1
|
Singh R, Singh V, Kumari P, Aggarwal N, Oberoi M, Khan H, Singh TG. Evolutionary Unmasking Resuscitative Therapeutics Potential of Centhaquin Citrate in Hypovolemic Shock. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:812-818. [PMID: 37357510 DOI: 10.2174/1871527322666230623113013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 06/27/2023]
Abstract
Hypovolemic shock (HS), a clinical condition of insufficient blood perfusion and oxygenation in body tissues, is associated with immense morbidity and mortality. Treatment approaches include fluid replacement and surgical repair of reversible causes of hemorrhage; however, they cause irreversible blood perfusion loss, systemic inflammation, multiple organ failure, and death. Centhaquin citrate (CC) is an innovative centrally acting cardiovascular active agent that is initially intended as an antihypertensive drug. However, due to its positive ionotropic effect, Centhaquin citrate is being tested clinically as a resuscitative agent for the management of hypovolemic shock It acts at the α2B-adrenergic receptor to produce venous constriction followed by an increase in venous return to the heart. These actions are assumed to be capable of resuscitative activity observed by centhaquin citrate, through an increase in cardiac output and tissue perfusion. Pharmacokinetics investigations in animals and humans have shown that centhaquin citrate is well tolerated and has insignificant side effects. Therefore, centhaquin citrate seems to be a promising entity and gaining the interest of researchers to develop it as a resuscitative agent in HS. The review gives insight into the development of centhaquin citrate as a resuscitative agent and provides insight into the associated mechanism of action and molecular signalling to foster future research on CC for its clinical use in HS.
Collapse
Affiliation(s)
- Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Namita Aggarwal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Muskaan Oberoi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
2
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
3
|
Dashwood MR, Loesch A. Endothelin-1, endothelin receptor antagonists, and vein graft occlusion in coronary artery bypass surgery: 20 years on and still no journey from bench to bedside. Can J Physiol Pharmacol 2020; 98:570-578. [PMID: 32343914 DOI: 10.1139/cjpp-2019-0598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The saphenous vein is the most commonly used bypass graft in patients with coronary artery disease. During routine coronary artery bypass, grafting the vascular damage inflicted on the vein is likely to stimulate the release of endothelin-1, a potent endothelium-derived vasoconstrictor that also possesses cell proliferation and inflammatory properties, conditions associated with vein graft failure. In both in vitro and in vivo studies, endothelin receptor antagonists reduce neointimal thickening. The mechanisms underlying these observations are multifactorial and include an effect on cell proliferation and cell/tissue damage. Much of the data supporting the beneficial action of endothelin-1 receptor antagonism at reducing intimal thickening and occlusion in experimental vein grafts were published over 20 years ago. The theme of the recent ET-16 conference in Kobe was "Visiting Old and Learning New". This short review article provides an overview of studies showing the potential of endothelin receptor antagonists to offer an adjuvant therapeutic approach for reducing saphenous vein graft failure and poses the question why this important area of research has not been translated from bench to bedside given the potential benefit for coronary artery bypass patients.
Collapse
Affiliation(s)
- Michael R Dashwood
- Surgical and Interventional Sciences, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Andrzej Loesch
- Centre for Rheumatology, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| |
Collapse
|
4
|
Endothelin A and B Receptors: Potential Targets for Microcirculatory-Mitochondrial Therapy in Experimental Sepsis. Shock 2019; 54:87-95. [DOI: 10.1097/shk.0000000000001414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Miyauchi T, Sakai S. Endothelin and the heart in health and diseases. Peptides 2019; 111:77-88. [PMID: 30352269 DOI: 10.1016/j.peptides.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Endothelin-1 (ET-1), a 21-amino acid peptide, was initially identified in 1988 as a potent vasoconstrictor and pressor substance isolated from the culture supernatant of porcine aortic endothelial cells. From human genomic DNA analysis, two other family peptides, ET-2 and ET-3, were found. They showed different effects and distribution, suggesting that each peptide may play separate roles in different organs. In the heart, ET-1 also causes positive inotropic and chronotropic responses and hypertrophic activity of the cardiomyocytes. ETs act via activation of two receptor subtypes, ETA and ETB receptors, both of which are coupled to various GTP-binding proteins depending on cell types. Endogenous ET-1 may be involved in progression of various cardiovascular diseases. ET antagonists are currently used clinically in the treatment for patients with pulmonary hypertension, and are considered to have further target diseases as heart failure, cardiac hypertrophy and other cardiac diseases, renal diseases, systemic hypertension, and cerebral vasospasm.
Collapse
Affiliation(s)
- Takashi Miyauchi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan.
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
6
|
Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell Tissue Res 2018; 375:103-122. [DOI: 10.1007/s00441-018-2958-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
|
7
|
Briyal S, Gandhakwala R, Khan M, Lavhale MS, Gulati A. Alterations in endothelin receptors following hemorrhage and resuscitation by centhaquin. Physiol Res 2018; 67:S199-S214. [PMID: 29947540 DOI: 10.33549/physiolres.933856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Endothelin-1 (ET-1) acts on ET(A) and ET(B) receptors and has been implicated in hemorrhagic shock (shock). We determined effect of shock and resuscitation by hypertonic saline (saline) or centhaquin on ET(A) and ET(B) receptor expression. Rats were anesthetized, a pressure catheter was placed in the left femoral artery; blood was withdrawn from the right femoral artery to bring mean arterial pressure (MAP) to 35 mm Hg for 30 min, resuscitation was performed and 90 min later sacrificed to collect samples for biochemical estimations. Resuscitation with centhaquin decreased blood lactate and increased MAP. Protein levels of ET(A) or ET(B) receptor were unaltered in the brain, heart, lung and liver following shock or resuscitation. In the abdominal aorta, shock produced an increase (140 %) in ET(A) expression which was attenuated by saline and centhaquin; ET(B) expression was unaltered following shock but was increased (79 %) by centhaquin. In renal medulla, ET(A) expression was unaltered following shock, but was decreased (-61 %) by centhaquin; shock produced a decrease (-34 %) in ET(B) expression which was completely attenuated by centhaquin and not saline. Shock induced changes in ET(A) and ET(B) receptors in the aorta and renal medulla are reversed by centhaquin and may be contributing to its efficacy.
Collapse
Affiliation(s)
- S Briyal
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA.
| | | | | | | | | |
Collapse
|
8
|
Wilson JL, Warburton R, Taylor L, Toksoz D, Hill N, Polgar P. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One 2018; 13:e0195780. [PMID: 29649319 PMCID: PMC5897024 DOI: 10.1371/journal.pone.0195780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 01/05/2023] Open
Abstract
Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings may provide useful tools in achieving the regulation of the vascular hypercontractility taking place in PAH.
Collapse
Affiliation(s)
- Jamie L. Wilson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Rod Warburton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Linda Taylor
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Nicholas Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Peter Polgar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Sci Rep 2017; 7:4956. [PMID: 28694457 PMCID: PMC5503984 DOI: 10.1038/s41598-017-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelin-1 (ET-1) is involved in the pathogenesis of cardiac and renal diseases, and in the progression of tumour growth in cancer, but current diagnosis and treatment remain inadequate. Peptides derived from the 212 amino acid precursor preproendothelin-1 (ppET-1) may have utility as biomarkers, or cause biological effects that are unaffected by endothelin receptor antagonists. Here, we used specific immunoassays and LC-MS/MS to identify NT-proET-1 (ppET-1[18–50]), Endothelin-Like Domain Peptide (ELDP, ppET-1[93–166]) and CT-proET-1 (ppET-1[169–212]) in conditioned media from cultured endothelial cells. Synthesis of these peptides correlated with ET-1, and plasma ELDP and CT-proET-1 were elevated in patients with chronic heart failure. Clearance rates of NT-proET-1, ELDP and CT-proET-1 were determined after i.v. injection in anaesthetised rats. CT-proET-1 had the slowest systemic clearance, hence providing a biological basis for it being a better biomarker of ET-1 synthesis. ELDP contains the evolutionary conserved endothelin-like domain sequence, which potentially confers biological activity. On isolated arteries ELDP lacked direct vasoconstrictor effects. However, it enhanced ET-1 vasoconstriction and prolonged the increase in blood pressure in anaesthetised rats. ELDP may therefore contribute to disease pathogenesis by augmenting ET-1 responses.
Collapse
|
10
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Gulati A. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia. Curr Neuropharmacol 2017; 14:619-26. [PMID: 26786146 PMCID: PMC4981738 DOI: 10.2174/1570159x14666160119094959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/11/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Neurogenesis is most active during pre-natal development, however, it persists throughout the human lifespan. The putative role of mitochondria in neurogenesis and angiogenesis is gaining importance. Since, ETB receptor mediated neurogenesis and angiogenesis has been identified, the role of these receptors with relevance to mitochondrial functions is of interest. Methods: In addition to work from our laboratory, we undertook an extensive search of bibliographic databases for peer-reviewed research literature. Specific technical terms such as endothelin, mitochondria and neurogenesis were used to seek out and critically evaluate literature that was relevant. Results: The ET family consists of three isopeptides (ET-1, ET-2 and ET-3) that produce biological actions by acting on two types of receptors (ETA and ETB). In the central nervous system (CNS) ETA receptors are potent constrictors of the cerebral vasculature and appear to contribute in the causation of cerebral ischemia. ETA receptor antagonists have been found to be effective in animal model of cerebral ischemia; however, clinical studies have shown no efficacy. Mitochondrial functions are critically important for several neural development processes such as neurogenesis, axonal and dendritic growth, and synaptic formation. ET appears to impair mitochondrial functions through activation of ETA receptors. On the other hand, blocking ETB receptors has been shown to trigger apoptotic processes by activating intrinsic mitochondrial pathway. Mitochondria are important for their role in molecular regulation of neurogenesis and angiogenesis. Stimulation of ETB receptors in the adult ischemic brain has been found to promote angiogenesis and neurogenesis mediated through vascular endothelial growth factor and nerve growth factor. It will be interesting to investigate the effect of ETB receptor stimulation on mitochondrial functions in the CNS following cerebral ischemia. Conclusion: The findings of this review implicate brain ETB receptors in angiogenesis and neurogenesis following cerebral ischemia, it is possible that the positive effect of stimulating ETB receptors in cerebral ischemia may be mediated through mitochondrial functions.
Collapse
Affiliation(s)
- Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL 60515-1235.
| |
Collapse
|
13
|
Tanner FC, Tschudi MR, Lüscher TF. Endothelium, lipoproteins and atherosclerotic vascular disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358836x9100200207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelium modulates vascular tone by releasing nitric oxide, which is a potent vasodilator and inhibitor of platelet aggregation. Together with prostacyclin, the endogenous nitrate nitric oxide has an important protective role in preventing vasospasm and thrombus formation. In addition, the endothelium is a source of contracting factors such as endothelin-1, thromboxane A2 and endoperoxides. Due to its strategic anatomical position, the endothelium is a primary target for injurious stimuli and cardiovascular risk factors. Low density lipoproteins reduce endothelium-dependent relaxation and enhance endothelium- dependent contraction. The same pattern of endothelial dysfunction occurs in hypercholesterolaemia and atherosclerosis. These alterations of endothelial function may contribute to vasospasm, ischaemia and thrombus formation, which are common events in patients with atherosclerotic vascular disease.
Collapse
|
14
|
Bhalla S, Andurkar SV, Gulati A. Neurobiology of opioid withdrawal: Role of the endothelin system. Life Sci 2016; 159:34-42. [DOI: 10.1016/j.lfs.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
|
15
|
Rincón R, Hernández A, Orozco C. In vitro effect of endothelin-1 and nifedipine on pulmonary vascular contraction of pulmonary hypertensive and non-pulmonary hypertensive chickens. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2015.1125355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rocío Rincón
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Aureliano Hernández
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Camilo Orozco
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
16
|
Raffai G, Khang G, Vanhoutte PM. Vanillin and vanillin analogs relax porcine coronary and basilar arteries by inhibiting L-type Ca2+ channels. J Pharmacol Exp Ther 2014; 352:14-22. [PMID: 25344384 DOI: 10.1124/jpet.114.217935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vanillin (VA) and vanillyl alcohol (VAA), components of natural vanilla, and ethyl vanillin (EtVA; synthetic analog) are used as flavoring agents and/or as additives by the food, cosmetic, or pharmaceutic industries. VA, VAA, and EtVA possess antioxidant and anti-inflammatory properties, but their vascular effects have not been determined. Therefore, we compared in isolated porcine coronary and basilar arteries the changes in isometric tension caused by VA, VAA, and EtVA. VA and its analogs caused concentration-dependent relaxations of both preparations during contractions from U46619 (9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, a thromboxane A2 receptor agonist), and of coronary arteries contracted with KCl or endothelin-1. The order of potency was VAA < VA < EtVA. The relaxations were not inhibited by endothelium removal, by inhibitors of NO synthases (N(ω)-nitro-l-arginine methyl ester hydrochloride), cyclooxygenases (indomethacin), soluble guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ]), KCa (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole [TRAM-34], 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-metheno-7H-dibenzo[b,n][1,5,12,16]tetraazacyclotricosine-5,13-diium ditrifluoroacetate hydrate [UCL-1684], or iberiotoxin), by KATP (glibenclamide), by Kir (BaCl2), by transient receptor potential receptor vanilloid 3 (TRPV3) channels (ruthenium red), or by antioxidants (catalase, apocynin, tempol, N-acetylcysteine, tiron). VA and its analogs inhibited contractions induced by Ca(2+) reintroduction in coronary arteries, and by an opener of L-type Ca(2+)-channels (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate [Bay K8644]) in coronary and basilar arteries. They inhibited contractions of coronary rings induced by the protein kinase C activator phorbol 12,13-dibutyrate to the same extent as the removal of extracellular Ca(2+) or incubation with nifedipine. Thus, in porcine arteries, relaxation from VA (and its analogs) is due to inhibition of L-type Ca(2+) channels. Hence, these compounds could be used to relieve coronary or cerebral vasospasms due to exaggerated Ca(2+) influx, but therapeutic efficacy would require exposures that far exceed the current levels obtained by the use of vanillin additives.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Paul M Vanhoutte
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| |
Collapse
|
17
|
Mamo YA, Angus JA, Ziogas J, Soeding PF, Wright CE. The role of voltage-operated and non-voltage-operated calcium channels in endothelin-induced vasoconstriction of rat cerebral arteries. Eur J Pharmacol 2014; 742:65-73. [PMID: 25218985 DOI: 10.1016/j.ejphar.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
Endothelin-1 has been identified as a potential mediator in the pathogenesis of ischaemic stroke and cerebral vasospasm. The aim of this study was to analyse the role of voltage-operated calcium channels (VOCC) and non-VOCC in endothelin-1 induced vasoconstriction of rat cerebral arteries. Arterial segments were dissected from different regions of the cerebral circulation and responses assessed using wire myography. Endothelin-1 concentration-contraction curves were constructed in calcium-free medium or in the presence of nifedipine, NNC 55-0396 ((1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride) or SK&F 96365 (1-(2-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenylethyl)-1H-imidazole) to inhibit the l-type VOCC, T-type VOCC and non-VOCC, respectively. Inhibition of the calcium channels or removal of calcium from the medium variably decreased the maximum effects (Emax) of endothelin-1, however its potency (pEC50) was unaltered. Endothelin-1 caused a small contraction (<22%) in calcium-free solution. Pre-treatment with nifedipine (1µM) did not affect responses to low concentrations of endothelin-1 but decreased Emax, while NNC 55-0396 (1µM) and SK&F 96365 (30-100µM) generally attenuated the endothelin-1-induced contraction. Combination of nifedipine with SK&F 96365 further decreased the Emax. The relaxant effect of the calcium channel antagonists was also assessed in pre-contracted arteries. Only nifedipine and SK&F 96365 relaxed the arteries pre-contracted with endothelin-1. In conclusion, VOCC and non-VOCC calcium channels are involved in different phases of the endothelin-1 contraction in rat cerebral vessels. T-type VOCC may be involved in contraction induced by low concentrations of endothelin-1, while l-type VOCC mediate the maintenance phase of contraction. VOCC and non-VOCC may work in concert in mediating contraction induced by endothelin-1.
Collapse
Affiliation(s)
- Yohannes A Mamo
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James Ziogas
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Paul F Soeding
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
18
|
Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats. Pharmacol Biochem Behav 2014; 120:65-72. [DOI: 10.1016/j.pbb.2014.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 01/21/2023]
|
19
|
Park WS, Heo SC, Jeon ES, Hong DH, Son YK, Ko JH, Kim HK, Lee SY, Kim JH, Han J. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells. Am J Physiol Cell Physiol 2013; 305:C377-91. [PMID: 23761629 DOI: 10.1152/ajpcell.00404.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fujii N, Reinke MC, Brunt VE, Minson CT. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids. Am J Physiol Heart Circ Physiol 2013; 304:H667-73. [PMID: 23316063 DOI: 10.1152/ajpheart.00731.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P < 0.05; and CVCAUC, 8,085 ± 1,055 vs. 3,145 ± 539%max·s, P < 0.05). In nonsmokers, CVCΔpeak and CVCAUC at the l-NAME site were lower than the Ringer site (CVCΔpeak, 29.5 ± 6.2%max, P < 0.05; and CVCAUC, 5,377 ± 1,109%max·s, P < 0.05), but in smokers, there were no differences between the Ringer and l-NAME sites (CVCΔpeak, 16.8 ± 4.3%max, P = 0.11; and CVCAUC, 2,679 ± 785%max·s, P = 0.30). CVCΔpeak and CVCAUC were reduced with ketorolac in nonsmokers (CVCΔpeak, 13.3 ± 3.6%max, P < 0.05; and CVCAUC, 1,967 ± 527%max·s, P < 0.05) and smokers (CVCΔpeak, 7.8 ± 1.8%max, P < 0.05; and CVCAUC, 1,246 ± 305%max·s, P < 0.05) and at the combination site in nonsmokers (CVCΔpeak, 15.9 ± 3.1%max, P < 0.05; and CVCAUC, 2,660 ± 512%max·s, P < 0.05) and smokers (CVCΔpeak, 11.5 ± 2.6%max, P < 0.05; and CVCAUC, 1,693 ± 409%max·s, P < 0.05), but the magnitudes were greater in nonsmokers (P < 0.05). These results suggest that impaired ACh-induced skin vasodilation in young smokers is related to diminished NO- and COX-dependent vasodilation.
Collapse
Affiliation(s)
- Naoto Fujii
- The University of Oregon, Department of Human Physiology, Eugene, OR 97403-1240, USA
| | | | | | | |
Collapse
|
21
|
Wynne BM, Chiao CW, Webb RC. Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1. ACTA ACUST UNITED AC 2012; 3:84-95. [PMID: 20161229 DOI: 10.1016/j.jash.2008.09.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vasoactive peptides, such as endothelin-1 and angiotensin II are recognized by specific receptor proteins located in the cell membrane of target cells. Following receptor recognition, the specificity of the cellular response is achieved by G-protein coupling of ligand binding to the regulation of intracellular effectors. These intracellular effectors will be the subject of this brief review on contractile activity initiated by endothelin-1 and angiotensin II.Activation of receptors by endothelin-1 and angiotensin II in smooth muscle cells results in phopholipase C (PLC) activation leading to the generation of the second messengers insitol trisphosphate (IP(3)) and diacylglycerol (DAG). IP(3) stimulates intracellular Ca(2+) release from the sarcoplasmic reticulum and DAG causes protein kinase C (PKC) activation. Additionally, different Ca(2+) entry channels, such as voltage-operated (VOC), receptor-operated (ROC), and store-operated (SOC) Ca(2+) channels, as well as Ca(2+)-permeable nonselective cation channels (NSCC), are involved in the elevation of intracellular Ca(2+) concentration. The elevation in intracellular Ca(2+) is transient and initiates contractile activity by a Ca(2+)-calmodulin interaction, stimulating myosin light chain (MLC) phosphorylation. When the Ca(2+) concentration begins to decline, Ca(2+)-sensitization of the contractile proteins is signaled by the RhoA/Rho-kinase pathway to inhibit the dephosphorylation of MLC phosphatase (MLCP) thereby maintaining force generation. Removal of Ca(2+) from the cytosol and stimulation of MLCP initiates the process of smooth muscle relaxation. In pathological conditions such as hypertension, alterations in these cellular signaling components can lead to an over stimulated state causing maintained vasoconstriction and blood pressure elevation.
Collapse
|
22
|
Andrade D, Serra R, Svensjö E, Lima APC, Ramos ES, Fortes FS, Morandini ACF, Morandi V, Soeiro MDN, Tanowitz HB, Scharfstein J. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012; 165:1333-47. [PMID: 21797847 DOI: 10.1111/j.1476-5381.2011.01609.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B(2)R (HOE-140), ET(A)R (BQ-123) and ET(B)R (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ET(A)R or ET(B)R genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ET(A)R and ET(B)R antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B(2)R, whereas RNA interference of ET(A)R and ET(B)R genes conversely reduced parasite internalization. ETRs/B(2)R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Collapse
Affiliation(s)
- Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ureña J, López-Barneo J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels. Trends Cardiovasc Med 2012; 22:155-60. [PMID: 22902183 DOI: 10.1016/j.tcm.2012.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023]
Abstract
Sustained vascular smooth muscle contraction can be mediated by several mechanisms, including the influx of extracellular Ca(2+) through L-type voltage-gated Ca(2+) channels (LTCCs) and by RhoA/Rho-associated kinase (ROCK)-dependent Ca(2+) sensitization of the contractile machinery. Conformational changes in the LTCC following depolarization can also trigger an ion-independent metabotropic pathway that involves G protein/phospholipase C activation, giving rise to inositol 1,4,5-trisphosphate synthesis and subsequent Ca(2+) release from the sarcoplasmic reticulum (SR) (calcium channel-induced Ca(2+) release or calcium channel-induced calcium release [CCICR]). In this review, we summarize recent data suggesting that LTCC activation and subsequent metabotropic Ca(2+) release from the SR participate in depolarization-evoked RhoA/ROCK activity and sustained arterial contraction. During protracted depolarizations, refilling of the SR stores by a residual influx of extracellular Ca(2+) through LTCCs helps maintain RhoA activity and contractile activation. These findings suggest that CCICR plays a major role in tonic vascular smooth muscle contraction, providing a link between membrane depolarization-induced LTCC activation and metabotropic Ca(2+) release and RhoA/ROCK stimulation.
Collapse
Affiliation(s)
- Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen de Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | | |
Collapse
|
24
|
Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res 2012; 1464:14-23. [PMID: 22580085 DOI: 10.1016/j.brainres.2012.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022]
Abstract
We have earlier shown that stimulation of endothelin B receptors by IRL-1620 provides significant neuroprotection at 24h following cerebral ischemia. However, the effect of IRL-1620 is not known in the subacute phase of cerebral ischemia, where development of cerebral edema further contributes towards brain damage. This study was designed to determine the effect of IRL-1620 on neurological functions, infarct volume, oxidative stress, and endothelin receptors following permanent middle cerebral artery occlusion for 7 days. Rats received three intravenous injections of either vehicle or IRL-1620 [Suc-[Glu9,Ala11,15]-Endothelin-1(8-12)] at 2, 4, and 6h post occlusion. Treatment with IRL-1620 reduced infarct volume (54.06 ± 14.12 mm(3) vs. 177.06 ± 13.21 mm(3)), prevented cerebral edema and significantly improved all neurological and motor function parameters when compared to the vehicle-treated group. Vehicle-treated middle cerebral artery occluded rats demonstrated high levels of malondialdehyde and low levels of reduced glutathione and superoxide dismutase; these effects were reversed in IRL-1620 treated rats. No change in expression of endothelin A receptor was observed 7 days after induction of cerebral ischemia in vehicle or IRL-1620 treated rats. Rats receiving IRL-1620 demonstrated an upregulation of endothelin B receptor only in the infarcted hemisphere 7 days following occlusion. All effects of IRL-1620 were blocked by endothelin B receptor antagonist, BQ788. Results of the present study demonstrate that IRL-1620, administered on day 1, provides significant neuroprotection till 7 days after the induction of cerebral ischemia in rats. Selective endothelin B receptor activation may prove to be a novel therapeutic target in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Mary G Leonard
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
25
|
Luke T, Maylor J, Undem C, Sylvester JT, Shimoda LA. Kinase-dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1128-39. [PMID: 22387294 DOI: 10.1152/ajplung.00396.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.
Collapse
Affiliation(s)
- Trevor Luke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
27
|
Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain Res 2011; 1420:48-58. [PMID: 21959172 DOI: 10.1016/j.brainres.2011.08.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 01/25/2023]
Abstract
Endothelin and its receptors have long been considered therapeutic targets in the treatment of ischemic stroke. Recent studies indicate that ET(B) receptors may provide both vasodilatation and neuroprotection. The purpose of this study was to determine the effect of selectively activating the ET(B) receptors following permanent middle cerebral artery occlusion in rats. IRL-1620 [Suc-[Glu9,Ala11,15]-Endothelin-1(8-12)], a highly selective ET(B) agonist, was used alone and in conjunction with BQ788, an ET(B) antagonist, to determine the role of ET(B) receptors in cerebral ischemia. Rats were assessed for neurological deficit and motor function, and their brains were evaluated to determine infarct area, oxidative stress parameters, and ET receptor protein levels. Animals treated with IRL-1620 showed significant improvement in all neurological and motor function tests when compared with both vehicle-treated and BQ788-treated middle cerebral artery occluded groups. In addition, there was a significant decrease in infarct volume 24h after occlusion in animals treated with IRL-1620 (24.47±4.37mm(3)) versus the vehicle-treated group (153.23±32.18mm(3)). Blockade of ET(B) receptors by BQ788 followed by either vehicle or IRL-1620 treatment resulted in infarct volumes similar to those of rats treated with vehicle alone (163.51±25.41 and 139.21±15.20mm(3), respectively). Lipid peroxidation, as measured by malondialdehyde, increased and antioxidants (superoxide dismutase and reduced glutathione) decreased following infarct. Treatment with IRL-1620 reversed these effects, indicating that ET(B) receptor activation reduces oxidative stress injury following ischemic stroke. Animals pretreated with BQ788 showed similar oxidative stress damage as those in the vehicle-treated group. No significant difference was observed in ET(B) receptor levels in any of the groups. The present study demonstrates that ET(B) receptor activation may be a novel neuroprotective therapy in the treatment of focal ischemic stroke.
Collapse
Affiliation(s)
- Mary G Leonard
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515-1235, USA
| | | | | |
Collapse
|
28
|
Palaniswamy C, Selvaraj DR, Palaniappan D. Dual Angiotensin II and Endothelin Receptor Antagonists. Am J Ther 2011; 18:e67-70. [DOI: 10.1097/mjt.0b013e3181cb4031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Fernández-Tenorio M, Porras-González C, Castellano A, Del Valle-Rodríguez A, López-Barneo J, Ureña J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circ Res 2011; 108:1348-57. [PMID: 21493898 DOI: 10.1161/circresaha.111.240127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sustained vascular smooth muscle contraction is mediated by extracellular Ca(2+) influx through L-type voltage-gated Ca(2+) channels (VGCC) and RhoA/Rho-associated kinase (ROCK)-dependent Ca(2+) sensitization of the contractile machinery. VGCC activation can also trigger an ion-independent metabotropic pathway that involves G-protein/phospholipase C activation, inositol 1,4,5-trisphosphate synthesis, and Ca(2+) release from the sarcoplasmic reticulum (calcium channel-induced Ca(2+) release). We have studied the functional role of calcium channel-induced Ca(2+) release and the inter-relations between Ca(2+) channel and RhoA/ROCK activation. METHODS AND RESULTS We have used normal and genetically modified animals to study single myocyte electrophysiology and fluorimetry as well as cytosolic Ca(2+) and diameter in intact arteries. These analyses were complemented with measurement of tension and RhoA activity in normal and reversibly permeabilized arterial rings. We have found that, unexpectedly, L-type Ca(2+) channel activation and subsequent metabotropic Ca(2+) release from sarcoplasmic reticulum participate in depolarization-evoked RhoA/ROCK activity and sustained arterial contraction. We show that these phenomena do not depend on the change in the membrane potential itself, or the mere release of Ca(2+) from the sarcoplasmic reticulum, but they require the simultaneous activation of VGCC and the downstream metabotropic pathway with concomitant Ca(2+) release. During protracted depolarizations, refilling of the stores by a residual extracellular Ca(2+) influx through VGCC helps maintaining RhoA activity and sustained arterial contraction. CONCLUSIONS These findings reveal that calcium channel-induced Ca(2+) release has a major role in tonic vascular smooth muscle contractility because it links membrane depolarization and Ca(2+) channel activation with metabotropic Ca(2+) release and sensitization (RhoA/ROCK stimulation).
Collapse
Affiliation(s)
- Miguel Fernández-Tenorio
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Chokri A, Doukali R, Abida KE, Cheikh RB. Myorelaxant and Spasmolytic Effects of Globularia alypum L. Extract on Rabbit Jejunum. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.608.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Ko EA, Park WS, Son YK, Ko JH, Choi TH, Jung ID, Park YM, Hong DH, Kim N, Han J. Calcium Channel Inhibitor, Verapamil, Inhibits the Voltage-Dependent K+ Channels in Rabbit Coronary Smooth Muscle Cells. Biol Pharm Bull 2010; 33:47-52. [DOI: 10.1248/bpb.33.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eun A Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Won Sun Park
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | | | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University
| | - Tae-Hoon Choi
- Department of Physical Education, Andong Science College
| | - In Duk Jung
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic Cell Differentiation & Regulation, Medical Research Institute, Pusan National University, College of Medicine
| | - Yeong-Min Park
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic Cell Differentiation & Regulation, Medical Research Institute, Pusan National University, College of Medicine
| | - Da Hye Hong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| |
Collapse
|
33
|
Feng HQ, Weymouth ND, Rockey DC. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease. Am J Physiol Gastrointest Liver Physiol 2009; 297:G27-33. [PMID: 19299580 PMCID: PMC2711758 DOI: 10.1152/ajpgi.90405.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses.
Collapse
Affiliation(s)
- Hong-Qiang Feng
- Division of Digestive and Liver Diseases, The University of Texas, Southwestern Medical Center, Dallas, Texas
| | - Nate D. Weymouth
- Division of Digestive and Liver Diseases, The University of Texas, Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- Division of Digestive and Liver Diseases, The University of Texas, Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
|
35
|
Rubio-Guerra AF, Vargas-Robles H, Vargas-Ayala G, Rodriguez-Lopez L, Escalante-Acosta BA. The effect of trandolapril and its fixed-dose combination with verapamil on circulating adhesion molecules levels in hypertensive patients with type 2 diabetes. Clin Exp Hypertens 2009; 30:682-8. [PMID: 18855271 DOI: 10.1080/10641960802251941] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM Endothelial dysfunction in hypertensive type-2 diabetic patients is associated with increased levels of circulating soluble adhesion molecules (SAM). SAM participate in the development of diabetic macroangiopathy and microangiopathy. The aim of this study was to compare the effect of trandolapril (T) and its fixed-dose combination with verapamil (FDTV) on SAM levels in hypertensive type-2 diabetic patients. METHODS Forty type-2 diabetic patients with never-treated hypertension were randomly assigned to two groups. One group (FDTV) received 2/180 mg once a day; the other group received T 2 mg once a day. Study drugs were administered for three months in both groups. VCAM-1, ICAM, and E-selectin were measured by ELISA at the beginning and end of the study. Patients were evaluated monthly for blood pressure, fasting serum glucose, and adverse events. Statistical analysis was performed with ANOVA. RESULTS Both therapeutics regimens reduced significantly the levels of the SAM tested. When both groups were compared, we did not find a significant difference in ICAM and E-selectin reduction. However, VCAM-1 presented a significantly greater reduction (p = 0.022) in the trandolapril-verapamil group. No patient suffered adverse events. CONCLUSION Our results show that FDTV produces a greater reduction of VCAM-1 circulating levels than trandolapril alone. This may explain some of the beneficial effects of this fixed dosed combination that are non-related to its antihypertensive effects.
Collapse
|
36
|
Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of long-term streptozotocin-induced diabetes on coronary vasoconstriction in isolated perfused rat heart. J Smooth Muscle Res 2008; 44:177-88. [DOI: 10.1540/jsmr.44.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Yuta Ozawa
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
37
|
Essalihi R, Zandvliet ML, Moreau S, Gilbert LA, Bouvet C, Lenoël C, Nekka F, McKee MD, Moreau P. Distinct effects of amlodipine treatment on vascular elastocalcinosis and stiffness in a rat model of isolated systolic hypertension. J Hypertens 2007; 25:1879-86. [PMID: 17762652 DOI: 10.1097/hjh.0b013e328255e906] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Medial elastocalcinosis (MEC) contributes to the development of large artery stiffness and isolated systolic hypertension. Since endothelin receptor antagonists can prevent and regress elastocalcinosis, our aim was to determine whether amlodipine, a calcium channel blocker that inhibits endothelin signaling, could likewise influence MEC, or reduce pressure mainly through its vasorelaxing properties. METHODS Control male Wistar rats were compared with rats receiving warfarin (20 mg/kg per day) with vitamin K1 (15 mg/kg per day) alone (WVK) or in association with amlodipine (15 mg/kg per day) for 4 weeks or during the last week or last 4 weeks of an 8-week WVK treatment (two regression groups). RESULTS Inactivation of matrix Gla protein by WVK for 4 or 8 weeks increased the calcium content 10-fold in the aorta, inducing a significant elevation of pulse wave velocity and pulse pressure by selective augmentation of systolic blood pressure. Amlodipine prevented aortic MEC, pulse wave velocity and pulse pressure elevation, but reversed only MEC and pulse pressure when administered for 4 weeks. One week of amlodipine administered after 7 weeks of WVK partially decreased pulse pressure without modifying aortic MEC. Amlodipine did not reduce the fibrosis associated with calcified areas in the WVK model during the regression protocols. CONCLUSION The clinical efficacy of amlodipine in improving hemodynamic variables and reducing cardiovascular events in isolated systolic hypertension could be explained by its beneficial effect on vascular calcification. Amlodipine's lack of effect on pulse wave velocity and collagen deposition, however, suggests that it may reduce pulse pressure by means other than improving arterial stiffness.
Collapse
|
38
|
Abstract
Endothelin 1 mediates coronary vasoconstriction and endothelial dysfunction via endothelin receptor type A (ET
A
) activation. However, the effects of selective endothelin receptor type B (ET
B
) and combined ET
A+B
receptor blockade on coronary vasomotion are unknown. We measured coronary vascular tone and endothelium-dependent and -independent vasomotor function before and after selective infusion of BQ-788 (an ET
B
receptor antagonist) or combined infusion of BQ-788+BQ-123 (an ET
A
antagonist) into unobstructed coronary arteries of 39 patients with coronary atherosclerosis or risk factors undergoing cardiac catheterization. BQ-788 did not affect epicardial diameter but constricted the microcirculation (
P
<0.0001), increased coronary sinus endothelin, and reduced nitrogen oxide levels. In contrast, BQ-123+BQ-788 dilated epicardial (
P
<0.0001) and resistance (
P
=0.022) arteries. Responses to acetylcholine and sodium nitroprusside were unaffected by BQ-788 alone. Epicardial endothelial dysfunction improved after BQ-123+BQ-788 (
P
=0.007). Coronary microvascular responses to acetylcholine and sodium nitroprusside were unaffected by BQ-123+BQ-788. We conclude that selective ET
B
receptor antagonism causes coronary microvascular constriction, without affecting epicardial tone or endothelial function, via reduced endothelin clearance and NO availability. Combined ET
A+B
blockade dilates coronary conduit and resistance vessels and improves endothelial dysfunction of the epicardial coronary arteries. Thus, endogenous endothelin, predominantly via ET
A
receptor stimulation, contributes to basal constrictor tone and endothelial dysfunction, whereas ET
B
activation mediates vasodilation in human coronaries. Our data suggest that selective ET
A
blockade may have greater therapeutic potential than nonselective agents, particularly for treatment of endothelial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Julian P J Halcox
- Institute of Child Health, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Lin CL, Winardi W, Jeng AY, Kwan AL. Endothelin-converting enzyme inhibitors for the treatment of subarachnoid hemorrhage-induced vasospasm. Neurol Res 2007; 28:721-9. [PMID: 17164035 DOI: 10.1179/016164106x152007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A burgeoning body of evidence suggests that endothelin-1 (ET-1), the most potent endogenous vasoconstrictor yet identified, may be critical in the pathophysiology of various cardiovascular diseases. The ET system may also be implicated in the pathogenesis of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Clinical studies have shown that the levels of ET-1 are increased in the cerebrospinal fluid (CSF) of patients following SAH, suggesting that ET-1-mediated vasoconstriction plays a major role in the development of vasospasm after SAH. The potential involvement of ETs in SAH-induced vasospasm has triggered considerable interest in developing therapeutic strategies that inhibit the biologic effects of ET. One promising approach to block the biosynthesis of ETs is suppressing the proteolytic conversion of the precursor peptide (big ET-1) to its vasoactive form (ET-1) using metalloprotease as endothelin-converting enzyme (ECE) inhibitor. To date, three types of ECE-1 inhibitors have been synthesized: dual ECE-1/neutral endopeptidase 24.11 (NEP) inhibitors, triple ECE-1/NEP/angiotensin-converting enzyme (ACE) inhibitors and selective ECE-1 inhibitors. The therapeutic effects of ECE-1 inhibitors on the prevention and reversal of SAH-induced vasospasm in animal studies are reviewed and discussed.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
40
|
Sudano I, Virdis A, Taddei S, Spieker L, Corti R, Noll G, Salvetti A, Luscher TF. Chronic treatment with long-acting nifedipine reduces vasoconstriction to endothelin-1 in essential hypertension. Hypertension 2006; 49:285-90. [PMID: 17178974 DOI: 10.1161/01.hyp.0000254645.33321.a3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Essential hypertension is associated with enhanced biological activity of endothelin-1 (ET-1) and impaired endothelium-dependent vasodilatation. Dihydropyridine calcium antagonists have antioxidant activity in vitro, and they improve endothelial function in vivo. We tested whether calcium antagonists also influence the biological activity of ET-1 in essential hypertensive (EH) patients in the presence and absence of hypercholesterolemia. In 9 healthy subjects (normotensive [NT] subjects, age: 48.3+/-7.6 years; blood pressure: 118+/-8.6/69+/-5.4 mm Hg) and 21 EH subjects (age: 50.0+/-7.8 years; blood pressure: 164.4+/-5.4/103.8+/-4.4 mm Hg), we studied forearm blood flow and its modification induced by intrabrachial administration of ET-1, phenylephrine, acetylcholine, and sodium nitroprusside at baseline and after 24 weeks of treatment with a nifedipine gastrointestinal therapeutic system (30 to 60 mg per day). At baseline, the first dose of ET-1 (0.5 microg/100 mL of forearm tissue per minute) caused a slight vasodilatation in NT but not in EH subjects, whereas the following higher doses caused a comparable dose-dependent vasoconstriction in EH and NT subjects. The effect of acetylcholine was significantly reduced in EH as compared with NT subjects. In contrast, sodium nitroprusside and phenylephrine had similar effects in NT and EH subjects. After chronic treatment with the nifedipine gastrointestinal therapeutic system, the vasoconstrictor effect induced by both ET-1 and phenylephrine was significantly blunted, whereas the response to acetylcholine was significantly increased and the vasodilation to sodium nitroprusside unchanged. Hypercholesterolemic EH subjects showed a further reduced response to acetylcholine compared with normocholesterolemic EH subjects, and the nifedipine gastrointestinal therapeutic system restored the vasodilation to acetylcholine in this subgroup. In conclusion, in EH subjects, chronic treatment with a long-acting dihydropyridine calcium antagonist not only exhibits a blood pressure-lowering effect but also reduces ET-1-induced vasoconstriction and improves endothelium-dependent vasodilation. Those vasculoprotective effects may importantly contribute to a reduction in major clinical events seen during treatment with these compounds.
Collapse
Affiliation(s)
- Isabella Sudano
- Cardiovascular Center, Cardiology, University Hospital of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Watanabe S, Shirasuna K, Matsui M, Yamamoto D, Berisha B, Schams D, Miyamoto A. Effect of intraluteal injection of endothelin type A receptor antagonist on PGF2alpha-induced luteolysis in the cow. J Reprod Dev 2006; 52:551-9. [PMID: 16757881 DOI: 10.1262/jrd.18018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelin-1 (ET-1) is a luteolytic mediator in the bovine corpus luteum (CL), and its action appears to be via endothelin type A receptor (ETR-A). Thus, the aim of the present study was to determine the effect of ETR-A antagonist on PGF2alpha-induced luteolysis in the cow. Cows on days 10-12 of the estrous cycle were subjected to five intraluteal injections of the ETR-A antagonist LU 135252 in saline or only saline at -0.5, 2, 4, 6, and 8 h after PGF2alpha administration (=0 h). Serial luteal biopsies were conducted to determine the expression of mRNA in the luteal tissue. There were no significant differences in the decrease in plasma progesterone (P) concentrations and the mRNA expressions of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase/Delta5, Delta4-isomerase between the ETR-A antagonist-treated group and the control group. However, the start of the decline in CL volume and blood flow area surrounding the CL was delayed for almost two days in the ETR-A antagonist-treated group compared to the control group. The mRNA expression of preproET-1 and endothelin type B receptor increased in both groups, while the ETR-A mRNA remained unchanged. In addition, caspase-3 mRNA expression increased significantly at 24 h in the control group only and its level was higher than that of the ETR-A antagonist-treated group. Thus, the present study suggests that ET-1 regulates structural luteolysis via ETR-A by controlling blood vessel contraction in the CL of the cow.
Collapse
Affiliation(s)
- Sho Watanabe
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Sand A, Andersson E, Fried G. Nitric oxide donors mediate vasodilation in human placental arteries partly through a direct effect on potassium channels. Placenta 2006; 27:181-90. [PMID: 16338463 DOI: 10.1016/j.placenta.2004.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 12/14/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
We have investigated the involvement of potassium channels in the NO-induced relaxation of small ET-1 precontracted arteries from placentas of normal pregnancies in the presence of the potassium channel modulating agents charybdotoxin, 4-AP, glibenclamide, TEA and the blocker of soluble guanylyl cyclase, ODQ, respectively. We have studied the effect of the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) in vessels precontracted by different concentrations of potassium and we have also investigated the presence of BK(Ca) channels in placental arteries by immunohistochemistry and immunoblotting. Our results show that charybdotoxin, an inhibitor of large- and intermediate-conductance Ca(2+)-activated potassium channels, inhibits relaxation in placental arteries. In presence of both charybdotoxin and ODQ, the inhibition of relaxation was significantly stronger, which indicates that NO-induced relaxation of human placental arteries is partly mediated through cGMP, and partly through a direct effect on potassium channels of the BK(Ca) type. The NO-donor SNAP preferentially relaxes contractions induced by 75 mM K(+) as compared to 100 mM K(+). This effect profile is a unique feature of drugs acting by K(+) channel opening. The immunohistochemistry shows that BK(Ca) channels are located both in smooth muscle and in endothelium in placental arteries.
Collapse
Affiliation(s)
- A Sand
- Department of Women and Child Health, Division of Obstetrics and Gynaecology, Karolinska Institute and Hospital, S-171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
del Valle-Rodríguez A, Calderón E, Ruiz M, Ordoñez A, López-Barneo J, Ureña J. Metabotropic Ca(2+) channel-induced Ca(2+) release and ATP-dependent facilitation of arterial myocyte contraction. Proc Natl Acad Sci U S A 2006; 103:4316-21. [PMID: 16537528 PMCID: PMC1449690 DOI: 10.1073/pnas.0508781103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated Ca(2+) channels in arterial myocytes can mediate Ca(2+) release from the sarcoplasmic reticulum and, thus, induce contraction without the need of extracellular Ca(2+) influx. This metabotropic action of Ca(2+) channels (denoted as calcium-channel-induced calcium release or CCICR) involves activation of G proteins and the phospholipase C-inositol 1,4,5-trisphosphate pathway. Here, we show a form of vascular tone regulation by extracellular ATP that depends on the modulation of CCICR. In isolated arterial myocytes, ATP produced facilitation of Ca(2+)-channel activation and, subsequently, a strong potentiation of CCICR. The facilitation of L-type channel still occurred after full blockade of purinergic receptors and inhibition of G proteins with GDPbetaS, thus suggesting that ATP directly interacts with Ca(2+) channels. The effects of ATP appear to be highly selective, because they were not mimicked by other nucleotides (ADP or UTP) or vasoactive agents, such as norepinephrine, acetylcholine, or endothelin-1. We have also shown that CCICR can trigger arterial cerebral vasoconstriction in the absence of extracellular calcium and that this phenomenon is greatly facilitated by extracellular ATP. Although, at low concentrations, ATP does not induce arterial contraction per se, this agent markedly potentiates contractility of partially depolarized or primed arteries. Hence, the metabotropic action of L-type Ca(2+) channels could have a high impact on vascular pathophysiology, because, even in the absence of Ca(2+) channel opening, it might mediate elevations of cytosolic Ca(2+) and contraction in partially depolarized vascular smooth muscle cells exposed to small concentrations of agonists.
Collapse
Affiliation(s)
| | - Eva Calderón
- Unidad de Cirugía Cardiovascular, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain
| | - Myriam Ruiz
- Unidad de Cirugía Cardiovascular, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain
| | - Antonio Ordoñez
- Unidad de Cirugía Cardiovascular, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain
| | | | - Juan Ureña
- *Laboratorio de Investigaciones Biomédicas and
- To whom correspondence should be addressed at:
Laboratorio de Investigaciones Biomédicas, Edificio de Laboratorios, 2nd Planta, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, E-41013, Seville, Spain. E-mail:
| |
Collapse
|
44
|
Scherer EQ, Arnold W, Wangemann P. Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss. BMC EAR, NOSE, AND THROAT DISORDERS 2005; 5:10. [PMID: 16316469 PMCID: PMC1315339 DOI: 10.1186/1472-6815-5-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 11/29/2005] [Indexed: 11/10/2022]
Abstract
Background Vasospasm of the spiral modiolar artery (SMA) may cause ischemic stroke of the inner ear. Endothelin-1 (ET-1) induces a strong, long-lasting constriction of the SMA by increasing contractile apparatus Ca2+ sensitivity via Rho-kinase. We therefore tested several Rho-kinase inhibitors and a cell-permeable analogue of cAMP (dbcAMP) for their ability to reverse ET-1-induced constriction and Ca2+-sensitization. Methods The present study employed SMA isolated from gerbil temporal bones. Ca2+sensitivity was evaluated by correlating vascular diameter and smooth muscle cell [Ca2+]i, measured by fluo-4-microfluorometry and videomicroscopy. Results The Rho-kinase inhibitors Y-27632, fasudil, and hydroxy-fasudil reversed ET-1-induced vasoconstriction with an IC50 of 3, 15, and 111 μmol/L, respectively. DbcAMP stimulated a dose-dependent vasodilation (Ec50 = 1 mmol/L) and a reduction of [Ca2+]i (EC50 = 0.3 μmol/L) of ET-1-preconstricted vessels (1 nmol/L). Fasudil and dbcAMP both reversed the ET-1-induced increase in Ca2+ sensitivity. Conclusion Rho-kinase inhibition and dbcAMP reversed ET-1-induced vasoconstriction and Ca2+-sensitization. Therefore, Rho-kinase inhibitors or cAMP modulators could possess promise as pharmacological tools for the treatment of ET-1-induced constriction, ischemic stroke and sudden hearing loss.
Collapse
Affiliation(s)
- Elias Q Scherer
- Cell Physiology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Wolfgang Arnold
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Philine Wangemann
- Cell Physiology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
45
|
Ko EA, Park WS, Ko JH, Han J, Kim N, Earm YE. Endothelin-1 increases intracellular Ca(2+) in rabbit pulmonary artery smooth muscle cells through phospholipase C. Am J Physiol Heart Circ Physiol 2005; 289:H1551-9. [PMID: 16162868 DOI: 10.1152/ajpheart.00131.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In freshly isolated rabbit pulmonary artery smooth muscle cells, endothelin (ET)-1 induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a return to the initial [Ca(2+)](i). This response was not abolished by the voltage-dependent Ca(2+) channel blocker nicardipine or removal of Ca(2+) from the bath solution but was inhibited by ryanodine and thapsigargin. This finding suggested that the increase in [Ca(2+)](i) induced by ET-1 was attributable to release of Ca(2+) from ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores. The transient increase in [Ca(2+)](i) induced by ET-1 was also inhibited by pretreatment with antagonists of ET type A and B (ET(A) and ET(B)) receptors (BQ-123 and BQ-788, respectively). Furthermore, the ET(B) receptor agonist IRL-1620 induced an increase in [Ca(2+)](i) that was followed by a sustained increase in [Ca(2+)](i); the sustained increase in [Ca(2+)](i) was blocked by nicardipine. Using the nystatin-perforated patch-clamp technique, we found that IRL-1620 caused an increase in Ca(2+) current that was inhibited by addition of ET-1. ET-1 did not inhibit Ca(2+) current when cells were pretreated with BQ-123. These results suggested that when both receptor types are activated, the opposing responses lead to abolition of the sustained [Ca(2+)](i) increases induced by ET(B) receptor activation. Western blot analysis confirmed expression of ET(A) and ET(B) receptors. Finally, U-73122 inhibited the ET-1-induced [Ca(2+)](i) increase, indicating that phospholipase C was involved in modulation of the ET-1-induced [Ca(2+)](i) increase in rabbit pulmonary artery smooth muscle cells.
Collapse
Affiliation(s)
- Eun A Ko
- Department of Physiology and National Research Laboratory for Cellular Signalling, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Miwa S, Kawanabe Y, Okamoto Y, Masaki T. Ca2+ entry channels involved in endothelin-1-induced contractions of vascular smooth muscle cells. J Smooth Muscle Res 2005; 41:61-75. [PMID: 15988150 DOI: 10.1540/jsmr.41.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | |
Collapse
|
47
|
Park WS, Ko EA, Han J, Kim N, Earm YE. Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol 2005; 45:99-108. [PMID: 15654257 DOI: 10.1097/01.fjc.0000150442.49051.f7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effects of the vasoconstrictor endothelin-1 (ET-1) on the whole-cell ATP-sensitive K+ (KATP) currents of smooth muscle cells that were isolated enzymatically from rabbit coronary artery (CASMCs) and pulmonary artery (PASMCs). The size of the KATP current did not differ significantly between CASMCs and PASMCs. ET-1 reduced the KATP current in a concentration-dependent manner, and this inhibition was greater in PASMCs than in CASMCs (half-inhibition values of 12.20 nM and 1.98 nM in CASMCs and PASMCs, respectively). However, the level of inhibition induced by other vasoconstrictors (angiotensin II, norepinephrine, and serotonin) were not significantly different between CASMCs and PASMCs. Pretreatment with the protein kinase C (PKC) inhibitors staurosporine (100 nM) and GF 109203X (1 microM) prevented ET-1-induced inhibition of the KATP current in both arterial smooth muscle cell preparations. The PKC activators phorbol-12,13-dibutyrate (PDBu) and 1-olelyl-2-acetyl-sn-glycerol (OAG) reduced the KATP current in dose-dependent manner. Although the numbers of ET receptors were not significantly different between the 2 arterial smooth muscle cell preparations, the effects of PDBu and OAG were greater on PASMCs. ET-1-induced inhibition of the KATP current was unaffected by the PKA inhibitor Rp-cAMPs (100 microM) and PKA inhibitory peptide (5 microM).
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology and National Research Laboratory for Cellular Signaling, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Pollock DM, Jenkins JM, Cook AK, Imig JD, Inscho EW. L-type calcium channels in the renal microcirculatory response to endothelin. Am J Physiol Renal Physiol 2005; 288:F771-7. [PMID: 15547114 DOI: 10.1152/ajprenal.00315.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signaling pathways of endothelin (ET)-1-mediated vasoconstriction in the renal circulation have not been elucidated but appear to be distinct between ETAand ETBreceptors. The purpose of this study was to determine the role of L-type Ca2+channels in the vasoconstrictor response to ET-1 and the ETBreceptor agonist sarafotoxin 6c (S6c) in the rat kidney. Renal blood flow (RBF) was measured with an ultrasonic flow probe in anesthetized rats, and a microcatheter was inserted into the renal artery for drug infusion. All rats were given vehicle (0.9% NaCl) or three successive bolus injections (1, 10, and 100 pmol) of ET-1 or S6c at 30-min intervals ( n = 6 in each group). ET-1 and S6c produced dose-dependent decreases in RBF. The Ca2+channel blocker nifedipine (1.5 μg) significantly attenuated the RBF response only at the highest doses of ET-1 and S6c. In the isolated blood-perfused juxtamedullary nephron preparation, Ca2+channel blockade with diltiazem had a very small inhibitory effect on ET-1-induced decreases in afferent arteriolar diameter only at the lowest concentrations of ET-1. In vascular smooth muscle cells isolated from preglomerular vessels, ET-1 produced a typical biphasic Ca2+response, whereas S6c had no effect on cytosolic Ca2+. Furthermore, Ca2+channel blockade (diltiazem or Ni2+) had no effect on the peak or sustained increase in cytosolic Ca2+produced by ET-1. These results support the hypothesis that L-type Ca2+channels play only a minor role in the constrictor responses to ET-1 in the renal microcirculation.
Collapse
Affiliation(s)
- David M Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
| | | | | | | | | |
Collapse
|
49
|
Khan MA, Thompson CS, Sullivan ME, Dashwood MR, Jeremy JY, Morgan RJ, Mikhailidis DP. Endothelin and erectile dysfunction: a target for pharmacological intervention? Expert Opin Investig Drugs 2005; 7:1759-67. [PMID: 15991927 DOI: 10.1517/13543784.7.11.1759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although erectile dysfunction (ED) is not life threatening, this common problem can significantly affect the quality of life and psychological and social well-being. The Massachusetts male ageing study (1,290 men aged 40 - 70 years) showed that 52% of men reported some degree of ED (17.1% mild, 25.2% moderate, 9.6% total). In the UK, an estimated 17 - 19% of men are thought to suffer from ED. This problem is more common with advancing age and since this proportion of the population is increasing, the prevalence of ED is expected to rise. Endothelin-1 (ET-1) belongs to a family of potent vasoconstrictor peptides consisting of 21 amino acids. We review the evidence showing that ET-1 plays a role via (ET(A) and ET(B) receptors) in the regulation of cavernosal smooth muscle tone. We also consider the various risk factors that are involved in the pathogenesis of ED and how these relate to the action of ET-1. In particular, the role of diabetes, hypertension, smoking and dyslipidaemia are discussed. The pharmaceutical industry has declared an interest in the development of ET antagonists for use in the treatment of various diseases including ED. We briefly comment on experimental ET-1 antagonists that may be of therapeutic benefit in ED.
Collapse
Affiliation(s)
- M A Khan
- Department of Urology, Royal Free and University College Medical School (Royal Free Campus), University College London , London, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Yagami T, Ueda K, Sakaeda T, Okamura N, Nakazato H, Kuroda T, Hata S, Sakaguchi G, Itoh N, Hashimoto Y, Fujimoto M. Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology 2005; 48:291-300. [PMID: 15695168 DOI: 10.1016/j.neuropharm.2004.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 05/27/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
Endothelin (ET), a vasoconstrictive peptide, acts as an anti-apoptotic factor, and endothelin receptor B (ETB receptor) is associated with neuronal survival in the brain. Human group IIA secretory phospholipase A2 (sPLA2-IIA) is expressed in the cerebral cortex after brain ischemia and causes neuronal cell death via apoptosis. In primary cultures of rat cortical neurons, we investigated the effects of an ETB receptor agonist, ET-3, on sPLA2-IIA-induced cell death. sPLA2-IIA caused neuronal cell death in a concentration- and time-dependent manner. ET-3 significantly prevented neurons from undergoing sPLA2-IIA-induced cell death. These agonists reversed sPLA2-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. Before cell death, sPLA2-IIA potentiated the influx of Ca2+ into neurons. Blockers of the L-type voltage-dependent calcium channel (L-VSCC) not only suppressed the Ca2+ influx, but also exhibited neuroprotective effects. As well as L-VSCC blockers, ET-3 significantly prevented neurons from sPLA2-IIA-induced Ca2+ influx. An ETB receptor antagonist, BQ788, inhibited the effects of ET-3. The present cortical cultures contained few non-neuronal cells, indicating that the ETB receptor agonist affected the survival of neurons directly, but not indirectly via non-neuronal cells. In conclusion, we demonstrate that the ETB receptor agonist rescues cortical neurons from sPLA2-IIA-induced apoptosis. Furthermore, the present study suggests that the inhibition of L-VSCC contributes to the neuroprotective effects of the ETB receptor agonist.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co, Ltd., 12-4 Sagisu 5-Chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|