At a DA concentration of 5 x 10(-7) M, the effect of YFAFPRQamide appeared within 20 min and became maximal within 40-60 min; the mean EC50 at these times was 4.7 x 10(-11) M. If the concentration of DA was increased to 10(-6) M, the maximal effect of the peptide was delayed to 50 min, and the mean EC50 increased to 1.1 x 10(-7) M. Particle transport by the frontal cilia was inhibited by 5-hydroxytryptamine (5HT); the mean EC50 was 5.7 x 10(-7) M. Again, only YFAFPRQamide had an antagonistic effect on the 5HT-induced inhibition. At a 5HT concentration of 10(-6) M, the effects of YFAFPRQamide did not appear until 45 min; the mean EC50 was 10(-6) M. When radioimmunoassayed with an SCP antiserum, the elution profile of a gill extract overlapped those of the SCP-related peptides that had previously been identified in extracts of whole animals. These data suggest that all three SCP analogs occur in the gill. Immunohistochemistry of the gill, carried out with a monoclonal antibody raised to SCPB, stained many varicose neuronal fibers. Most of these were associated with the gill musculature, but a sparse innervation of the filaments underlying the cilia was also observed. Some fluorescent nerve cell bodies were also seen in the gill tissue. Our results are consistent with the hypothesis that YFAFPRQamide modulates branchial activities--muscular as well as ciliary--that are associated with feeding.
Collapse
Affiliation(s)
- L F Gainey
- Department of Biological Sciences, University of Southern Maine, Portland 04104, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Keating C, Lloyd PE. Differential modulation of motor neurons that innervate the same muscle but use different excitatory transmitters in aplysia. J Neurophysiol 1999; 82:1759-67. [PMID: 10515965 DOI: 10.1152/jn.1999.82.4.1759] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The medial portion of intrinsic buccal muscle 3 (I3m) is innervated by two excitatory motor neurons, B3 and B9. B3 uses glutamate as its fast transmitter and expresses the neuropeptide FMRFamide, whereas B9 uses acetylcholine as its fast transmitter and expresses the neuropeptide SCP. This preparation was used to study peptidergic modulation of muscles innervated by neurons that use different fast excitatory transmitters. First, we determined the effects of the application of the neuropeptides expressed in these neurons on excitatory junction potentials (EJPs) and contractions. FMRFamide increased the amplitude of EJPs and contractions evoked by B3 while decreasing those evoked by B9. This is the first observation in buccal muscle of a substance that modulates two excitatory neurons innervating the same muscle in opposite directions. SCP increased EJPs contraction amplitude, and the rate of muscle relaxation for both motor neurons. We determined that SCP potently increased cAMP levels in I3m as it does in other buccal muscles. Stimulation of B9 also caused increased cAMP levels in I3m providing independent evidence for SCP release. Finally, stimulation of B9 increased both the contraction amplitude and relaxation rate of B3-evoked I3m contractions in a manner similar to that observed using exogenous SCP. By inhibiting B9's cholinergic transmission with an antagonist, we were able to observe modulatory effects of B9 in the absence of fast excitatory effects. We found that the magnitude of the modulation was dependent on the firing frequency and did occur at frequencies and patterns of firing recorded previously for B9 during ingestive-like motor programs.
Collapse
Affiliation(s)
- C Keating
- Committee on Neurobiology and Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|