1
|
Sun Z, Chen G, Gan J, Tang Y, Wu H, Shi Z, Yi T, Yang Y, Liu S, Ji Y. Exploring the Neural Mechanisms of Mirrored-Self Misidentification in Alzheimer's Disease. Int J Geriatr Psychiatry 2024; 39:e6148. [PMID: 39334521 DOI: 10.1002/gps.6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a complex neurodegenerative condition that causes a range of cognitive disturbances, including mirror-self misidentification syndrome (MSM), in which patients cannot recognize themselves in a mirror. However, the mechanism of action of MSM is not precisely known. This study aimed to explore the possible neural mechanisms of action of MSM in AD using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This study included 48 AD patients, 13 in the MSM group and 35 in the non-MSM group. The permeability of the blood-brain barrier (BBB) was quantitatively monitored by measuring the transfer rate (Ktrans) of the contrast agent from the vasculature to the surrounding tissue using DCE-MRI. The concentration of contrast agents in different brain regions was measured, and the Patlak model was used to calculate Ktrans. Ktrans values were compared between the left and right cerebral hemispheres in different brain areas between the MSM and non-MSM groups. Additionally, the difference in Ktrans values between mild and severe MSM was assessed. Logistic regression analysis was used to examine the risk factors for MSM. RESULTS The Mann‒Whitney U test was used to compare two groups and revealed elevated Ktrans values in the left thalamus, left putamen, left globus pallidus, left corona radiata, and right caudate in the MSM group (p < 0.05). Logistic regression analysis revealed that increased Ktrans values in the left putamen (OR = 1.53, 95% CI = 1.04, 2.26) and left globus pallidus (OR = 1.54, 95% CI = 1.02, 2.31) may be risk factors for MSM. After dividing MSM patients into mild and moderate-severe groups, the Ktrans values of the thalamus in the moderate-severe group were greater than those in the mild group (p < 0.05). CONCLUSION Our study revealed the relationship between BBB permeability and MSM in AD. MSM is associated with BBB breakdown in the left putamen and globus pallidus. The left putamen and globus pallidus may function in mirror self-recognition. Higher BBB permeability in the thalamus may reflect the severity of AD in MSM.
Collapse
Affiliation(s)
- Zhen Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
- Department of Neurology, Linfen Central Hospital, Linfen, China
| | - Gang Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Tang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Tingting Yi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yaqi Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| |
Collapse
|
2
|
Terry G, Pagulayan KF, Muzi M, Mayer C, Murray DR, Schindler AG, Richards TL, McEvoy C, Crabtree A, McNamara C, Means G, Muench P, Powell JR, Mihalik JP, Thomas RG, Raskind MA, Peskind ER, Meabon JS. Increased [ 18F]Fluorodeoxyglucose Uptake in the Left Pallidum in Military Veterans with Blast-Related Mild Traumatic Brain Injury: Potential as an Imaging Biomarker and Mediation with Executive Dysfunction and Cognitive Impairment. J Neurotrauma 2024; 41:1578-1596. [PMID: 38661540 PMCID: PMC11339557 DOI: 10.1089/neu.2023.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Blast-related mild traumatic brain injury (blast-mTBI) can result in a spectrum of persistent symptoms leading to substantial functional impairment and reduced quality of life. Clinical evaluation and discernment from other conditions common to military service can be challenging and subject to patient recall bias and the limitations of available assessment measures. The need for objective biomarkers to facilitate accurate diagnosis, not just for symptom management and rehabilitation but for prognostication and disability compensation purposes is clear. Toward this end, we compared regional brain [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) intensity-scaled uptake measurements and motor, neuropsychological, and behavioral assessments in 79 combat Veterans with retrospectively recalled blast-mTBI with 41 control participants having no lifetime history of TBI. Using an agnostic and unbiased approach, we found significantly increased left pallidum [18F]FDG-uptake in Veterans with blast-mTBI versus control participants, p < 0.0001; q = 3.29 × 10-9 [Cohen's d, 1.38, 95% confidence interval (0.96, 1.79)]. The degree of left pallidum [18F]FDG-uptake correlated with the number of self-reported blast-mTBIs, r2 = 0.22; p < 0.0001. Greater [18F]FDG-uptake in the left pallidum provided excellent discrimination between Veterans with blast-mTBI and controls, with a receiver operator characteristic area under the curve of 0.859 (p < 0.0001) and likelihood ratio of 21.19 (threshold:SUVR ≥ 0.895). Deficits in executive function assessed using the Behavior Rating Inventory of Executive Function-Adult Global Executive Composite T-score were identified in Veterans with blast-mTBI compared with controls, p < 0.0001. Regression-based mediation analyses determined that in Veterans with blast-mTBI, increased [18F]FDG-uptake in the left pallidum-mediated executive function impairments, adjusted causal mediation estimate p = 0.021; total effect estimate, p = 0.039. Measures of working and prospective memory (Auditory Consonant Trigrams test and Memory for Intentions Test, respectively) were negatively correlated with left pallidum [18F]FDG-uptake, p < 0.0001, with mTBI as a covariate. Increased left pallidum [18F]FDG-uptake in Veterans with blast-mTBI compared with controls did not covary with dominant handedness or with motor activity assessed using the Unified Parkinson's Disease Rating Scale. Localized increased [18F]FDG-uptake in the left pallidum may reflect a compensatory response to functional deficits following blast-mTBI. Limited imaging resolution does not allow us to distinguish subregions of the pallidum; however, the significant correlation of our data with behavioral but not motor outcomes suggests involvement of the ventral pallidum, which is known to regulate motivation, behavior, and emotions through basal ganglia-thalamo-cortical circuits. Increased [18F]FDG-uptake in the left pallidum in blast-mTBI versus control participants was consistently identified using two different PET scanners, supporting the generalizability of this finding. Although confirmation of our results by single-subject-to-cohort analyses will be required before clinical deployment, this study provides proof of concept that [18F]FDG-PET bears promise as a readily available noninvasive biomarker for blast-mTBI. Further, our findings support a causative relationship between executive dysfunction and increased [18F]FDG-uptake in the left pallidum.
Collapse
Affiliation(s)
- Garth Terry
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Kathleen F. Pagulayan
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Cynthia Mayer
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Daniel R. Murray
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
| | - Abigail G. Schindler
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
| | - Todd L. Richards
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Cory McEvoy
- United States Army Special Operations Command, Fort Liberty, North Carolina, USA
| | - Adam Crabtree
- United States Army Special Operations Command, Fort Liberty, North Carolina, USA
| | - Chris McNamara
- United States Army Special Operations Command, Fort Liberty, North Carolina, USA
| | - Gary Means
- United States Army Special Operations Command, Fort Liberty, North Carolina, USA
| | - Peter Muench
- United States Army Special Operations Command, Fort Liberty, North Carolina, USA
| | - Jacob R. Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Stallings-Evans Sports Medicine Center, Chapel Hill, North Carolina, USA
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Stallings-Evans Sports Medicine Center, Chapel Hill, North Carolina, USA
| | - Ronald G. Thomas
- Division of Biostatistics, Department of Family Medicine & Public Health, University of California San Diego, La Jolla, California, USA
| | - Murray A. Raskind
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Elaine R. Peskind
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - James S. Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System (VA Puget Sound), Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Bojesen KB, Glenthøj BY, Sigvard AK, Tangmose K, Raghava JM, Ebdrup BH, Rostrup E. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol Med 2023; 53:1-11. [PMID: 36754993 PMCID: PMC10600821 DOI: 10.1017/s0033291723000144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Resting cerebral blood flow (rCBF) in striatum and thalamus is increased in medicated patients with psychosis, but whether this is caused by treatment or illness pathology is unclear. Specifically, effects of partial dopamine agonism, sex, and clinical correlates on rCBF are sparsely investigated. We therefore assessed rCBF in antipsychotic-naïve psychosis patients before and after aripiprazole monotherapy and related findings to sex and symptom improvement. METHODS We assessed rCBF with the pseudo-Continuous Arterial Spin Labeling (PCASL) sequence in 49 first-episode patients (22.6 ± 5.2 years, 58% females) and 50 healthy controls (HCs) (22.3 ± 4.4 years, 63% females) at baseline and in 29 patients and 49 HCs after six weeks. RCBF in striatum and thalamus was estimated with a region-of-interest (ROI) approach. Psychopathology was assessed with the positive and negative syndrome scale. RESULTS Baseline rCBF in striatum and thalamus was not altered in the combined patient group compared with HCs, but female patients had lower striatal rCBF compared with male patients (p = 0.009). Treatment with a partial dopamine agonist increased rCBF significantly in striatum (p = 0.006) in the whole patient group, but not significantly in thalamus. Baseline rCBF in nucleus accumbens was negatively associated with improvement in positive symptoms (p = 0.046), but baseline perfusion in whole striatum and thalamus was not related to treatment outcome. CONCLUSIONS The findings suggest that striatal perfusion is increased by partial dopamine agonism and decreased in female patients prior to first treatment. This underlines the importance of treatment effects and sex differences when investigating the neurobiology of psychosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
4
|
Abstract
Basal ganglia, which include the striatum and thalamus, have key roles in motivation, emotion, motor function, also contribute to higher-order cognitive function. Previous researches have documented structural and functional alterations in basal ganglia in schizophrenia. While few studies have assessed asymmetries of these characters in basal ganglia of schizophrenia. The current study investigated this issue by using diffusion tensor imaging, anatomic T1-weight image and resting-state functional data from 88 chronic schizophrenic subjects and 92 healthy controls. The structural characteristic, including fractional anisotropy, mean diffusivity (MD) and volume, were extracted and quantified from the subregions of basal ganglia, including caudate, putamen, pallidum and thalamus, through automated atlas-based method. The resting-state functional maps of these regions were also calculated through seed-based functional connectivity. Then, the laterality indexes of structural and functional features were calculated. Compared with healthy controls, schizophrenic subjects showed increased left laterality of volume in striatum and reduced left laterality of volume in thalamus. Furthermore, the difference of laterality of subregions in thalamus is compensatory in schizophrenic subjects. Importantly, the severity of patients' positive symptom was negative corelated with reduced left laterality of volume in thalamus. Our findings provide preliminary evidence demonstrating that the possibility of aberrant laterality in neural pathways and connectivity patterns related to the basal ganglia in schizophrenia.
Collapse
|
5
|
Sasabayashi D, Takayanagi Y, Takahashi T, Katagiri N, Sakuma A, Obara C, Katsura M, Okada N, Koike S, Yamasue H, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Subcortical Brain Volume Abnormalities in Individuals With an At-risk Mental State. Schizophr Bull 2020; 46:834-845. [PMID: 32162659 PMCID: PMC7342178 DOI: 10.1093/schbul/sbaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous structural magnetic resonance imaging studies of psychotic disorders have demonstrated volumetric alterations in subcortical (ie, the basal ganglia, thalamus) and temporolimbic structures, which are involved in high-order cognition and emotional regulation. However, it remains unclear whether individuals at high risk for psychotic disorders with minimal confounding effects of medication exhibit volumetric changes in these regions. This multicenter magnetic resonance imaging study assessed regional volumes of the thalamus, caudate, putamen, nucleus accumbens, globus pallidus, hippocampus, and amygdala, as well as lateral ventricular volume using FreeSurfer software in 107 individuals with an at-risk mental state (ARMS) (of whom 21 [19.6%] later developed psychosis during clinical follow-up [mean = 4.9 years, SD = 2.6 years]) and 104 age- and gender-matched healthy controls recruited at 4 different sites. ARMS individuals as a whole demonstrated significantly larger volumes for the left caudate and bilateral lateral ventricles as well as a smaller volume for the right accumbens compared with controls. In male subjects only, the left globus pallidus was significantly larger in ARMS individuals. The ARMS group was also characterized by left-greater-than-right asymmetries of the lateral ventricle and caudate nucleus. There was no significant difference in the regional volumes between ARMS groups with and without later psychosis onset. The present study suggested that significant volume expansion of the lateral ventricle, caudate, and globus pallidus, as well as volume reduction of the accumbens, in ARMS subjects, which could not be explained only by medication effects, might be related to general vulnerability to psychopathology.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan,To whom correspondence should be addressed; Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan; tel: +81-76-434-7323, fax: +81-76-434-5030, e-mail:
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Chika Obara
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan,Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
6
|
Hemispheric Asymmetry of Globus Pallidus Relates to Alpha Modulation in Reward-Related Attentional Tasks. J Neurosci 2019; 39:9221-9236. [PMID: 31578234 DOI: 10.1523/jneurosci.0610-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022] Open
Abstract
Whereas subcortical structures such as the basal ganglia have been widely explored in relation to motor control, recent evidence suggests that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related top-down control of visual alpha-band oscillations (8-13 Hz), which have been consistently linked to mechanisms supporting the allocation of visuospatial attention. Given that items associated with contextual saliency (e.g., monetary reward or loss) attract attention, it is not surprising that the acquired salience of visual items further modulates. The executive networks controlling such reward-dependent modulations of oscillatory brain activity have yet to be fully elucidated. Although such networks have been explored in terms of corticocortical interactions, subcortical regions are likely to be involved. To uncover this, we combined MRI and MEG data from 17 male and 11 female participants, investigating whether derived measures of subcortical structural asymmetries predict interhemispheric modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP) and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this effect became stronger when the value saliency parings in the task increased. Our findings suggest that the GP and Th in humans are part of a subcortical executive control network, differentially involved in modulating posterior alpha activity in the presence of saliency. Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful insight in future studies.SIGNIFICANCE STATEMENT Whereas the involvement of subcortical regions into higher level cognitive processing, such as attention and reward attribution, has been already indicated in previous studies, little is known about its relationship with the functional oscillatory underpinnings of said processes. In particular, interhemispheric modulation of alpha band (8-13 Hz) oscillations, as recorded with magnetoencephalography, has been previously shown to vary as a function of salience (i.e., monetary reward/loss) in a spatial attention task. We here provide novel insights into the link between subcortical and cortical control of visual attention. Using the same reward-related spatial attention paradigm, we show that the volumetric lateralization of subcortical structures (specifically globus pallidus and thalamus) explains individual biases in the modulation of visual alpha activity.
Collapse
|
7
|
Abnormal asymmetries in subcortical brain volume in early adolescents with subclinical psychotic experiences. Transl Psychiatry 2018; 8:254. [PMID: 30487578 PMCID: PMC6261944 DOI: 10.1038/s41398-018-0312-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
Subcortical structures may have an important role in the pathophysiology of psychosis. Our recent mega-analysis of structural magnetic resonance imaging (MRI) data has reported subcortical volumetric and lateralization alterations in chronic schizophrenia, including leftward asymmetric increases in pallidal volume. The question remains, however, whether these characteristics may represent vulnerability to the development of psychosis or whether they are epiphenomena caused by exposure to medication or illness chronicity. Subclinical psychotic experiences (SPEs) occur in some adolescents in the general population and increase the odds of developing psychosis in young adulthood. Investigations into the association between SPEs and MRI-measured volumes of subcortical structures in the general adolescent population would clarify the issue. Here, we collected structural MRI data in a subsample (10.5-13.3 years old) of a large-scale population-based cohort and explored subcortical volume and lateralization alterations related to SPEs (N = 203). Adolescents with SPEs demonstrated significant volumetric increases in the left hippocampus, right caudate, and right lateral ventricle, as well as a marginally significant increase in the left pallidum. Furthermore, adolescents with SPEs showed significantly more leftward laterality of pallidal volume than individuals without SPEs, which replicates our mega-analysis findings in chronic schizophrenia. We suggest that leftward asymmetries in pallidal volume already present in early adolescence may underlie the premorbid predisposition for developing psychosis in later life.
Collapse
|
8
|
Modinos G, Egerton A, McMullen K, McLaughlin A, Kumari V, Barker GJ, Williams SCR, Zelaya F. Increased resting perfusion of the hippocampus in high positive schizotypy: A pseudocontinuous arterial spin labeling study. Hum Brain Mapp 2018; 39:4055-4064. [PMID: 29885018 PMCID: PMC6174983 DOI: 10.1002/hbm.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Arterial spin labeling (ASL) provides absolute quantification of resting tissue cerebral blood flow (CBF) as an entirely noninvasive approach with good reproducibility. As a result of neurovascular coupling, ASL provides a useful marker of resting neuronal activity. Recent ASL studies in individuals at clinical high risk of psychosis (CHR) have reported increased resting hippocampal perfusion compared with healthy controls. Schizotypy refers to the presence of subclinical psychotic-like experiences in healthy individuals and represents a robust framework to study neurobiological mechanisms involved in the extended psychosis phenotype while avoiding potentially confounding effects of antipsychotic medications or disease comorbidity. Here we applied pseudo-continuous ASL to examine differences in resting CBF in 21 subjects with high positive schizotypy (HS) relative to 22 subjects with low positive schizotypy (LS), as determined by the Oxford and Liverpool Inventory of Feelings and Experiences. Based on preclinical evidence that hippocampal hyperactivity leads to increased activity in mesostriatal dopamine projections, CBF in hippocampus, midbrain, and striatum was assessed. Participants with HS showed higher CBF of the right hippocampus compared to those with LS (p = .031, family-wise error corrected). No differences were detected in the striatum or midbrain. The association between increased hippocampal CBF and HS supports the notion that hippocampal hyperactivity might be a central characteristic of the extended psychosis phenotype, while hyperactivity in subcortical dopamine pathways may only emerge at a higher intensity of psychotic experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Bojesen KB, Andersen KA, Rasmussen SN, Baandrup L, Madsen LM, Glenthøj BY, Rostrup E, Broberg BV. Glutamate Levels and Resting Cerebral Blood Flow in Anterior Cingulate Cortex Are Associated at Rest and Immediately Following Infusion of S-Ketamine in Healthy Volunteers. Front Psychiatry 2018; 9:22. [PMID: 29467681 PMCID: PMC5808203 DOI: 10.3389/fpsyt.2018.00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/19/2018] [Indexed: 11/15/2022] Open
Abstract
Progressive loss of brain tissue is seen in some patients with schizophrenia and might be caused by increased levels of glutamate and resting cerebral blood flow (rCBF) alterations. Animal studies suggest that the normalisation of glutamate levels decreases rCBF and prevents structural changes in hippocampus. However, the relationship between glutamate and rCBF in anterior cingulate cortex (ACC) of humans has not been studied in the absence of antipsychotics and illness chronicity. Ketamine is a noncompetitive N-methyl-D-aspartate receptor antagonist that transiently induces schizophrenia-like symptoms and neurobiological disturbances in healthy volunteers (HVs). Here, we used S-ketamine challenge to assess if glutamate levels were associated with rCBF in ACC in 25 male HVs. Second, we explored if S-ketamine changed the neural activity as reflected by rCBF alterations in thalamus (Thal) and accumbens that are connected with ACC. Glutamatergic metabolites were measured in ACC with magnetic resonance (MR) spectroscopy and whole-brain rCBF with pseudo-continuous arterial spin labelling on a 3-T MR scanner before, during, and after infusion of S-ketamine (total dose 0.375 mg/kg). In ACC, glutamate levels were associated with rCBF before (p < 0.05) and immediately following S-ketamine infusion (p = 0.03), but not during and after. S-Ketamine increased rCBF in ACC (p < 0.001) but not the levels of glutamate (p = 0.96). In subcortical regions, S-ketamine altered rCBF in left Thal (p = 0.03). Our results suggest that glutamate levels in ACC are associated with rCBF at rest and in the initial phase of an increase. Furthermore, S-ketamine challenge transiently induces abnormal activation of ACC and left Thal that both are implicated in the pathophysiology of schizophrenia. Future longitudinal studies should investigate if increased glutamate and rCBF are related to the progressive loss of brain tissue in initially first-episode patients.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Aagaard Andersen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Nordahl Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Line Malmer Madsen
- Department of Anaesthesia, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Brian Villumsen Broberg
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
10
|
Schechtman E, Noblejas MI, Mizrahi AD, Dauber O, Bergman H. Pallidal spiking activity reflects learning dynamics and predicts performance. Proc Natl Acad Sci U S A 2016; 113:E6281-E6289. [PMID: 27671661 PMCID: PMC5068334 DOI: 10.1073/pnas.1612392113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state-action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus-outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role.
Collapse
Affiliation(s)
- Eitan Schechtman
- Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, Israel 9190401;
| | - Maria Imelda Noblejas
- Department of Neurobiology, Institute of Medical Research-Israel Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Aviv D Mizrahi
- Department of Neurobiology, Institute of Medical Research-Israel Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Omer Dauber
- Department of Neurobiology, Institute of Medical Research-Israel Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Hagai Bergman
- Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, Israel 9190401; Department of Neurobiology, Institute of Medical Research-Israel Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| |
Collapse
|
11
|
Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, Yasuda Y, Fujimoto M, Watanabe Y, Yahata N, Nemoto K, Hibar DP, van Erp TGM, Fujino H, Isobe M, Isomura S, Natsubori T, Narita H, Hashimoto N, Miyata J, Koike S, Takahashi T, Yamasue H, Matsuo K, Onitsuka T, Iidaka T, Kawasaki Y, Yoshimura R, Watanabe Y, Suzuki M, Turner JA, Takeda M, Thompson PM, Ozaki N, Kasai K, Hashimoto R. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 2016; 21:1460-6. [PMID: 26782053 PMCID: PMC5030462 DOI: 10.1038/mp.2015.209] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia.
Collapse
Affiliation(s)
- N Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - M Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - F Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - D Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - K Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Watanabe
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - K Nemoto
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - D P Hibar
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - H Fujino
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - M Isobe
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Isomura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - J Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - T Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - H Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - K Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - T Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Iidaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - R Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Y Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - M Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - J A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
| | - M Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - P M Thompson
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - N Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - K Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - R Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - COCORO
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Resnick SM. Positron Emission Tomography in Psychiatric Illness. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/1467-8721.ep10768776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susan M. Resnick
- Research Assistant Professor of Psychology in the Department of Psychiatry at the University of Pennsylvania. Her research involves the integration of genetic and neuroimaging approaches to the study of brain-behavior associations in normal persons and individuals with neuropsychiatric illness
| |
Collapse
|
13
|
Regional cerebral blood flow in late-onset schizophrenia: a SPECT study using 99mTc-ECD. Eur Arch Psychiatry Clin Neurosci 2016; 266:3-12. [PMID: 26015391 DOI: 10.1007/s00406-015-0607-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Progressive disability in schizophrenia has been considered to be associated with onset-age. The objective of this study was to evaluate age onset-related degeneration in rCBF in patients with schizophrenia. We evaluated characteristic changes in brain perfusion by age, gender, medication and clinical symptoms in medicated patients with early-onset (EOS: developed at younger than 40 years old: n = 44) and late-onset (LOS: developed at older than 40 years old: n = 19) schizophrenia and control subjects matched for age and gender (n = 37) using statistical parametric mapping (SPM8) applied to 99mTc-ECD SPECT. We performed SPECT with 99mTc-ECD on the brains of subjects. A voxel-by-voxel group analysis was performed using SPM 8 and ANOVA. rCBF in EOS was found to be reduced in the precentral and inferior frontal gyri; on the other hand, rCBF was reduced in the bilateral postcentral gyrus in LOS. This study revealed a significant difference in brain perfusion between EOS and LOS. The present study might suggest that the characteristic changes in rCBF are related to onset-age in schizophrenia.
Collapse
|
14
|
Dieset I, Haukvik UK, Melle I, Røssberg JI, Ueland T, Hope S, Dale AM, Djurovic S, Aukrust P, Agartz I, Andreassen OA. Association between altered brain morphology and elevated peripheral endothelial markers--implications for psychotic disorders. Schizophr Res 2015; 161:222-8. [PMID: 25433965 DOI: 10.1016/j.schres.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 07/02/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased inflammation, endothelial dysfunction, and structural brain abnormalities have been reported in both schizophrenia and bipolar disorder, but the relationships between these factors are unknown. We aimed to identify associations between markers of inflammatory and endothelial activation and structural brain variation in psychotic disorders. METHODS We measured von Willebrand factor (vWf) as a marker of endothelial cell activation and six inflammatory markers (tumor necrosis factor-receptor 1, osteoprotegerin, interleukin-1-receptor antagonist, interleukin-6, C-reactive protein, CD40 ligand) in plasma and 16 brain structures obtained from MRI scans of 356 individuals (schizophrenia spectrum; n=121, affective spectrum; n=95, healthy control subjects; n=140). The relationship between the inflammatory and endothelial markers and brain measurements were investigated across groups. RESULTS There was a positive association (p=2.5×10(-4)) between plasma levels of vWf and total volume of the basal ganglia which remained significant after correction for multiple testing. Treatment with first generation antipsychotics was associated with basal ganglia volume only (p=0.009). After adjusting for diagnosis and antipsychotic medication, vWf remained significantly associated with increased basal ganglia volume (p=0.008), in particular the right globus pallidus (p=3.7×10(-4)). The relationship between vWf and basal ganglia volume was linear in all groups, but the intercept was significantly higher in the schizophrenia group (df=2, F=8.2, p=3.4×10(-4)). CONCLUSION Our results show a strong positive correlation between vWf levels and basal ganglia volume, in particular globus pallidus, independent of diagnosis. vWf levels were significantly higher in schizophrenia, which could indicate a link between endothelial cell activation and basal ganglia morphology in schizophrenia patients.
Collapse
Affiliation(s)
- Ingrid Dieset
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Unn Kristin Haukvik
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Ivar Røssberg
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigrun Hope
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Department of Neuroscience, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway
| | - Ingrid Agartz
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Integrative Neuropsychological Characteristics of Subcortical-Frontal Brain Regions as a Schizophrenia Liability Factor. SPANISH JOURNAL OF PSYCHOLOGY 2014; 10:430-5. [DOI: 10.1017/s1138741600006697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to study neuropsychological characteristics of subcortical-frontal brain regions function and assessment of their relation with vulnerability to schizophrenia 59 patients and 23 controls were investigated using Luria's neuropsychological methods. The analysis established bilateral abnormalities of the function of prefrontal and profound frontal lobe zones in patients as compared with controls. These abnormalities were more predominate in the left hemisphere. Point biserial correlation coefficients of determined integrative neuropsychological indicators with liability to schizophrenia were 0.39 ± 0.11 and 0.28 ± 0.09, for the left and right brain zones respectively. The obtained data permits discussion of the integrative neuropsychological indicators of subcortical-frontal brain regions as potential markers of liability to schizophrenia and confirms the role of structural and functional brain asymmetry in the pathogenesis of schizophrenia.
Collapse
|
16
|
Goozée R, Handley R, Kempton MJ, Dazzan P. A systematic review and meta-analysis of the effects of antipsychotic medications on regional cerebral blood flow (rCBF) in schizophrenia: association with response to treatment. Neurosci Biobehav Rev 2014; 43:118-36. [PMID: 24690578 DOI: 10.1016/j.neubiorev.2014.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
Abstract
Evaluating the short- and long-term effects of antipsychotics on brain physiology is a key factor in advancing our understanding of neurophysiological changes in psychosis and improving prediction of treatment response. Understanding the nature of such changes is crucial to the interpretation of neuroimaging findings in patients with schizophrenia and psychoses in general. This review has systematically appraised existing evidence on resting cerebral blood flow (rCBF) in schizophrenia, before and after antipsychotic treatment, relating the findings to symptom severity. The review shows that antipsychotics exert regional effects on rCBF, particularly in frontal and basal ganglia regions, and that different antipsychotic generations have differential effects on rCBF. These findings are supported by an exploratory meta-analysis of a subset of studies. The review also highlights the relative lack of studies that use a priori definitions of treatment response, which is an important step in identifying testable hypotheses and ensuring clinical relevance of remission criteria. Finally, the review highlights important considerations for future psychopharmacological studies investigating the potential for rCBF to predict symptomatic improvement, which could inform the management of treatment in schizophrenia.
Collapse
Affiliation(s)
- Rhianna Goozée
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK.
| | - Rowena Handley
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK
| | - Matthew J Kempton
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK
| | - Paola Dazzan
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, London, UK
| |
Collapse
|
17
|
Crow TJ. The XY gene hypothesis of psychosis: origins and current status. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:800-24. [PMID: 24123874 PMCID: PMC4065359 DOI: 10.1002/ajmg.b.32202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 08/19/2013] [Indexed: 11/10/2022]
Abstract
Sex differences in psychosis and their interaction with laterality (systematic departures from 50:50 left-right symmetry across the antero-posterior neural axis) are reviewed in the context of the X-Y gene hypothesis. Aspects of laterality (handedness/cerebral asymmetry/the torque) predict (1) verbal and non-verbal ability in childhood and across adult life and (2) anatomical, physiological, and linguistic variation relating to psychosis. Neuropsychological and MRI evidence from individuals with sex chromosome aneuploidies indicates that laterality is associated with an X-Y homologous gene pair. Within each mammalian species the complement of such X-Y gene pairs reflects their potential to account for taxon-specific sexual dimorphisms. As a consequence of the mechanism of meiotic suppression of unpaired chromosomes such X-Y gene pairs generate epigenetic variation around a species defining motif that is carried to the zygote with potential to initiate embryonic gene expression in XX or XY format. The Protocadherin11XY (PCDH11XY) gene pair in Xq21.3/Yp11.2 in probable coordination with a gene or genes within PAR2 (the second pseudo-autosomal region) is the prime candidate in relation to cerebral asymmetry and psychosis in Homo sapiens. The lately-described pattern of sequence variation associated with psychosis on the autosomes may reflect a component of the human genome's adjustment to selective pressures generated by the sexually dimorphic mate recognition system.
Collapse
Affiliation(s)
- Timothy J Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of OxfordOxford, UK
| |
Collapse
|
18
|
Sotoyama H, Namba H, Chiken S, Nambu A, Nawa H. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling. J Neurochem 2013; 126:518-28. [DOI: 10.1111/jnc.12223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/03/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Satomi Chiken
- Division of System Neurobiology; National Institute for Physiological Sciences and Department of Physiological Sciences; Graduate University for Advanced Studies; Myodaiji Okazaki Japan
| | - Atsushi Nambu
- Division of System Neurobiology; National Institute for Physiological Sciences and Department of Physiological Sciences; Graduate University for Advanced Studies; Myodaiji Okazaki Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| |
Collapse
|
19
|
Sotoyama H, Zheng Y, Iwakura Y, Mizuno M, Aizawa M, Shcherbakova K, Wang R, Namba H, Nawa H. Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 2011; 6:e25831. [PMID: 22022452 PMCID: PMC3192134 DOI: 10.1371/journal.pone.0025831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor (EGF) is one of the ErbB receptor ligands implicated in schizophrenia neuropathology as well as in dopaminergic development. Based on the immune inflammatory hypothesis for schizophrenia, neonatal rats are exposed to this cytokine and later develop neurobehavioral abnormality such as prepulse inhibition (PPI) deficit. Here we found that the EGF-treated rats exhibited persistent increases in tyrosine hydroxylase levels and dopamine content in the globus pallidus. Furthermore, pallidal dopamine release was elevated in EGF-treated rats, but normalized by subchronic treatment with risperidone concomitant with amelioration of their PPI deficits. To evaluate pathophysiologic roles of the dopamine abnormality, we administered reserpine bilaterally to the globus pallidus to reduce the local dopamine pool. Reserpine infusion ameliorated PPI deficits of EGF-treated rats without apparent aversive effects on locomotor activity in these rats. We also administered dopamine D1-like and D2-like receptor antagonists (SCH23390 and raclopride) and a D2-like receptor agonist (quinpirole) to the globus pallidus and measured PPI and bar-hang latencies. Raclopride (0.5 and 2.0 µg/site) significantly elevated PPI levels of EGF-treated rats, but SCH23390 (0.5 and 2.0 µg/site) had no effect. The higher dose of raclopride induced catalepsy-like changes in control animals but not in EGF-treated rats. Conversely, local quinpirole administration to EGF-untreated control rats induced PPI deficits and anti-cataleptic behaviors, confirming the pathophysiologic role of the pallidal hyperdopaminergic state. These findings suggest that the pallidal dopaminergic innervation is vulnerable to circulating EGF at perinatal and/or neonatal stages and has strong impact on the D2-like receptor-dependent behavioral deficits relevant to schizophrenia.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Miho Aizawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ksenia Shcherbakova
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
20
|
Newberg AB, Moss AS, Monti DA, Alavi A. Positron emission tomography in psychiatric disorders. Ann N Y Acad Sci 2011; 1228:E13-25. [DOI: 10.1111/j.1749-6632.2011.06162.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Swerdlow NR. Are we studying and treating schizophrenia correctly? Schizophr Res 2011; 130:1-10. [PMID: 21645998 PMCID: PMC3139794 DOI: 10.1016/j.schres.2011.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 12/15/2022]
Abstract
New findings are rapidly revealing an increasingly detailed image of neural- and molecular-level dysfunction in schizophrenia, distributed throughout interconnected cortico-striato-pallido-thalamic circuitry. Some disturbances appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, resulting in a substantial loss of, or failure to develop, both cells and/or appropriate connectivity across widely dispersed brain regions. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and epigenetic events. Given these complex and variable hard-wired circuit disturbances, it is worth considering how new and emerging findings can be integrated into actionable treatment models. This paper suggests that future efforts towards developing more effective therapeutic approaches for the schizophrenias should diverge from prevailing models in genetics and molecular neuroscience, and focus instead on a more practical three-part treatment strategy: 1) systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements, used in concert with 2) medications that specifically target cognitive mechanisms engaged by these rehabilitative psychotherapies, and 3) antipsychotic medications that target nodal or convergent circuit points within the limbic-motor interface, to constrain the scope and severity of psychotic exacerbations and thereby facilitate engagement in cognitive rehabilitation. The use of targeted cognitive rehabilitative psychotherapy plus synergistic medication has both common sense and time-tested efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, United States.
| |
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
How does the physiology change with symptom exacerbation and remission in schizophrenia? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
|
27
|
|
28
|
|
29
|
|
30
|
A cardinal principle for neuropsychology, with implications for schizophrenia and mania. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
Abstract
AbstractA model is proposed for integrating the neural and cognitive aspects of the positive symptoms of acute schizophrenia, using evidence from postmortem neuropathology and neurochemistry, clinical and preclinical studies of dopaminergic neurotransmission, anatomical connections between the limbic system and basal ganglia, attentional and other cognitive abnormalities underlying the positive symptoms of schizophrenia, specific animal models of some of these abnormalities, and previous attempts to model the cognitive functions of the septohippocampal system and the motor functions of the basal ganglia. Anatomically, the model emphasises the projections from the septohippocampal system, via the subiculum, and the amygdala to nucleus accumbens, and their interaction with the ascending dopaminergic projection to the accumbens. Psychologically, the model emphasises a failure in acute schizophrenia to integrate stored memories of past regularities of perceptual input with ongoing motor programs in the control of current perception. A number of recent experiments that offer support for the model are briefly described, including anatomical studies of limbic-striatal connections, studies in the rat of the effects of damage to these connections, and of the effects of amphetamine and neuroleptics, on the partial reinforcement extinction effect, latent inhibition and the Kamin blocking effect; and studies of the latter two phenomena in acute and chronic schizophrenics.
Collapse
|
40
|
|
41
|
|
42
|
Testing the Swerdlow/Koob model of schizophrena pathophysiology using positron emission tomography. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00078171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
|
44
|
|
45
|
A realistic model will be much more complex and will consider longitudinal neuropsychodevelopment. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Swerdlow NR. Integrative circuit models and their implications for the pathophysiologies and treatments of the schizophrenias. Curr Top Behav Neurosci 2011; 4:555-83. [PMID: 21312413 DOI: 10.1007/7854_2010_48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A preponderance of evidence indicates that the heterogeneous group of schizophrenias is accompanied by disturbances in neural elements distributed throughout multiple levels of interconnected cortico-striato-pallido-thalamic circuitry. These disturbances include a substantial loss of, or failure to develop, both cells and/or appropriate cellular connections in regions that include at least portions of the hippocampus, parahippocampal gyrus, entorhinal cortex, amygdala, prefrontal and anterior cingulate cortex, superior and transverse temporal gyri, and mediodorsal, anterior, and pulvinar nuclei of the thalamus; they appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, that in the opinion of this author cannot be "undone" or even predictably remediated in any physiological manner by existing pharmacotherapies. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and multiple different epigenetic events. Evidence for these complex circuit disturbances has significant implications for many areas of schizophrenia research, and for future efforts toward developing more effective therapeutic approaches for this group of disorders. The conclusion of this chapter is that such future efforts should focus on further developing and refining medications that target nodal or convergent circuit points within the limbic-motor interface, with the goal of constraining the scope and severity of psychotic exacerbations, to be used in concert with systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements. This strategy should be applied in both preventative and treatment settings, and disseminated for community delivery via an evidence-based manualized format. In contrast to alternative treatment strategies that range from complex polypharmacy to gene therapies to psychosurgical interventions, the use of combined medication plus targeted cognitive and behavioral psychotherapy has both common sense and time-tested documented efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, USA.
| |
Collapse
|