1
|
Girgis ST, Adika E, Nenyewodey FE, Senoo Jnr DK, Ngoi JM, Bandoh K, Lorenz O, van de Steeg G, Harrott AJR, Nsoh S, Judge K, Pearson RD, Almagro-Garcia J, Saiid S, Atampah S, Amoako EK, Morang'a CM, Asoala V, Adjei ES, Burden W, Roberts-Sengier W, Drury E, Pierce ML, Gonçalves S, Awandare GA, Kwiatkowski DP, Amenga-Etego LN, Hamilton WL. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat Microbiol 2023; 8:2365-2377. [PMID: 37996707 PMCID: PMC10686832 DOI: 10.1038/s41564-023-01516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.
Collapse
Affiliation(s)
- Sophia T Girgis
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Edem Adika
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Felix E Nenyewodey
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Dodzi K Senoo Jnr
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kukua Bandoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Oliver Lorenz
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Guus van de Steeg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Sebastian Nsoh
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Kim Judge
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Solomon Atampah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Elrmion S Adjei
- Ledzokuku Krowor Municipal Assembly (LEKMA) Hospital, Accra, Ghana
| | - William Burden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Megan L Pierce
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - William L Hamilton
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
2
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Špela Binter
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK
| | - Clare Burn Aschner
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ryu Won Kang
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kan Li
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Gillian Q Horn
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Richard H C Huntwork
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | - S Moses Dennison
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Paul Kellam
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Pendyala G, Calvo‐Calle JM, Moreno A, Kane RS. A multivalent Plasmodium falciparum circumsporozoite protein-based nanoparticle malaria vaccine elicits a robust and durable antibody response against the junctional epitope and the major repeats. Bioeng Transl Med 2023; 8:e10514. [PMID: 37476056 PMCID: PMC10354751 DOI: 10.1002/btm2.10514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Plasmodium falciparum (Pf) malaria continues to cause considerable morbidity and mortality worldwide. The circumsporozoite protein (CSP) is a particularly attractive candidate for designing vaccines that target sporozoites-the first vertebrate stage in a malaria infection. Current PfCSP-based vaccines, however, do not include epitopes that have recently been shown to be the target of potent neutralizing antibodies. We report the design of a SpyCatcher-mi3-nanoparticle-based vaccine presenting multiple copies of a chimeric PfCSP (cPfCSP) antigen that incorporates these important "T1/junctional" epitopes as well as a reduced number of (NANP)n repeats. cPfCSP-SpyCatcher-mi3 was immunogenic in mice eliciting high and durable IgG antibody levels as well as a balanced antibody response against the T1/junctional region and the (NANP)n repeats. Notably, the antibody concentration elicited by immunization was significantly greater than the reported protective threshold defined in a murine challenge model. Refocusing the immune response toward functionally relevant subdominant epitopes to induce a more balanced and durable immune response may enable the design of a more effective second generation PfCSP-based vaccine.
Collapse
Affiliation(s)
- Geetanjali Pendyala
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - J. Mauricio Calvo‐Calle
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts01655USA
| | - Alberto Moreno
- Emory Vaccine Center, Emory National Primate Research CenterEmory UniversityAtlantaGeorgia30329USA
- Division of Infectious Diseases, Department of MedicineEmory UniversityAtlantaGeorgia30303USA
| | - Ravi S. Kane
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| |
Collapse
|
4
|
Murdoch J, Baum J. A sting in the tail-are antibodies against the C-terminus of Plasmodium falciparum circumsporozoite protein protective? EMBO Mol Med 2023:e17556. [PMID: 37082835 DOI: 10.15252/emmm.202317556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Malaria remains a huge burden on global public health. Annually there are more than 200 million cases with > 600,000 deaths worldwide, the vast majority of which occur within Sub-Saharan Africa (WHO; World Malaria Report, 2021). Malaria disease is the consequence of infection by a protozoan parasite from the genus Plasmodium with most morbidity and mortality caused by P. falciparum. With rates of infection plateauing and rebounding in some areas (in particular, as a result of the disruption caused by the COVID-19 pandemic), there have been increasing calls for new initiatives that can reduce malaria incidence towards local elimination or the hoped for goal of global eradication. In 2021, the World Health Organisation approved the first malaria vaccine RTS,S/AS01 (also called Mosquirix™), indicating it to be safe for use in young children and advocating its integration into routine immunisation programmes. Approval of this vaccine clearly represents a major landmark in global efforts towards malaria control and eradication aspirations. RTS,S modest efficacy, however, points at the need to better understand immune responses to the parasite if we hope to design next generation malaria vaccines with increased potency.
Collapse
Affiliation(s)
- Jem Murdoch
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jake Baum
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
5
|
Ludwig J, Scally SW, Costa G, Hoffmann S, Murugan R, Lossin J, Prieto K, Obraztcova A, Lobeto N, Franke-Fayard B, Janse CJ, Lebas C, Collin N, Binter S, Kellam P, Levashina EA, Wardemann H, Julien JP. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model. NPJ Vaccines 2023; 8:52. [PMID: 37029167 PMCID: PMC10080175 DOI: 10.1038/s41541-023-00653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.
Collapse
Affiliation(s)
- Julia Ludwig
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Lossin
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anna Obraztcova
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Lobeto
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blandine Franke-Fayard
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia Lebas
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Spela Binter
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Kucharska I, Binter Š, Murugan R, Scally SW, Ludwig J, Prieto K, Thai E, Costa G, Li K, Horn GQ, Flores-Garcia Y, Bosch A, Sicard T, Rubinstein JL, Zavala F, Dennison SM, Tomaras GD, Levashina EA, Kellam P, Wardemann H, Julien JP. High-density binding to Plasmodium falciparum circumsporozoite protein repeats by inhibitory antibody elicited in mouse with human immunoglobulin repertoire. PLoS Pathog 2022; 18:e1010999. [PMID: 36441829 PMCID: PMC9762590 DOI: 10.1371/journal.ppat.1010999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Špela Binter
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Stephen W. Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Julia Ludwig
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kan Li
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Gillian Q. Horn
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John L. Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - S. Moses Dennison
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Elena A. Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kellam
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wahl I, Obraztsova AS, Puchan J, Hundsdorfer R, Chakravarty S, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Wardemann H. Clonal evolution and TCR specificity of the human T FH cell response to Plasmodium falciparum CSP. Sci Immunol 2022; 7:eabm9644. [PMID: 35687696 DOI: 10.1126/sciimmunol.abm9644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T follicular helper (TFH) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific TFH cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating TFH (cTFH) cells during successive malaria immunizations with radiation-attenuated Plasmodium falciparum (Pf) sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cTFH response with high frequency of cells specific to a small number of epitopes in Pf circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the TFH cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced TFH cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.
Collapse
Affiliation(s)
- Ilka Wahl
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna S Obraztsova
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Julia Puchan
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Rebecca Hundsdorfer
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Sinnis P, Fidock DA. The RTS,S vaccine-a chance to regain the upper hand against malaria? Cell 2022; 185:750-754. [PMID: 35245476 DOI: 10.1016/j.cell.2022.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022]
Abstract
Malaria is estimated by the World Health Organization (WHO) to have killed 627,000 individuals worldwide in 2020, with nearly 80% of deaths in African children younger than five. The recent WHO approval of the RTS,S/AS01 vaccine, which targets Plasmodium falciparum pre-erythrocytic stages, provides hope that its use combined with other interventions can help reverse the current malaria resurgence.
Collapse
Affiliation(s)
- Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Wahl I, Hoffmann S, Hundsdorfer R, Puchan J, Hoffman SL, Kremsner PG, Mordmüller B, Busse CE, Wardemann H. An efficient single-cell based method for linking human T cell phenotype to T cell receptor sequence and specificity. Eur J Immunol 2021; 52:237-246. [PMID: 34710239 DOI: 10.1002/eji.202149392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
Single-cell antigen-receptor gene amplification and sequencing platforms have been used to characterize T cell receptor (TCR) repertoires but typically fail to generate paired full-length gene products for direct expression cloning and do not enable linking this data to cell phenotype information. To overcome these limitations, we established a high-throughput platform for the quantitative and qualitative analysis of human TCR repertoires that provides insights into the clonal and functional composition of human CD4+ and CD8+ αβ T cells at the molecular and cellular level. The strategy is a powerful tool to qualitatively assess differences between antigen receptors of phenotypically defined αβ T cell subsets, e.g. in immune responses to cancer, vaccination, or infection, and in autoimmune diseases.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Julia Puchan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian E Busse
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Abstract
T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.
Collapse
|
12
|
Fernandez-Ruiz D, de Menezes MN, Holz LE, Ghilas S, Heath WR, Beattie L. Harnessing liver-resident memory T cells for protection against malaria. Expert Rev Vaccines 2021; 20:127-141. [PMID: 33501877 DOI: 10.1080/14760584.2021.1881485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tissue-resident memory T cells (TRM cells) are powerful mediators of protracted adaptive immunity to infection in peripheral organs. Harnessing TRM cells through vaccination hence promises unprecedented potential for protection against infection. A paramount example of this is malaria, a major infectious disease for which immunity through traditional vaccination strategies remains challenging. Liver TRM cells appear to be highly protective against malaria, and recent developments in our knowledge of the biology of these cells have defined promising, novel strategies for their induction. AREAS COVERED Here, we describe the path that led to the discovery of TRM cells and discuss the importance of liver TRM cells in immunity against Plasmodium spp. infection; we summarize current knowledge on TRM cell biology and discuss the current state and potential of TRM-based vaccination against malaria. EXPERT OPINION TRM based vaccination has emerged as a promising means to achieve efficient protection against malaria. Recent advances provide a solid basis for continuing the development of this area of research. Deeper understanding of the mechanisms that mediate TRM formation and maintenance and identification of immunogenic and protective target epitopes suitable for human vaccination remain the main challenges for translation of these discoveries.
Collapse
Affiliation(s)
- Daniel Fernandez-Ruiz
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Maria N de Menezes
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia
| | - Lauren E Holz
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Sonia Ghilas
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - William R Heath
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Lynette Beattie
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| |
Collapse
|
13
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine 2021; 39:968-975. [PMID: 33431225 DOI: 10.1016/j.vaccine.2020.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites, a prime vaccine target, and is known to have polymorphisms in the C-terminal region. Vaccines using a single allele may have lower efficacy against genotypic variants. Recent studies have found evidence suggesting the efficacy of the CSP-based RTS,S malaria vaccine may be limited against P. falciparum CSP alleles that diverge from the 3D7 vaccine allele, particularly in this polymorphic C-terminal region. In order to assess the breadth of the RTS,S-induced antibody responses against CSP C-terminal antigenic variants, we used a novel multiplex assay to measure reactivity of serum samples from a recent RTS,S study against C-terminal peptides from 3D7 and seven additional CSP alleles that broadly represent the genetic diversity found in circulating P. falciparum field isolates. We found that responses to the variants showed, on average, a ~ 30-fold reduction in reactivity relative to the vaccine-matched 3D7 allele. The extent of this reduction, ranging from 21 to 69-fold, correlated with the number of polymorphisms between the variants and 3D7. We calculated antibody breadth of each sample as the median relative reactivity to the seven CSP variants compared to 3D7. Surprisingly, protection from 3D7 challenge in the RTS,S study was associated with higher C-terminal antibody breadth. These findings suggest CSP C-terminal-specific avidity or fine-specificity may play a role in RTS,S-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
15
|
Ferluga J, Singh I, Rout S, Al-Qahtani A, Yasmin H, Kishore U. Immune Responses in Malaria and Vaccine Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:273-291. [PMID: 34661899 DOI: 10.1007/978-3-030-67452-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria is a pandemic with nearly half of global population at risk, caused by parasite Plasmodium species, particularly P. falciparum with a high morbidity and mortality, especially among children. There is an urgent need for development of population protective vaccines, such as in sub-Saharan low-income countries, where P. falciparum malaria is endemic. After years of endeavour with children and adults for safety and efficacy clinical trials, the P. falciparum circumsporozoite protein antigen, is targeted by specific antibodies induced by recombinant vaccine, called TRS,S. TRS,S has been authorized by WHO and Malawi Government to be the first malaria vaccine for up to 2 years of aged children for protection against malaria. Other malaria vaccines in clinical trials are also very promising candidates, including the original live, X-ray attenuated P-sporozoite vaccine, inducing antigen-specific T cell immunity at liver stage. Malaria parasite at blood symptomatic stage is targeted by specific antibodies to parasite-infected erythrocytes, which are important against pathogenic placenta-infected erythrocyte sequestration. Here, the demographic distribution of Plasmodium species and their pathogenicity in infected people are discussed. The role of innate phagocytic cells and malaria antigen specific T cell immunity, as well as that of specific antibody production by B cells are highlighted. The paramount role of cytotoxic CD8+ T cellular immunity in malaria people protection is also included.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Iesha Singh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sashmita Rout
- Department of Physiology, All-India Institute of Medical Sciences, Bhubaneswar, India
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
16
|
Chaudhury S, Macgill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine.. [DOI: 10.1101/2020.11.15.20232033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractThe circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites and a prime vaccine target. Responses induced by the CSP-based RTS,S vaccine towards the polymorphic C-terminal region of P.falciparum-CSP raise concerns that vaccines using single alleles may have lower efficacy against genotypic variants. We characterized the extent of C-terminal cross-reactivity of antibodies induced by RTS,S (based on the 3D7 allele) with variants representing seven circulating field isolates through a novel HTS-multiplex assay for screening closely related peptides. Reactivity to variants showed approximately 30-fold reduction in recognition relative to 3D7. The degree of reduced cross-reactivity,ranging from 21 to 69-fold, directly correlated with the number of polymorphisms between variants and 3D7. Surprisingly, protection assessed by challenge with 3D7 parasites was strongly associated with higher C-terminal antibody breadth suggesting that C-terminal specific avidity or fine-specificity may play a role in RTS,S/AS01B-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
17
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
18
|
Kusi KA, Aggor FE, Amoah LE, Anum D, Nartey Y, Amoako-Sakyi D, Obiri-Yeboah D, Hollingdale M, Ganeshan H, Belmonte M, Peters B, Kim Y, Tetteh J, Kyei-Baafour E, Dodoo D, Villasante E, Sedegah M. Identification of Plasmodium falciparum circumsporozoite protein-specific CD8+ T cell epitopes in a malaria exposed population. PLoS One 2020; 15:e0228177. [PMID: 32040522 PMCID: PMC7010280 DOI: 10.1371/journal.pone.0228177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sterile protection against malaria, most likely mediated by parasite-specific CD8+ T cells, has been achieved by attenuated sporozoite vaccination of animals as well as malaria-naïve and malaria-exposed subjects. The circumsporozoite protein (CSP)-based vaccine, RTS,S, shows low efficacy partly due to limited CD8+ T cell induction, and inclusion of such epitopes could improve RTS,S. This study assessed 8-10mer CSP peptide epitopes, present in predicted or previously positive P. falciparum 3D7 CSP 15mer overlapping peptide pools, for their ability to induce CD8+ T cell IFN-γ responses in natural malaria-exposed subjects. METHODS Cryopreserved PBMCs from nine HLA-typed subjects were stimulated with 23 8-10mer CSP peptides from the 3D7 parasite in IFN-ɣ ELISpot assays. The CD8+ T cell specificity of IFN-γ responses was confirmed in ELISpot assays using CD8+ T cell-enriched PBMC fractions after CD4+ cell depletion. RESULTS Ten of 23 peptide epitopes elicited responses in whole PBMCs from five of the nine subjects. Four peptides tested positive in CD8+ T cell-enriched PBMCs from two previously positive responders and one new subject. All four immunodominant peptides are restricted by globally common HLA supertypes (A02, A03, B07) and mapped to regions of the CSP antigen with limited or no reported polymorphism. Association of these peptide-specific responses with anti-malarial protection remains to be confirmed. CONCLUSIONS The relatively conserved nature of the four identified epitopes and their binding to globally common HLA supertypes makes them good candidates for inclusion in potential multi-epitope malaria vaccines.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Felix E. Aggor
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Linda E. Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dorothy Anum
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yvonne Nartey
- Department of Microbiology and Immunology, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Amoako-Sakyi
- Department of Microbiology and Immunology, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Springs, MD, United States of America
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Springs, MD, United States of America
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Springs, MD, United States of America
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, United States of America
| | - Yohan Kim
- La Jolla Institute for Immunology, La Jolla, CA, United States of America
| | - John Tetteh
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Springs, MD, United States of America
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Springs, MD, United States of America
| |
Collapse
|
19
|
Khan S, Parrillo M, Gutierrez AH, Terry FE, Moise L, Martin WD, De Groot AS. Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Hum Vaccin Immunother 2019; 16:214-227. [PMID: 30614773 PMCID: PMC7062414 DOI: 10.1080/21645515.2018.1560772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The RTS,S/AS01 malaria vaccine will undergo a pilot vaccination study in sub-Saharan Africa beginning in 2019. RTS,S/AS01 Phase III trials reported an efficacy of 28.3% (children 5–17 months) and 18.3% (infants 6–12 weeks), with substantial variability across study sites. We postulated that the relatively low efficacy of the RTS,S vaccine and variability across sites may be due to lack of T-cell epitopes in the vaccine antigen, and due to the HLA distribution of the vaccinated population, and/or due to ‘immune camouflage’, an immune escape mechanism. To examine these hypotheses, we used immunoinformatics tools to compare T helper epitopes contained in RTS,S vaccine antigens with Plasmodium falciparum circumsporozoite protein (CSP) variants isolated from infected individuals in Malawi. The prevalence of epitopes restricted by specific HLA-DRB1 alleles was inversely associated with prevalence of the HLA-DRB1 allele in the Malawi study population, suggesting immune escape. In addition, T-cell epitopes in the CSP of strains circulating in Malawi were more often restricted by low-frequency HLA-DRB1 alleles in the population. Furthermore, T-cell epitopes that were highly conserved across CSP variants in Malawi possessed TCR-facing residues that were highly conserved in the human proteome, potentially reducing T-cell help through tolerance. The CSP component of the RTS,S vaccine also exhibited a low degree of T-cell epitope relatedness to circulating variants. These results suggest that RTS,S vaccine efficacy may be impacted by low T-cell epitope content, reduced presentation of T-cell epitopes by prevalent HLA-DRB1, high potential for human-cross-reactivity, and limited conservation with the CSP of circulating malaria strains.
Collapse
Affiliation(s)
- Sundos Khan
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Matthew Parrillo
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | | | | | - Leonard Moise
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA.,EpiVax, Inc., Providence, RI, USA
| | | | - Anne S De Groot
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA.,EpiVax, Inc., Providence, RI, USA
| |
Collapse
|
20
|
Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, Good MF. Induction of Plasmodium-Specific Immune Responses Using Liposome-Based Vaccines. Front Immunol 2019; 10:135. [PMID: 30774635 PMCID: PMC6367261 DOI: 10.3389/fimmu.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
In the development of vaccines, the ability to initiate both innate and subsequent adaptive immune responses need to be considered. Live attenuated vaccines achieve this naturally, while inactivated and sub-unit vaccines generally require additional help provided through delivery systems and/or adjuvants. Liposomes present an attractive adjuvant/delivery system for antigens. Here, we review the key aspects of immunity against Plasmodium parasites, liposome design considerations and their current application in the development of a malaria vaccine.
Collapse
Affiliation(s)
| | | | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| |
Collapse
|
21
|
Ratto-Kim S, Yoon IK, Paris RM, Excler JL, Kim JH, O’Connell RJ. The US Military Commitment to Vaccine Development: A Century of Successes and Challenges. Front Immunol 2018; 9:1397. [PMID: 29977239 PMCID: PMC6021486 DOI: 10.3389/fimmu.2018.01397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/05/2018] [Indexed: 12/04/2022] Open
Abstract
The US military has been a leading proponent of vaccine development since its founding. General George Washington ordered the entire American army to be variolated against smallpox after recognizing the serious threat that it posed to military operations. He did this on the recommendation from Dr. John Morgan, the physician-in-chief of the American army, who wrote a treatise on variolation in 1776. Although cases of smallpox still occurred, they were far fewer than expected, and it is believed that the vaccination program contributed to victory in the War of Independence. Effective military force requires personnel who are healthy and combat ready for worldwide deployment. Given the geography of US military operations, military personnel should also be protected against diseases that are endemic in potential areas of conflict. For this reason, and unknown to many, the US military has strongly supported vaccine research and development. Four categories of communicable infectious diseases threaten military personnel: (1) diseases that spread easily in densely populated areas (respiratory and dysenteric diseases); (2) vector-borne diseases (disease carried by mosquitoes and other insects); (3) sexually transmitted diseases (hepatitis, HIV, and gonorrhea); and (4) diseases associated with biological warfare. For each category, the US military has supported research that has provided the basis for many of the vaccines available today. Although preventive measures and the development of drugs have provided some relief from the burden of malaria, dengue, and HIV, the US military continues to fund research and development of prophylactic vaccines that will contribute to force health protection and global health. In the past few years, newly recognized infections with Zika, severe acute respiratory syndrome, Middle East respiratory syndrome viruses have pushed the US military to fund research and fast track clinical trials to quickly and effectively develop vaccines for emerging diseases. With US military personnel present in every region of the globe, one of the most cost-effective ways to maintain military effectiveness is to develop vaccines against prioritized threats to military members' health.
Collapse
Affiliation(s)
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, South Korea
| | | | | | | | | |
Collapse
|
22
|
Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A. Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 2018; 9:1369. [PMID: 29963059 PMCID: PMC6010533 DOI: 10.3389/fimmu.2018.01369] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an “immunogenicity score.” We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, Bobanga T, Chaponda M, Moss WJ, Norris DE. RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep 2018; 8:6622. [PMID: 29700348 PMCID: PMC5920075 DOI: 10.1038/s41598-018-24585-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
The RTS,S/AS01 malaria vaccine encompasses the central repeats and C-terminal of Plasmodium falciparum circumsporozoite protein (PfCSP). Although no Phase II clinical trial studies observed evidence of strain-specific immunity, recent studies show a decrease in vaccine efficacy against non-vaccine strain parasites. In light of goals to reduce malaria morbidity, anticipating the effectiveness of RTS,S/AS01 is critical to planning widespread vaccine introduction. We deep sequenced C-terminal Pfcsp from 77 individuals living along the international border in Luapula Province, Zambia and Haut-Katanga Province, the Democratic Republic of the Congo (DRC) and compared translated amino acid haplotypes to the 3D7 vaccine strain. Only 5.2% of the 193 PfCSP sequences from the Zambia-DRC border region matched 3D7 at all 84 amino acids. To further contextualize the genetic diversity sampled in this study with global PfCSP diversity, we analyzed an additional 3,809 Pfcsp sequences from the Pf3k database and constructed a haplotype network representing 15 countries from Africa and Asia. The diversity observed in our samples was similar to the diversity observed in the global haplotype network. These observations underscore the need for additional research assessing genetic diversity in P. falciparum and the impact of PfCSP diversity on RTS,S/AS01 efficacy.
Collapse
Affiliation(s)
- Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Giovanna Carpi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jacob Almagro-Garcia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK.,The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Thierry Bobanga
- Université Protestante au Congo and University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - William J Moss
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
24
|
Kemp DJ. Antigenic diversity and variation in blood stages ofPlasmodium falciparum. Immunol Cell Biol 2017; 70 ( Pt 3):201-7. [PMID: 1360446 DOI: 10.1038/icb.1992.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D J Kemp
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
25
|
Abstract
Evidence accumulated through the years clearly indicates that antiparasite immune responses can efficiently control malaria parasite infection at all development stages, and under certain circumstances they can prevent parasite infection. Translating these findings into vaccines or immunotherapeutic interventions has been difficult in part because of the extraordinary biological complexity of this parasite, which has several developmental stages expressing unique sets of stage-specific genes and multiple antigens, most of which are antigenically diverse. Nevertheless, in the last 30 years major advances have resulted in characterization of a number of vaccine candidates, exploration of the repertoire of host immune responses to the various parasite stages, and also identification of significant hurdles that need to be overcome. Most important, these advances strengthened the concept that the induction of host immune responses that target all developmental stages of Plasmodium can efficiently control or abrogate Plasmodium infections and strongly support the notion that an effective vaccine can be developed. This vaccine would be a critical component for programs aimed at controlling or eradicating malaria.
Collapse
Affiliation(s)
- Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland 20852
| | - Fidel Zavala
- Departmentof Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
26
|
Montes de Oca M, Good MF, McCarthy JS, Engwerda CR. The Impact of Established Immunoregulatory Networks on Vaccine Efficacy and the Development of Immunity to Malaria. THE JOURNAL OF IMMUNOLOGY 2016; 197:4518-4526. [DOI: 10.4049/jimmunol.1600619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
27
|
López JA, González JM, Kettner A, Arévalo-Herrera M, Herrera S, Corradin G, Roggero MA. Synthetic polypeptides corresponding to the non-repeat regions from the circumsporozoite protein ofPlasmodium falciparum: recognition by human T-cells and immunogenicity in owl monkeys. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Antibody titre as a surrogate of protection of the first malaria subunit vaccine, RTS,S/AS01. THE LANCET. INFECTIOUS DISEASES 2015; 15:1371-2. [DOI: 10.1016/s1473-3099(15)00300-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
|
29
|
John CC, Carabin H, Montano SM, Bangirana P, Zunt JR, Peterson PK. Global research priorities for infections that affect the nervous system. Nature 2015; 527:S178-86. [PMID: 26580325 PMCID: PMC4697933 DOI: 10.1038/nature16033] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries.
Collapse
Affiliation(s)
- Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Hélène Carabin
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Silvia M Montano
- Department of Bacteriology, US Naval Medical Research Unit No. 6, Lima, Peru
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Joseph R Zunt
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
| | - Phillip K Peterson
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
30
|
Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, Agnandji ST, Aide P, Anderson S, Ansong D, Aponte JJ, Asante KP, Bejon P, Birkett AJ, Bruls M, Connolly KM, D'Alessandro U, Dobaño C, Gesase S, Greenwood B, Grimsby J, Tinto H, Hamel MJ, Hoffman I, Kamthunzi P, Kariuki S, Kremsner PG, Leach A, Lell B, Lennon NJ, Lusingu J, Marsh K, Martinson F, Molel JT, Moss EL, Njuguna P, Ockenhouse CF, Ogutu BR, Otieno W, Otieno L, Otieno K, Owusu-Agyei S, Park DJ, Pellé K, Robbins D, Russ C, Ryan EM, Sacarlal J, Sogoloff B, Sorgho H, Tanner M, Theander T, Valea I, Volkman SK, Yu Q, Lapierre D, Birren BW, Gilbert PB, Wirth DF. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med 2015; 373:2025-2037. [PMID: 26488565 PMCID: PMC4762279 DOI: 10.1056/nejmoa1505819] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).
Collapse
|
31
|
Abstract
Although it is more than a decade since the parasite genome information was obtained, standardized novel genome-wide selection/prioritization strategies for candidacy of malaria vaccine antigens are still sought. In the quest to systematically identify candidates, it is impossible to overemphasize the usefulness of wheat germ cell-free technology in expressing quality proteins for the post-genome vaccine candidate discovery.
Collapse
Affiliation(s)
- Eizo Takashima
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| | - Masayuki Morita
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| | - Takafumi Tsuboi
- a Division of Malaria Research, Proteo-Science Center , Ehime University , Matsuyama , Ehime 790-8577 , Japan
| |
Collapse
|
32
|
Whitacre DC, Espinosa DA, Peters CJ, Jones JE, Tucker AE, Peterson DL, Zavala FP, Milich DR. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections. PLoS One 2015; 10:e0124856. [PMID: 25933001 PMCID: PMC4416889 DOI: 10.1371/journal.pone.0124856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hepatitis B Virus, Woodchuck/immunology
- Immunity
- Immunization
- Life Cycle Stages
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protozoan Proteins/immunology
- Rabbits
- Repetitive Sequences, Amino Acid
- Reproducibility of Results
- Virion/immunology
Collapse
Affiliation(s)
- David C. Whitacre
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cory J. Peters
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Joyce E. Jones
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Amy E. Tucker
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Darrell L. Peterson
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fidel P. Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David R. Milich
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Parra-López CA, Bernal-Estévez D, Vargas LE, Pulido-Calixto C, Salazar LM, Calvo-Calle JM, Stern LJ. An unstable Th epitope of P. falciparum fosters central memory T cells and anti-CS antibody responses. PLoS One 2014; 9:e100639. [PMID: 24983460 PMCID: PMC4077652 DOI: 10.1371/journal.pone.0100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS) protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab) requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4) restricted T cell epitope (QNT-5) located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.
Collapse
Affiliation(s)
- Carlos A. Parra-López
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (CAP-L); (LJS)
| | - David Bernal-Estévez
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- Fundación Salud de los Andes, Research Group of Immunology and Clinical Oncology - GIIOC, Bogotá, Colombia
| | - Luis Eduardo Vargas
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Pulido-Calixto
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz Mary Salazar
- Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J. Mauricio Calvo-Calle
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
- * E-mail: (CAP-L); (LJS)
| |
Collapse
|
34
|
Tanabe K, Zollner G, Vaughan JA, Sattabongkot J, Khuntirat B, Honma H, Mita T, Tsuboi T, Coleman R. Plasmodium falciparum: genetic diversity and complexity of infections in an isolated village in western Thailand. Parasitol Int 2013; 64:260-6. [PMID: 24060540 DOI: 10.1016/j.parint.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 01/11/2023]
Abstract
Genetic diversity of Plasmodium falciparum is intimately associated with morbidity, mortality and malaria control strategies. It is therefore imperative to study genetic makeup and population structure of this parasite in endemic areas. In Kong Mong Tha, an isolated village in western Thailand, the majority of P. falciparum infections are asymptomatic. In this study we investigated complexity of infections and single nucleotide polymorphisms (SNPs) in the P. falciparum population of Kong Mong Tha, and compared results with those previously obtained from Mae Sod, in northwestern Thailand, where the majority of infections were symptomatic. Using PCR-based determination of the 5' merozoite surface protein 1 gene (msp1) recombinant types, we found that 39% of 59 P. falciparum isolates from Kong Mong Tha had multiple 5' recombinant types with a mean number of 1.54. These values were much lower than those obtained from Mae Sod: 96% for multiple infections and with a mean number of 3.61. Analysis of full-length sequences of two housekeeping genes, the P-type Ca(2+)-transporting ATPase gene (n=33) plus adenylosuccinate lyase gene (n=33), and three vaccine candidate antigen genes, msp1 (n=26), the circumsporozoite protein gene, csp (n=30) and the apical membrane antigen 1 gene, ama 1 (n=32), revealed that in all of these genes within-population SNP diversity was at similar levels between Kong Mong Tha and Mae Sod, suggesting that the extent of MOI and clinical manifestations of malaria are not strongly associated with genetic diversity. Additionally, we did not detect significant genetic differentiation between the two parasite populations, as estimated by the Wright's fixation index of inter-population variance in allele frequencies, suggesting that gene flow prevented the formation of population structuring. Thus, this study highlights unique features of P. falciparum populations in Thailand. The implications of these finding are discussed.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Gabriela Zollner
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Benjawan Khuntirat
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Russell Coleman
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
35
|
Roose K, De Baets S, Schepens B, Saelens X. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 2013; 12:183-98. [PMID: 23414409 DOI: 10.1586/erv.12.150] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the first effort to recombinantly express the hepatitis B core protein (HBc) in bacteria, the remarkable virion-like structure has fuelled interest in unraveling the structural and antigenic properties of this protein. Initial studies proved HBc virus-like particles to possess strong immunogenic properties, which can be conveyed to linked antigens. More than 35 years later, numerous studies have been performed using HBc as a carrier protein for antigens derived from over a dozen different pathogens and diseases. In this review, the authors highlight the intriguing features of HBc as carrier and antigen, illustrated by some examples and experimental results that underscore the value of HBc as an antigen-presenting platform. Two of these HBc fusions, targeting influenza A and malaria, have even progressed into clinical testing. In the future, the HBc-based virus-like particles platform will probably continue to be used for the display of poorly immunogenic antigens, mainly because virus-like particle formation by HBc capsomers is compatible with nearly any available recombinant gene expression system.
Collapse
Affiliation(s)
- Kenny Roose
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | | | | | | |
Collapse
|
36
|
Sedegah M, Kim Y, Ganeshan H, Huang J, Belmonte M, Abot E, Banania JG, Farooq F, McGrath S, Peters B, Sette A, Soisson L, Diggs C, Doolan DL, Tamminga C, Villasante E, Hollingdale MR, Richie TL. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar J 2013; 12:185. [PMID: 23738590 PMCID: PMC3683343 DOI: 10.1186/1475-2875-12-185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/23/2013] [Indexed: 01/14/2023] Open
Abstract
Background Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. Methods Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. Results Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A24/A24) and one 9mer was restricted by three HLA supertypes (A01A24/A24/B27) indicating that some CSP class I-restricted epitopes, like DR epitopes, may be HLA-promiscuous. Conclusions This study identified nine and confirmed five novel class I epitopes restricted by six HLA supertypes, suggesting that an adenovirus-vectored CSP vaccine would be immunogenic and potentially protective in genetically diverse populations.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aragam NR, Thayer KM, Nge N, Hoffman I, Martinson F, Kamwendo D, Lin FC, Sutherland C, Bailey JA, Juliano JJ. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions. PLoS One 2013; 8:e62427. [PMID: 23667476 PMCID: PMC3646838 DOI: 10.1371/journal.pone.0062427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 12/20/2022] Open
Abstract
Circumsporozoite protein (CS) is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates) and Malawi (235 isolates), we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.
Collapse
Affiliation(s)
- Nagesh R. Aragam
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Thayer
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
| | - Nabi Nge
- Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Irving Hoffman
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Colin Sutherland
- Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jeffrey A. Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
- Division of Transfusion Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Jonathan J. Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
38
|
Schuldt NJ, Aldhamen YA, Godbehere-Roosa S, Seregin SS, Kousa YA, Amalfitano A. Immunogenicity when utilizing adenovirus serotype 4 and 5 vaccines expressing circumsporozoite protein in naïve and adenovirus (Ad5) immune mice. Malar J 2012; 11:209. [PMID: 22720732 PMCID: PMC3472263 DOI: 10.1186/1475-2875-11-209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
Background Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5) based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4) expressing a sporozoite surface protein (circumsporozoite protein (CSP)) (Ad4-CSP) to induce immune responses against CSP. The immunogenicity of Ad4-CSP was also tested in homologous and heterologous prime boost vaccinations in both Ad5 naïve and Ad5 immune backgrounds as compared to use of Ad5-CSP. Results In Ad5 naïve animals, use of Ad4-CSP priming vaccinations followed by boosting with Ad5-CSP (Ad4-CSP/Ad5-CSP) maximally increased the numbers of CSP specific cytokine secreting cytotoxic T cells relative to repeated use of Ad5-CSP. The Ad4-CSP/Ad5-CSP regimen also induced equivalent levels of CSP specific cell killing as did homologous prime-boost vaccinations with Ad5-CSP, despite stimulating lower numbers of CSP specific cytotoxic T cells. Priming with Ad4-CSP followed by a homologous boost resulted in significantly less CSP specific humoral responses than any other vaccination regimen tested in Ad naïve animals. In Ad5 immune animals, addition of Ad4-CSP in homologous or heterologous prime boost resulted in inductions of higher CSP specific responses than animals repeatedly vaccinated with Ad5-CSP alone. However, the observed responses were well below those observed in similarly treated Ad naïve mice. Conclusions While the Ad4-CSP/Ad5-CSP and Ad5-CSP/Ad5-CSP vaccination regimens resulted in equivalent CSP specific killing in Ad naïve animals, Ad4-CSP/Ad5-CSP achieved this result with a lower percentage of CSP specific CD8+ T cells and a higher number of IFNγ secreting cells, suggesting that the Ad4-CSP/Ad5-CSP vaccination regimen elicits more efficient cytotoxic T cells. In Ad5 immune animals use of Ad4-CSP improved CSP specific immune responses as compared to repeated use of Ad5-CSP, but could not achieve the levels of immunogenicity observed when the same vaccine regimens were used in Ad naïve animals. These data indicate the existence of some level of immunological cross-reactivity between these two adenovirus subgroups. Based on these results, it is suggested that future studies should undertake similarly stringent analyses of alternative Ad serotypes to establish their effectiveness as replacements for Ad5.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Genetics Program, Michigan State University, 2240 E Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
39
|
Offeddu V, Thathy V, Marsh K, Matuschewski K. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol 2012; 42:535-48. [DOI: 10.1016/j.ijpara.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
40
|
Sedegah M, Tamminga C, McGrath S, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Manohar N, Richie NO, Wood C, Long CA, Regis D, Williams FT, Shi M, Chuang I, Spring M, Epstein JE, Mendoza-Silveiras J, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Soisson L, Diggs C, Carucci D, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 2011; 6:e24586. [PMID: 22003383 PMCID: PMC3189181 DOI: 10.1371/journal.pone.0024586] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Background Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. Methodology/Principal Findings The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. Significance As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. Trial Registration ClinicalTrials.govNCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tamminga C, Sedegah M, Regis D, Chuang I, Epstein JE, Spring M, Mendoza-Silveiras J, McGrath S, Maiolatesi S, Reyes S, Steinbeiss V, Fedders C, Smith K, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Murphy J, Komisar J, Williams J, Shi M, Brambilla D, Manohar N, Richie NO, Wood C, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Diggs C, Soisson L, Carucci D, Levine G, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 2011; 6:e25868. [PMID: 22003411 PMCID: PMC3189219 DOI: 10.1371/journal.pone.0025868] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/12/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION ClinicalTrials.gov NCT00392015.
Collapse
Affiliation(s)
- Cindy Tamminga
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwenk R, Lumsden JM, Rein LE, Juompan L, Kester KE, Heppner DG, Krzych U. Immunization with the RTS,S/AS malaria vaccine induces IFN-γ(+)CD4 T cells that recognize only discrete regions of the circumsporozoite protein and these specificities are maintained following booster immunizations and challenge. Vaccine 2011; 29:8847-54. [PMID: 21983360 DOI: 10.1016/j.vaccine.2011.09.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/14/2011] [Accepted: 09/25/2011] [Indexed: 10/17/2022]
Abstract
In a Phase 2a trial of the RTS,S/AS vaccine, we described significant association between protection against infection and vaccine-induced CD4 T cells. To determine whether processing of the circumsporozoite protein as a component of the RTS,S particulate antigen yields the same HLA-DR-restricted epitopes as those recognized by CD4 T cells from donors immunized by exposure to attenuated or infectious sporozoites we mapped the specificities of the RTS,S primed CD4 T cells by measuring IFN-γ cultured Elispot responses to pairs of overlapping 15 a.a. peptides that span the protein's C-terminus. Peptide pairs representing the previously described TH2R, T* and CS.T3 epitopes, were immunoprevalent and immunodominant. There was no response to the peptides corresponding to the human thrombospondin homology region. Responses to the CD4 T cell epitopes were restricted by multiple HLA-DR haplotypes. Of note, HLA-DR4 and HLA-DR11 restricted epitopes in the T* region and in the location on the CS protein defined by peptide pair 4, respectively. We conclude that processing of the CS protein derived from the RTS,S antigen leads to the generation of HLA-DR-restricted epitopes that are similar to those identified previously using CD4 T cells from subjects immunized with and protected by attenuated sporozoites or exposed to infectious sporozoites. This may in part account for the protective efficacy of the RTS,S/AS vaccine.
Collapse
Affiliation(s)
- Robert Schwenk
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Szöllosi E, Cichoń M, Eens M, Hasselquist D, Kempenaers B, Merino S, Nilsson JÅ, Rosivall B, Rytkönen S, Török J, Wood MJ, Garamszegi LZ. Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. J Evol Biol 2011; 24:2014-24. [PMID: 21726328 DOI: 10.1111/j.1420-9101.2011.02339.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna.
Collapse
Affiliation(s)
- E Szöllosi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, Adu-Amankwah S, Geneshan H, Abot E, Legano J, Banania G, Sayo R, Brambilla D, Kumar S, Doolan DL, Rogers WO, Epstein J, Richie TL, Sedegah M. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 2011; 10:168. [PMID: 21689436 PMCID: PMC3132199 DOI: 10.1186/1475-2875-10-168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. METHODS In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. RESULTS In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. CONCLUSIONS All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.
Collapse
Affiliation(s)
- Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Eleanor Riley
- Institute of Cell, Animal and Population Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
46
|
Good MF. Our impasse in developing a malaria vaccine. Cell Mol Life Sci 2011; 68:1105-13. [PMID: 21327616 PMCID: PMC11115129 DOI: 10.1007/s00018-011-0634-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/28/2010] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Malaria presents a challenge to world health that to date has been beyond the abilities of researchers to conquer. This critique presents some of the strategies employed by the parasite to overcome immunity and the immunological challenges that we face to develop vaccines. A conclusion is that a vaccine must identify novel antigens or epitopes that are not normally immunogenic and which are therefore not under immune pressure and most likely to be conserved between different strains. Such antigens are most likely to be targets of cellular immunity. The case for a whole parasite blood stage vaccine is presented based on these premises.
Collapse
Affiliation(s)
- Michael F Good
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
47
|
Abstract
The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.
Collapse
|
48
|
Cohen J, Benns S, Vekemans J, Leach A. Le candidat vaccin antipaludique RTS,S/AS est entré en essais cliniques de phase III. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:370-9. [DOI: 10.1016/j.pharma.2010.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/25/2022]
|
49
|
Casares S, Brumeanu TD, Richie TL. The RTS,S malaria vaccine. Vaccine 2010; 28:4880-94. [PMID: 20553771 DOI: 10.1016/j.vaccine.2010.05.033] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 12/23/2022]
Abstract
RTS,S is the most advanced candidate vaccine against human malaria. During its remarkable journey from conception and design in the early 1980s to the multicenter Phase 3 trial currently underway across sub-Saharan Africa, RTS,S has overcome tremendous challenges and disproved established vaccine paradigms. In the last several years, Phase 2 studies conducted in infants and children in endemic areas have established the efficacy of RTS,S for reducing morbidity due to clinical malaria. If the results are realized in the Phase 3 trial, the chances for licensure in the near future appear high. Such progress is all the more remarkable given our lack of clear understanding regarding how the vaccine activates the human immune system, the immune correlates of protection or the mechanism whereby a vaccine targeting sporozoites and liver stage parasites can reduce the clinical disease associated with parasitemia. These unanswered questions pose important challenges to be addressed in the quest to understand the protection afforded by RTS,S and to build a more efficacious second generation vaccine against malaria. This review will focus on current knowledge about the protective efficacy of RTS,S and what we have learned regarding its impact on the human immune system.
Collapse
Affiliation(s)
- Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | |
Collapse
|
50
|
Guilbride DL, Gawlinski P, Guilbride PDL. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS One 2010; 5:e10685. [PMID: 20502667 PMCID: PMC2873430 DOI: 10.1371/journal.pone.0010685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/16/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. METHODOLOGY/PRINCIPAL FINDINGS We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. CONCLUSIONS/SIGNIFICANCE We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.
Collapse
|