1
|
Lyu W, Li Y, Yao A, Tan QQ, Zhang R, Zhao JP, Guo K, Jiang YH, Tian R, Zhang YQ. Oxytocin improves maternal licking behavior deficits in autism-associated Shank3 mutant dogs. Transl Psychiatry 2025; 15:76. [PMID: 40050270 PMCID: PMC11885833 DOI: 10.1038/s41398-025-03296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Impaired social interaction and repetitive behavior are key features observed in individuals with autism spectrum disorder (ASD). SHANK3 is a high-confidence ASD risk gene that encodes an abundant scaffolding protein in the postsynaptic density. In wild-type (WT) domestic dogs, maternal behaviors such as licking and nursing (largely milk feeding) of puppies are most commonly observed. To address whether SHANK3 plays a role in social behaviors especially maternal behaviors, we analyzed Shank3 mutant dogs generated by CRISPR/Cas9 methodology. We found that Shank3 mutant dams exhibited a fewer and shorter licking behavior, as well as reduced nursing frequency when compared with WT dams. Additionally, a significant decrease in blood oxytocin (OXT) concentration was detected in Shank3 mutant dams. We thus conducted a vehicle-controlled experiment to examine whether a two-week intranasal OXT treatment, initiated on the 8th postpartum day, could rescue the maternal licking deficits in Shank3 mutant dams. We found that the decreased licking behavior in Shank3 mutant dams was significantly attenuated both acutely and chronically by OXT treatment. The rescue effect of OXT implicates an oxytocinergic contribution to the maternal defects in Shank3 mutant dams, suggesting a potential therapeutic strategy for SHANK3-associated ASD.
Collapse
Affiliation(s)
- Wen Lyu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Aiyu Yao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Quan Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University Health Science Center, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Jian-Ping Zhao
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Kun Guo
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Yong-Hui Jiang
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rui Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
2
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
3
|
Yanagitsuru A, Tyson C, Angelier F, Johns M, Hahn T, Wingfield J, Land-Miller H, Forney R, Hull E. Experience and trust: the benefits of mate familiarity are realized through sex-specific specialization of parental roles in Cassin's auklet. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241258. [PMID: 39698155 PMCID: PMC11651890 DOI: 10.1098/rsos.241258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Maintaining a pair bond year after year (perennial monogamy) often enhances reproductive success, but what familiar pairs are doing differently to improve success is unknown. We tested the hypothesis that endocrine changes mediate improvements in parental attendance in known-age Cassin's auklets Ptychoramphus aleuticus, for which we found limited evidence. Instead, we found sex-specific parental roles in familiar pairs. Males modulated their nest attendance depending on the attendance of their mate, but the direction depended on mate familiarity. We suggest his flexibility may be mediated by prolactin. In a historical dataset, females with a familiar mate laid larger eggs that hatched into more robust chicks, but larger eggs correlated with lower female body condition. In study birds, attendance by males and females in good condition predicted chick weight, but attendance by females in poor condition did not, suggesting female-specific energetic constraint. Our findings suggest that males and females contribute differently to their joint reproductive fortunes, and that improvements in their respective roles may result in the benefits of mate familiarity. Since improved reproductive success is presumed to be a main benefit of maintaining a long-term pair bond, these results suggest a new avenue of research in the evolution of monogamy.
Collapse
Affiliation(s)
- Amy Yanagitsuru
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Christopher Tyson
- Department of Animal Science, University of California, Davis, CA, USA
| | - Frédéric Angelier
- Centre d’Etudes Biologiques de Chizé, CNRS, La Rochelle Université, Villiers en Bois79360, France
| | | | - Thomas Hahn
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - John Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | | | | | - Elisha Hull
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Pal T, McQuillan HJ, Wragg L, Brown RSE. Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools. Endocrinology 2024; 166:bqae152. [PMID: 39497459 PMCID: PMC11590663 DOI: 10.1210/endocr/bqae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 11/27/2024]
Abstract
The importance of hormones in mediating a behavioral transition in mammals from a virgin or nonparenting state to parental state was established around 50 years ago. Extensive research has since revealed a highly conserved neural circuit that underlies parental behavior both between sexes and between mammalian species. Within this circuit, hormonal action in the medial preoptic area of the hypothalamus (MPOA) has been shown to be key in timing the onset of parental behavior with the birth of offspring. However, the mechanism underlying how hormones act in the MPOA to facilitate this change in behavior has been unclear. Technical advances in neuroscience, including single cell sequencing, novel transgenic approaches, calcium imaging, and optogenetics, have recently been harnessed to reveal new insights into maternal behavior. This review aims to highlight how the use of these tools has shaped our understanding about which aspects of maternal behavior are regulated by specific hormone activity within the MPOA, how hormone-sensitive MPOA neurons integrate within the wider neural circuit that governs maternal behavior, and how maternal hormones drive changes in MPOA neuronal function during different reproductive states. Finally, we review our current understanding of hormonal modulation of MPOA-mediated paternal behavior in males.
Collapse
Affiliation(s)
- Tapasya Pal
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Henry J McQuillan
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Logan Wragg
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
De Guzman RM, Jacobskind JS, Rosinger ZJ, Rybka KA, Parra KE, Caballero AL, Sharif MS, Justice NJ, Zuloaga DG. Hormone Regulation of Corticotropin-Releasing Factor Receptor 1 in the Female Mouse Brain. Neuroendocrinology 2024; 114:1139-1157. [PMID: 39586245 PMCID: PMC11813687 DOI: 10.1159/000542751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown. METHODS This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry. RESULTS Administration of dexamethasone, an agonist of the glucocorticoid receptor, elevated CRFR1 in the anteroventral periventricular nucleus (AVPV/PeN) and paraventricular hypothalamus (PVN) with no changes found in the medial preoptic area (MPOA) or arcuate nucleus. Treatment with prolactin for 5 days elevated CRFR1 levels in the MPOA with no changes in other regions. Finally, we utilized the hormone-simulated pseudopregnancy (HSP) paradigm to mimic changes in estradiol and progesterone across pregnancy and the early postpartum period. Female mice receiving HSP treatment, as well as mice receiving HSP treatment that then underwent 5 days of estrogen withdrawal (EW), showed alterations in CRFR1 relative to control groups that mirrored changes previously reported in postpartum mice. Specifically, CRFR1 levels increased in the AVPV/PeN and decreased in the MPOA and PVN, with no changes found in the arcuate nucleus. HSP- and EW-treated mice also showed decreases in tyrosine hydroxylase-expressing neurons in the AVPV/PeN. DISCUSSION/CONCLUSION Overall, these hormone-induced changes in stress-regulating CRFR1 neurons may impact behavioral and neuroendocrine stress responses.
Collapse
Affiliation(s)
- Rose M. De Guzman
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Jason S. Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Zachary J. Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Krystyna A. Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Katherine E. Parra
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Aya L. Caballero
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Massoud S. Sharif
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| | - Nicholas J. Justice
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Damian G. Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany NY, USA
| |
Collapse
|
6
|
Grattan DR. Does the brain make prolactin? J Neuroendocrinol 2024; 36:e13432. [PMID: 39041379 DOI: 10.1111/jne.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
7
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
8
|
Ammari R, Monaca F, Cao M, Nassar E, Wai P, Del Grosso NA, Lee M, Borak N, Schneider-Luftman D, Kohl J. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. Science 2023; 382:76-81. [PMID: 37797007 PMCID: PMC7615220 DOI: 10.1126/science.adi0576] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.
Collapse
Affiliation(s)
- Rachida Ammari
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Francesco Monaca
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Mingran Cao
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Estelle Nassar
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Patty Wai
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nicholas A. Del Grosso
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Matthew Lee
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Neven Borak
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Deborah Schneider-Luftman
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Johannes Kohl
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
9
|
Csikós V, Oláh S, Dóra F, Arrasz N, Cservenák M, Dobolyi A. Microglia depletion prevents lactation by inhibition of prolactin secretion. iScience 2023; 26:106264. [PMID: 36936786 PMCID: PMC10014264 DOI: 10.1016/j.isci.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Microglial cells were eliminated from the brain with sustained 3-4 weeks long inhibition of colony stimulating factor 1 receptor by Pexidartinib 3397 (PLX3397). The prepartum treated mice mothers did not feed their pups after parturition. The pups of mothers treated orally only in the postpartum period starting immediately after parturition showed reduced body weight by 15.5 ± 0.22 postnatal days as the treatment progressed without the mothers showing altered caring behaviors. The apparent weight gain of foster pups during a suckling bout was reduced in mother mice fed by PLX3397-containing diet and also in rat dams following sustained intracerebroventricular infusion of PLX3397 in a separate experiment suggesting that lactation was affected by the reduced number of microglia. Prolactin secretion and signaling were markedly reduced in PLX3397-treated mothers. The results suggest that microglial cells are required for prolactin secretion and lactation whereas maternal motivation may not be directly affected by microglia.
Collapse
Affiliation(s)
- Vivien Csikós
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Nikolett Arrasz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Corresponding author
| |
Collapse
|
10
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
12
|
Prolactin-mediated restraint of maternal aggression in lactation. Proc Natl Acad Sci U S A 2022; 119:2116972119. [PMID: 35131854 PMCID: PMC8833212 DOI: 10.1073/pnas.2116972119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Heightened intruder-directed aggressive behavior in female mice is displayed during lactation to enable a mother to protect her offspring. Although recent work has identified that the ventromedial nucleus of the hypothalamus plays an important role in governing aggressive behavior, it is unknown how the changing hormones of pregnancy and lactation might regulate this behavior during specific reproductive states. Here, we show that prolactin-responsive neurons are activated during aggression and project to multiple brain regions with known roles in regulating behavior. Through neuron-specific and region-specific deletion of the prolactin receptor, our data reveal that prolactin is an important modulator of maternal aggression. By acting on glutamatergic neurons in the ventromedial nucleus, prolactin restrains maternal aggression, specifically in lactating female mice. Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.
Collapse
|
13
|
Pereira M, Smiley KO, Lonstein JS. Parental Behavior in Rodents. ADVANCES IN NEUROBIOLOGY 2022; 27:1-53. [PMID: 36169811 DOI: 10.1007/978-3-030-97762-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Members of the order Rodentia are among the best-studied mammals for understanding the patterns, outcomes, and biological determinants of maternal and paternal caregiving. This research has provided a wealth of information but has historically focused on just a few rodents, mostly members of the two Myomorpha families that easily breed and can be studied within a laboratory setting (including laboratory rats, mice, hamsters, voles, gerbils). It is unclear how well this small collection of animals represents the over 2000 species of extant rodents. This chapter provides an overview of the hormonal and neurobiological systems involved in parental care in rodents, with a purposeful eye on providing information known or could be gleaned about parenting in various less-traditional members of Rodentia. We conclude from this analysis that the few commonly studied rodents are not necessarily even representative of the highly diverse members of Myomorpha, let alone other rodent suborders, and that additional laboratory and field studies of members of this order more broadly would surely provide invaluable information toward revealing a more representative picture of the rich diversity in rodent parenting.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kristina O Smiley
- Centre for Neuroendocrinology & Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
14
|
Georgescu T, Swart JM, Grattan DR, Brown RSE. The Prolactin Family of Hormones as Regulators of Maternal Mood and Behavior. Front Glob Womens Health 2021; 2:767467. [PMID: 34927138 PMCID: PMC8673487 DOI: 10.3389/fgwh.2021.767467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Transition into motherhood involves profound physiological and behavioral adaptations that ensure the healthy development of offspring while maintaining maternal health. Dynamic fluctuations in key hormones during pregnancy and lactation induce these maternal adaptations by acting on neural circuits in the brain. Amongst these hormonal changes, lactogenic hormones (e.g., prolactin and its pregnancy-specific homolog, placental lactogen) are important regulators of these processes, and their receptors are located in key brain regions controlling emotional behaviors and maternal responses. With pregnancy and lactation also being associated with a marked elevation in the risk of developing mood disorders, it is important to understand how hormones are normally regulating mood and behavior during this time. It seems likely that pathological changes in mood could result from aberrant expression of these hormone-induced behavioral responses. Maternal mental health problems during pregnancy and the postpartum period represent a major barrier in developing healthy mother-infant interactions which are crucial for the child's development. In this review, we will examine the role lactogenic hormones play in driving a range of specific maternal behaviors, including motivation, protectiveness, and mother-pup interactions. Understanding how these hormones collectively act in a mother's brain to promote nurturing behaviors toward offspring will ultimately assist in treatment development and contribute to safeguarding a successful pregnancy.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Judith M. Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S. E. Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Costa-Brito AR, Quintela T, Gonçalves I, Duarte AC, Costa AR, Arosa FA, Cavaco JE, Lemos MC, Santos CRA. The Choroid Plexus Is an Alternative Source of Prolactin to the Rat Brain. Mol Neurobiol 2021; 58:1846-1858. [PMID: 33409838 DOI: 10.1007/s12035-020-02267-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Among the more than 300 functions attributed to prolactin (PRL), this hormone has been associated with the induction of neurogenesis and differentiation of olfactory neurons especially during pregnancy, which are essential for maternal behavior. Despite the original hypothesis that PRL enters the central nervous system through a process mediated by PRL receptors (PRLR) at the choroid plexus (CP), recent data suggested that PRL transport into the brain is independent of its receptors. Based on transcriptomic data suggesting that PRL could be expressed in the CP, this work aimed to confirm PRL synthesis and secretion by CP epithelial cells (CPEC). The secretion of PRL and the distribution of PRLR in CPEC were further characterized using an in vitro model of the rat blood-cerebrospinal fluid barrier. RT-PCR analysis of PRL transcripts showed its presence in pregnant rat CP, in CPEC, and in the rat immortalized CP cell line, Z310. These observations were reinforced by immunocytochemistry staining of PRL in CPEC and Z310 cell cytoplasm. A 63-kDa immunoreactive PRL protein was detected by Western blot in CP protein extracts as well as in culture medium incubated with rat pituitary and samples of rat cerebrospinal fluid and serum. Positive immunocytochemistry staining of PRLR was present throughout the CPEC cytoplasm and in the apical and basal membrane of these cells. Altogether, our evidences suggest that CP is an alternative source of PRL to the brain, which might impact neurogenesis of olfactory neurons at the subventricular zone, given its proximity to the CP.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José E Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
16
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
17
|
Transcriptome Sequencing in the Preoptic Region of Rat Dams Reveals a Role of Androgen Receptor in the Control of Maternal Behavior. Int J Mol Sci 2021; 22:ijms22041517. [PMID: 33546359 PMCID: PMC7913516 DOI: 10.3390/ijms22041517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
(1) Background: Preoptic region of hypothalamus is responsible to control maternal behavior, which was hypothesized to be associated with gene expressional changes. (2) Methods: Transcriptome sequencing was first applied in the preoptic region of rat dams in comparison to a control group of mothers whose pups were taken away immediately after parturition and did not exhibit caring behavior 10 days later. (3) Results: Differentially expressed genes were found and validated by quantitative RT-PCR, among them NACHT and WD repeat domain containing 1 (Nwd1) is known to control androgen receptor (AR) protein levels. The distribution of Nwd1 mRNA and AR was similar in the preoptic area. Therefore, we focused on this steroid hormone receptor and found its reduced protein level in rat dams. To establish the function of AR in maternal behavior, its antagonist was administered intracerebroventricularly into mother rats and increased pup-directed behavior of the animals. (4) Conclusions: AR levels are suppressed in the preoptic area of mothers possibly mediated by altered Nwd1 expression in order to allow sustained high-level care for the pups. Thus, our study first implicated the AR in the control of maternal behaviors.
Collapse
|
18
|
Grabrucker S, Pagano J, Schweizer J, Urrutia-Ruiz C, Schön M, Thome K, Ehret G, Grabrucker AM, Zhang R, Hengerer B, Bockmann J, Verpelli C, Sala C, Boeckers TM. Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a Shank2 mouse model for autism. EMBO J 2021; 40:e104267. [PMID: 33491217 PMCID: PMC7917557 DOI: 10.15252/embj.2019104267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high‐confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2−/− mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re‐established social bonding behavior in Shank2−/− mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jessica Pagano
- CNR Neuroscience Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Johanna Schweizer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Kevin Thome
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,DZNE, Ulm Site, Ulm, Germany
| |
Collapse
|
19
|
Salais-López H, Abellán-Álvaro M, Bellés M, Lanuza E, Agustin-Pavon C, Martínez-García F. Maternal Motivation: Exploring the Roles of Prolactin and Pup Stimuli. Neuroendocrinology 2021; 111:805-830. [PMID: 32645699 DOI: 10.1159/000510038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
Motherhood entails increased motivation for pups, which become strong reinforcers and guide maternal behaviours. This depends on steroids and lactogens acting on the brain of females during pregnancy and postpartum. Since virgin female mice exposed to pups are nearly spontaneously maternal, the specific roles of endocrine and pup-derived signals in the induction of maternal motivation remain unclear. This work investigates maternal motivation in dams and virgin female mice, using a novel variant of the pup retrieval paradigm, the motivated pup retrieval test. We also analyse the role of prolactin (PRL) and of stimuli derived from a litter of pups and its mother, in the acquisition of maternal motivation. Experimental design included female mice in 3 conditions: lactating dams, comothers (virgins housed and sharing pup care with dams) and pup-naïve virgins. Females underwent 3 motivated-pup-retrieval trials, with pups displaced behind a 10-cm-high wire-mesh barrier. Dams retrieved with significantly lower latencies than comothers or virgins, indicating that full maternal motivation appears only after pregnancy. Although initially comothers and virgins showed no retrieval, comothers significantly improved throughout the experiment, suggesting an induced sensitization process. Lengthening exposure of comothers to the dyad pups-dam (from 2 to 5 days at the beginning of testing) had no strong effects on maternal sensitization. PRL responsiveness was analysed in these animals using immunohistochemical detection of phosphorylated signal transducer and activator of transcription 5 (pSTAT5, PRL-derived signalling marker). As expected, dams showed significantly higher pSTAT5 expression in most of the analysed nuclei. Moreover, comothers displayed significantly higher PRL responsiveness than pup-naïve virgins in the medial preoptic nucleus, even if they display similar circulating PRL levels, which are significantly lower than those of dams. Given the instrumental role of this nucleus in the relay and integration of pup-derived stimuli to facilitate proactive maternal responses, this increase in PRL responsiveness likely reflects the mechanism underlying the maternal sensitization process reported in this work. Since the analyses of maternal motivation and PRL signalling in the brain were performed in the same animals, we were able to explore correlation between both set of data. The results shed light on the neuroendocrine mechanisms underlying maternal motivation and other aspects of maternal behaviour.
Collapse
Affiliation(s)
- Hugo Salais-López
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - María Abellán-Álvaro
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - María Bellés
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - Enrique Lanuza
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Carmen Agustin-Pavon
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Fernando Martínez-García
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain,
| |
Collapse
|
20
|
Georgescu T, Ladyman SR, Brown RSE, Grattan DR. Acute effects of prolactin on hypothalamic prolactin receptor expressing neurones in the mouse. J Neuroendocrinol 2020; 32:e12908. [PMID: 33034148 DOI: 10.1111/jne.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In addition to its critical role in lactation, the anterior pituitary hormone prolactin also influences a broad range of other physiological processes. In particular, widespread expression of prolactin receptor (Prlr) in the brain has highlighted pleiotropic roles for prolactin in regulating neuronal function, including maternal behaviour, reproduction and energy balance. Research into the central actions of prolactin has predominately focused on effects on gene transcription via the canonical JAK2/STAT5; however, it is evident that prolactin can exert rapid actions to stimulate activity in specific populations of neurones. We aimed to investigate how widespread these rapid actions of prolactin are in regions of the brain with large populations of prolactin-sensitive neurones, and whether physiological state alters these responses. Using transgenic mice where the Cre-dependent calcium indicator, GCaMP6f, was conditionally expressed in cells expressing the long form of the Prlr, we monitored changes in levels of intracellular calcium ([Ca2+ ]i ) in ex vivo brain slice preparations as a surrogate marker of cellular activity. Here, we surveyed hypothalamic regions implicated in the diverse physiological functions of prolactin such as the arcuate (ARC) and paraventricular nuclei of the hypothalamus (PVN), as well as the medial preoptic area (MPOA). We observed that, in the ARC of males and in both virgin and lactating females, prolactin can exert rapid actions to stimulate neuronal activity in the majority of Prlr-expressing neurones. In the PVN and MPOA, we found a smaller subset of cells that rapidly respond to prolactin. In these brain regions, the effects we detected ranged from rapid or sustained increases in [Ca2+ ]i to inhibitory effects, indicating a heterogeneous nature of these Prlr-expressing populations. These results enhance our understanding of mechanisms by which prolactin acts on hypothalamic neurones and provide insights into how prolactin might influence neuronal circuits in the mouse brain.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
21
|
Okino E, Morita S, Hoshikawa Y, Tsukahara S. The glutamatergic system in the preoptic area is involved in the retention of maternal behavior in maternally experienced female rats. Psychoneuroendocrinology 2020; 120:104792. [PMID: 32653768 DOI: 10.1016/j.psyneuen.2020.104792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Maternally experienced female rats show high maternal behavior performance for a long time after acquisition of maternal experience, although the mechanisms responsible for the retention of maternal behavior are not well understood. The medial preoptic area (MPOA) plays an important role in the onset and maintenance of maternal behavior in female rats. We aimed to determine whether maternal experience affects the glutamatergic system in the MPOA for the retention of maternal behavior in female rats. First, to determine the effects of maternal experience in the postpartum period on dendritic spines, which are the postsynaptic component of excitatory glutamatergic neurotransmission, we examined the number of dendritic spines on MPOA neurons of primiparous mothers that had experienced mothering until weaning (sufficiently experienced mothers) and of primiparous mothers that were separated from their pups on the day of parturition (insufficiently experienced mothers). The number of mushroom spines, but not other types of spine, was significantly greater in the sufficiently experienced mothers compared with that in the insufficiently experienced mothers. Next, to determine the effects of maternal experience in the postpartum period on the expression of ionotropic glutamate receptors, we measured the mRNA levels of AMPA receptor subunits (GluA1-A4) and NMDA receptor subunits (GluN1, GluN2A-2D) in the MPOA of primiparous female rats that were kept with pups until brain sampling. As a result, we found that the mRNA levels of GluA3 and GluN2B were significantly higher in primiparous females on the day of weaning compared with those in primiparous females on the day of parturition. Additionally, we examined the effects of CNQX, an AMPA receptor antagonist, and MK-801, an NMDA receptor antagonist, injected into the MPOA on maternal behavior in maternally experienced primiparous female rats. Maternal behavioral activity was significantly reduced when CNQX or MK-801 was injected into the MPOA. These findings indicate that long-term maternal experience in the postpartum period up-regulates glutamatergic neurotransmission by increasing the number of mushroom spines and glutamate receptor expression, which may be involved in the retention of maternal behavior in maternally experienced female rats.
Collapse
Affiliation(s)
- Eri Okino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Sayaka Morita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yumi Hoshikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
22
|
Barad Z, Khant Aung Z, Grattan DR, Ladyman SR, Brown RSE. Impaired prolactin transport into the brain and functional responses to prolactin in aged male mice. J Neuroendocrinol 2020; 32:e12889. [PMID: 32725828 DOI: 10.1111/jne.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Ageing is related to changes in a number of endocrine systems that impact on the central actions of hormones. The anterior pituitary hormone prolactin is present in the circulation in both males and females, with widespread expression of the prolactin receptor throughout the forebrain. We aimed to investigate prolactin transport into the brain, as well as circulating levels of prolactin and functional responses to prolactin, in aged male mice (23 months). Transport of 125 I-labelled prolactin (125 I-prolactin) from the peripheral circulation into the brain was suppressed in aged compared to young adult (4 months) male mice, with no significant transport into the brain occurring in aged males. We subsequently investigated changes in the negative-feedback regulation of prolactin secretion and prolactin-induced suppression of luteinising hormone (LH) pulsatile secretion in aged male mice. Feedback regulation of prolactin secretion appeared to be unaffected in aged males, with no change in levels of circulating prolactin, and normal prolactin-induced phosphorylated signal transducer and activator of transcription 5(pSTAT5) immunoreactivity in tuberoinfundibular dopaminergic (TIDA) neurones in the arcuate nucleus. There were, however, significant impairments in the ability of prolactin to suppress LH pulsatile secretion in aged males. In young adult males, acute prolactin administration significantly decreased LH pulses from 1.5 ± 0.19 pulses of LH in 4 hours to 0.5 ± 0.27 pulses. In contrast, prolactin did not suppress LH pulse frequency in aged males, with prolactin leading to an increase in mean LH concentration. These data demonstrate the emergence of impairments in prolactin transport into the brain and deficits in specific functional responses to prolactin with ageing.
Collapse
Affiliation(s)
- Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neurosci Biobehav Rev 2020; 116:164-181. [PMID: 32569707 DOI: 10.1016/j.neubiorev.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
The maternal behavior decline is important for the normal development of the young and the wellbeing of the mother. This paper reviews limited research on the factors and mechanisms involved in the rat maternal behavior decline and proposes a multi-level model. Framed in the parent-offspring conflict theory (an ultimate cause) and the approach-withdrawal model (a proximate cause), the maternal behavior decline is viewed as an active and effortful process, reflecting the dynamic interplay between the mother and her offspring. It is instigated by the waning of maternal motivation, coupled with the increased maternal aversion by the mother in responding to the changing sensory and motoric patterns of pup stimuli. In the decline phase, the neural circuit that mediates the inhibitory ("withdrawal") responses starts to increase activity and gain control of behavioral outputs, while the excitatory ("approach") maternal neural circuit is being inhibited or reorganized. Various hormones and certain monoamines may play a critical role in tipping the balance between the excitatory and inhibitory neural circuits to synchronize the mother-infant interaction.
Collapse
|
24
|
Takeda T, Fujii M, Izumoto W, Hattori Y, Matsushita T, Yamada H, Ishii Y. Gestational dioxin exposure suppresses prolactin-stimulated nursing in lactating dam rats to impair development of postnatal offspring. Biochem Pharmacol 2020; 178:114106. [PMID: 32569627 DOI: 10.1016/j.bcp.2020.114106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
A number of epidemiological studies have implicated environmental chemicals including dioxins in the induction of negative effects on child development. To clarify the underlying mechanisms, almost all toxicologists have concentrated on effects on the offspring themselves. We examined an alternative hypothesis that gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, targets factors related to maternal childcare to disturb offspring development. Oral administration of TCDD (1 µg/kg) to pregnant rats on gestational day 15 suppressed maternal licking behavior, a nursing behavior, and mammary gland maturation during the lactational stage, as well as the body weight and short-term memory of postnatal offspring. In support of these findings, maternal production of prolactin, a pituitary hormone essential for nursing including milk production, was decreased during the same period. Intracerebroventricular infusion of prolactin to dioxin-exposed dams restored or tended to restore many of the above defects observed both in mothers and offspring. The TCDD-dependent defects in maternal nursing behaviors can be due to a direct action on aryl hydrocarbon receptor (AHR) of lactating dams, because they did not emerge in AHR-knockout dams or control dams with TCDD-exposed offspring. Further examinations revealed that TCDD induces transforming growth factor β1 expression, which suppresses prolactin-producing cell proliferation, in a nursing period-specific manner. In agreement with this, the number of prolactin-positive cells in nursing dams was decreased by TCDD. These results provide novel evidence that gestational dioxin exposure attenuates prolactin-stimulated nursing in lactating dams to impair offspring development, and that immaturity of prolactin-producing cells can contribute to them.
Collapse
Affiliation(s)
- Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Waka Izumoto
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Matsushita
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
25
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
26
|
Sumption LA, Garay SM, John RM. Low serum placental lactogen at term is associated with postnatal symptoms of depression and anxiety in women delivering female infants. Psychoneuroendocrinology 2020; 116:104655. [PMID: 32247203 DOI: 10.1016/j.psyneuen.2020.104655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Placental endocrine insufficiency may increase the risk of depression and anxiety during pregnancy and/or after birth. This study investigated the association between serum human placental lactogen (hPL) and measures of perinatal mental health, accounting for selective serotonin-reuptake inhibitor (SSRI) usage. METHOD Caucasian women with singleton, term pregnancies recruited at their pre-surgical appointment prior to an elective caesarean section (ELCS) were studied. Serum hPL levels were measured by ELISA in maternal blood collected at the pre-surgical appointment. Depression and anxiety scores were derived from Edinburgh Postnatal Depression Scale (EPDS) and the trait subscale of the State-Trait Anxiety Inventory (STAI) questionnaires completed at recruitment and three postnatal time points. Data was analysed by unadjusted and adjusted multiple linear regression. RESULTS In adjusted linear regressions, term maternal serum hPL levels were negatively associated with postnatal EPDS and STAI score ten weeks postnatal for mothers who had girls (B= -.367, p = .022, 95% CI -.679, -.056; and B= -.776, p = .030, 95% CI -1.475, -.077 respectively). Excluding women prescribed SSRIs strengthened the relationship at 10 weeks and uncovered an earlier association between hPL and mood scores within one week of delivery (EPDS B= -.357, p = .041, 95 % CI -.698, -.015; and STAI B= -.737, p = .027, 95 % CI -1.387, -.086). In mothers who had boys, there were no associations between hPL and mood scores at any time point. CONCLUSION Low hPL at term associated with postnatal depression and anxiety symptoms exclusively in mothers of girls. Insufficiency in hPL may contribute to maternal mood symptoms.
Collapse
Affiliation(s)
- Lorna A Sumption
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Samantha M Garay
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Rosalind M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.
| |
Collapse
|
27
|
Bridges RS. The behavioral neuroendocrinology of maternal behavior: Past accomplishments and future directions. Horm Behav 2020; 120:104662. [PMID: 31927023 PMCID: PMC7117973 DOI: 10.1016/j.yhbeh.2019.104662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
Research on the neuroendocrine-endocrine-neural regulation of maternal behavior has made significant progress the past 50 years. In this mini-review progress during this period has been divided into five stages. These stages consist of advances in the identification of endocrine factors that mediate maternal care, the characterization of the neural basis of maternal behavior with reference to endocrine actions, the impact of developmental and experiential states on maternal care, the dynamic neuroplastic maternal brain, and genes and motherhood. A final section concludes with a discussion of future directions in the field of the neurobiology/neuroendocrinology of motherhood.
Collapse
Affiliation(s)
- Robert S Bridges
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
28
|
Lynch KS, Louder MIM, Friesen CN, Fischer EK, Xiang A, Steele A, Shalov J. Examining the disconnect between prolactin and parental care in avian brood parasites. GENES BRAIN AND BEHAVIOR 2020; 19:e12653. [PMID: 32198809 DOI: 10.1111/gbb.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Prolactin is often referred to as the "parental hormone" but there are examples in which prolactin and parental behavior are disconnected. One intriguing example is in avian obligate brood parasites; species exhibiting high circulating prolactin but no parental care. To understand this disconnect, we examined transcriptional and behavioral responses to prolactin in brown-headed (Molothrus ater) and bronzed (M aeneus) brood parasitic cowbirds. We first examine prolactin-dependent regulation of transcriptome wide gene expression in the preoptic area (POA), a brain region associated with parental care across vertebrates. We next examined prolactin-dependent abundance of seven parental care-related candidate genes in hypothalamic regions that are prolactin-responsive in other avian species. We found no evidence of prolactin sensitivity in cowbirds in either case. To understand this prolactin insensitivity, we compared prolactin receptor transcript abundance between parasitic and nonparasitic species and between prolactin treated and untreated cowbirds. We observed significantly lower prolactin receptor transcript abundance in brown-headed but not bronzed cowbird POA compared with a nonparasite and no prolactin-dependent changes in either parasitic species. Finally, estrogen-primed female brown-headed cowbirds with or without prolactin treatment exhibited significantly greater avoidance of nestling begging stimuli compared with untreated birds. Taken together, our results suggest that modified prolactin receptor distributions in the POA and surrounding hypothalamic regions disconnect prolactin from parental care in brood parasitic cowbirds.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Matthew I M Louder
- Department of Biology, East Carolina University, Greenville, North Carolina, USA.,International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Caitlin N Friesen
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Eva K Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Angell Xiang
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Angela Steele
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Julia Shalov
- Department of Biology, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
29
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
30
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Potter HG, Ashbrook DG, Hager R. Offspring genetic effects on maternal care. Front Neuroendocrinol 2019; 52:195-205. [PMID: 30576700 DOI: 10.1016/j.yfrne.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Parental care is found widely across animal taxa and is manifest in a range of behaviours from basic provisioning in cockroaches to highly complex behaviours seen in mammals. The evolution of parental care is viewed as the outcome of an evolutionary cost/benefit trade-off between investing in current and future offspring, leading to the selection of traits in offspring that influence parental behaviour. Thus, level and quality of parental care are affected by both parental and offspring genetic differences that directly and indirectly influence parental care behaviour. While significant research effort has gone into understanding how parental genomes affect parental, and mostly maternal, behaviour, few studies have investigated how offspring genomes affect parental care. In this review, we bring together recent findings across different fields focussing on the mechanism and genetics of offspring effects on maternal care in mammals.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, Translational Science Research Building, Room 415, University of Tennessee Health Science Center, 71 S Manassas St, Memphis, TN 38103, United States
| | - Reinmar Hager
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
32
|
Smiley KO, Ladyman SR, Gustafson P, Grattan DR, Brown RSE. Neuroendocrinology and Adaptive Physiology of Maternal Care. Curr Top Behav Neurosci 2019; 43:161-210. [PMID: 31808002 DOI: 10.1007/7854_2019_122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parental care is critical for offspring survival in many species. In mammals, parental care is primarily provided through maternal care, due to obligate pregnancy and lactation constraints, although some species also show paternal and alloparental care. These behaviors are driven by specialized neural circuits that receive sensory, cortical, and hormonal input to generate a coordinated and timely change in behavior, and sustain that behavior through activation of reward pathways. Importantly, the hormonal changes associated with pregnancy and lactation also act to coordinate a broad range of physiological changes to support the mother and enable her to adapt to the demands of these states. This chapter will review the neural pathways that regulate maternal behavior, the hormonal changes that occur during pregnancy and lactation, and how these two facets merge together to promote both young-directed maternal responses (including nursing and grooming) and young-related responses (including maternal aggression and other physiological adaptions to support the development of and caring for young). We conclude by examining how experimental animal work has translated into knowledge of human parenting, particularly in regards to maternal mental health issues.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Papillon Gustafson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
33
|
Baptissart M, Lamb HE, To K, Bradish C, Tehrani J, Reif D, Cowley M. Neonatal mice exposed to a high-fat diet in utero influence the behaviour of their nursing dam. Proc Biol Sci 2018; 285:rspb.2018.1237. [PMID: 30429298 DOI: 10.1098/rspb.2018.1237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The behaviour of a nursing dam influences the development, physiology, and behaviour of her offspring. Maternal behaviours can be modulated both by environmental factors, including diet, and by physical or behavioural characteristics of the offspring. In most studies of the effects of the environment on maternal behaviour, F0 dams nurse their own F1 offspring. Because the F1 are indirectly exposed to the environmental stressor in utero in these studies, it is not possible to differentiate between effects on maternal behaviour from direct exposure of the dam and those mediated by changes in the F1 as a consequence of in utero exposure. In this study, we used a mouse model of high-fat (HF) diet feeding, which has been shown to influence maternal behaviours, combined with cross-fostering to discriminate between these effects. We tested whether the diet of the F0 dam or the exposure experienced by the F1 pups in utero is the most significant predictor of maternal behaviour. Neither factor significantly influenced pup retrieval behaviours. However, strikingly, F1 in utero exposure was a significant predictor of maternal behaviour in the 15 min immediately following pup retrieval while F0 diet had no discernable effect. Our findings suggest that in utero exposure to HF diet programmes physiological changes in the offspring which influence the maternal behaviours of their dam after birth.
Collapse
Affiliation(s)
- Marine Baptissart
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Harold E Lamb
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Kimberly To
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Christine Bradish
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jesse Tehrani
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - David Reif
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael Cowley
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA .,W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
34
|
Endogenous opioid signalling in the brain during pregnancy and lactation. Cell Tissue Res 2018; 375:69-83. [DOI: 10.1007/s00441-018-2948-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
|
35
|
Dobolyi A, Cservenák M, Young LJ. Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 2018; 51:102-115. [PMID: 29842887 PMCID: PMC6175608 DOI: 10.1016/j.yfrne.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Critically important components of the maternal neural circuit in the preoptic area robustly activated by suckling were recently identified. In turn, suckling also contributes to hormonal adaptations to motherhood, which includes oxytocin release and consequent milk ejection. Other reproductive or social stimuli can also trigger the release of oxytocin centrally, influencing parental or social behaviors. However, the neuronal pathways that transfer suckling and other somatosensory stimuli to the preoptic area and oxytocin neurons have been poorly characterized. Recently, a relay center of suckling was determined and characterized in the posterior intralaminar complex of the thalamus (PIL). Its neurons containing tuberoinfundibular peptide 39 project to both the preoptic area and oxytocin neurons in the hypothalamus. The present review argues that the PIL is a major relay nucleus conveying somatosensory information supporting maternal behavior and oxytocin release in mothers, and may be involved more generally in social cue evoked oxytocin release, too.
Collapse
Affiliation(s)
- Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, USA.
| |
Collapse
|
36
|
Kokay IC, Wyatt A, Phillipps HR, Aoki M, Ectors F, Boehm U, Grattan DR. Analysis of prolactin receptor expression in the murine brain using a novel prolactin receptor reporter mouse. J Neuroendocrinol 2018; 30:e12634. [PMID: 30040149 DOI: 10.1111/jne.12634] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
Prolactin influences a wide range of physiological functions via actions within the central nervous system, as well as in peripheral tissues. A significant limitation in studies investigating these functions is the difficulty in identifying prolactin receptor (Prlr) expression, particularly in the brain. We have developed a novel mouse line using homologous recombination within mouse embryonic stem cells to produce a mouse in which an internal ribosome entry site (IRES) followed by Cre recombinase cDNA is inserted immediately after exon 10 in the Prlr gene, thereby targeting the long isoform of the Prlr. By crossing this Prlr-IRES-Cre mouse with a ROSA26-CAGS-tauGFP (τGFP) reporter mouse line, and using immunohistochemistry to detect τGFP, we were able to generate a detailed map of the distribution of individual Prlr-expressing neurones and fibres throughout the brain of adult mice without the need for amplification of the GFP signal. Because the τGFP is targeted to neurotubules, the labelling detected not only cell bodies, but also processes of prolactin-sensitive neurones. In both males and females, Cre-dependent τGFP expression was localised, with varying degrees of abundance, in a number of brain regions, including the lateral septal nucleus, bed nucleus of the stria terminalis, preoptic and hypothalamic nuclei, medial habenula, posterodorsal medial amygdala, and brainstem regions such as the periaqueductal grey and parabrachial nucleus. The labelling was highly specific, occurring only in cells where we could also detect PrlrmRNA by in situ hybridisation. Apart from two brain areas, the anteroventral periventricular nucleus and the medial preoptic nucleus, the number and distribution of τGFP-immunopositive cells was similar in males and females, suggesting that prolactin may have many equivalent functions in both sexes. These mice provide a valuable tool for investigating the neural circuits underlying the actions of prolactin.
Collapse
Affiliation(s)
- Ilona C Kokay
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- Giga Transgenics Platform, Liège University, Liège, Belgium
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
37
|
Qian S, Yang Y, Li N, Cheng T, Wang X, Liu J, Li X, Desiderio DM, Zhan X. Prolactin Variants in Human Pituitaries and Pituitary Adenomas Identified With Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Front Endocrinol (Lausanne) 2018; 9:468. [PMID: 30210449 PMCID: PMC6121189 DOI: 10.3389/fendo.2018.00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Human prolactin (hPRL) plays multiple roles in growth, metabolism, development, reproduction, and immunoregulation, which is an important protein synthesized in a pituitary. Two-dimensional gel electrophoresis (2DE) is an effective method in identity of protein variants for in-depth insight into functions of that protein. 2DE, 2DE-based PRL-immunoblot, mass spectrometry, and bioinformatics were used to analyze hPRL variants in human normal (control; n = 8) pituitaries and in five subtypes of pituitary adenomas [NF- (n = 3)-, FSH+ (n = 3)-, LH+ (n = 3)-, FSH+/LH+ (n = 3)-, and PRL+ (n = 3)-adenomas]. Six hPRL variants were identified with different isoelectric point (pI)-relative molecular mass (Mr ) distribution on a 2DE pattern, including variants V1 (pI 6.1; 26.0 kDa), V2 (pI 6.3; 26.4 kDa), V3 (pI 6.3; 27.9 kDa), V4 (pI 6.5; 26.1 kDa), V5 (pI 6.8; 25.9 kDa), and V6 (pI 6.7; 25.9 kDa). Compared to controls, except for variants V2-V6 in PRL-adenomas, V2 in FSH+-adenomas, and V3 in NF--adenomas, the other PRL variants were significantly downregulated in each subtype of pituitary adenomas. Moreover, the pattern of those six PRL variants was significantly different among five subtypes of pituitary adenomas relative to control pituitaries. Different hPRL variants might be involved in different types of PRL receptor-signaling pathways in a given condition. Those findings clearly revealed the existence of six hPRL variants in human pituitaries, and the pattern changes of six hPRL variants among different subtypes of pituitary adenomas, which provide novel clues to further study the functions, and mechanisms of action, of hPRL in human pituitary and in PRL-related diseases, and the potential clinical value in pituitary adenomas.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Yongmei Yang
- Geriatric Department of Cadre's Ward, Baoji Traditional Chinese Medicine Hospital, Baoji, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Bio-Analytical Chemistry Research Laboratory, Modern Analytical Testing Center, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- The Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
38
|
Prolactin-induced and neuronal activation in the brain of mother mice. Brain Struct Funct 2018; 223:3229-3250. [PMID: 29802523 DOI: 10.1007/s00429-018-1686-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/12/2018] [Indexed: 12/18/2022]
Abstract
Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.
Collapse
|
39
|
Catanese MC, Vandenberg LN. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control. Horm Behav 2018; 101:113-124. [PMID: 29107581 PMCID: PMC5938171 DOI: 10.1016/j.yhbeh.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Collapse
Affiliation(s)
- Mary C Catanese
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA
| | - Laura N Vandenberg
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
40
|
Abstract
Parenting is essential for the survival and wellbeing of mammalian offspring but we lack a circuit-level understanding of how distinct components of this behaviour are orchestrated. Here we investigate how Galanin-expressing neurons in the medial preoptic area (MPOAGal) coordinate motor, motivational, hormonal and social aspects of parenting. These neurons integrate inputs from a large number of brain areas, whose activation depends on the animal’s sex and reproductive state. Subsets of MPOAGal neurons form discrete pools defined by their projection sites. While the MPOAGal population is active during all episodes of parental behaviour, individual pools are tuned to characteristic aspects of parenting. Optogenetic manipulation of MPOAGal projections mirrors this specificity, affecting discrete parenting components. This functional organization, reminiscent of the control of motor sequences by pools of spinal cord neurons, provides a new model for how discrete elements of a social behaviour are generated at the circuit level.
Collapse
|
41
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
42
|
Maternal prolactin during late pregnancy is important in generating nurturing behavior in the offspring. Proc Natl Acad Sci U S A 2017; 114:13042-13047. [PMID: 29158391 DOI: 10.1073/pnas.1621196114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although maternal nurturing behavior is extremely important for the preservation of a species, our knowledge of the biological underpinnings of these behaviors is insufficient. Here we show that the degree of a mother's nurturing behavior is regulated by factors present during her own fetal development. We found that Cin85-deficient (Cin85-/-) mother mice had reduced pituitary hormone prolactin (PRL) secretion as a result of excessive dopamine signaling in the brain. Their offspring matured normally and produced their own pups; however, nurturing behaviors such as pup retrieval and nursing were strongly inhibited. Surprisingly, when WT embryos were transplanted into the fallopian tubes of Cin85-/- mice, they also exhibited inhibited nurturing behavior as adults. Conversely, when Cin85-/- embryos were transplanted into the fallopian tubes of WT mice, the resultant pups exhibited normal nurturing behaviors as adults. When PRL was administered to Cin85-/- mice during late pregnancy, a higher proportion of the resultant pups exhibited nurturing behaviors as adults. This correlates with our findings that neural circuitry associated with nurturing behaviors was less active in pups born to Cin85-/- mothers, but PRL administration to mothers restored neural activity to normal levels. These results suggest that the prenatal period is extremely important in determining the expression of nurturing behaviors in the subsequent generation, and that maternal PRL is one of the critical factors for expression. In conclusion, perinatally secreted maternal PRL affects the expression of nurturing behaviors not only in a mother, but also in her pups when they have reached adulthood.
Collapse
|
43
|
Donhoffner ME, Al Saleh S, Schink O, Wood RI. Prosocial effects of prolactin in male rats: Social recognition, social approach and social learning. Horm Behav 2017; 96:122-129. [PMID: 28935447 PMCID: PMC5722671 DOI: 10.1016/j.yhbeh.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) and oxytocin (OT) are pituitary hormones essential for lactation, but also promote sexual behavior. OT stimulates social behaviors, such as recognition, approach, and learning, but less is known about PRL in these behaviors. Since PRL and OT have complementary functions in reproduction, we hypothesized that PRL increases social recognition, approach, and learning. Male Long-Evans rats received ovine PRL (oPRL; 0.5, 2.0 or 5.0mg/kg), the PRL antagonist bromocriptine (0.1, 3.0 or 5.0mg/kg) or saline 20 mins before testing for recognition of familiar vs. unfamiliar stimulus males. Saline controls preferred the unfamiliar male (p<0.05), while bromocriptine blocked this preference. oPRL did not increase preference. To measure social approach, we determined if PRL restores approach 2h after defeat by an aggressive male. Defeated rats avoided the aggressive male. 2mg/kg oPRL, before or after defeat, restored approach towards the aggressive male (p<0.05). In non-defeated rats, oPRL or 3mg/kg bromocriptine had no effect. To determine if PRL increases social learning, we tested social transmission of food preference. Rats choose between two unfamiliar flavors, one of which they have previously been exposed to through interaction with a demonstrator rat. Vehicle controls preferred chow with the demonstrated flavor over the novel flavor. oPRL-treated rats were similar. Bromocriptine-treated rats failed to show a preference. When tested one week later, only oPRL-treated rats preferred the demonstrated flavor. The results suggest that PRL is required for social recognition and learning, and that increasing PRL enhances social memory and approach, similar to OT.
Collapse
Affiliation(s)
- Mary E Donhoffner
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Samar Al Saleh
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Olivia Schink
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
44
|
Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A 2017; 114:10779-10784. [PMID: 28923971 DOI: 10.1073/pnas.1708025114] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pregnancy hormones, such as prolactin, sensitize neural circuits controlling parental interactions to induce timely activation of maternal behaviors immediately after parturition. While the medial preoptic area (MPOA) is known to be critical for maternal behavior, the specific role of prolactin in this brain region has remained elusive. Here, we evaluated the role of prolactin action in the MPOA using complementary genetic strategies in mice. We characterized prolactin-responsive neurons within the MPOA at different hormonal stages and delineated their projections in the brain. We found that MPOA neurons expressing prolactin receptors (Prlr) form the nexus of a complex prolactin-responsive neural circuit, indicating that changing prolactin levels can act at multiple sites and thus, impinge on the overall activity of a distributed network of neurons. Conditional KO of Prlr from neuronal subpopulations expressing the neurotransmitters GABA or glutamate within this circuit markedly reduced the capacity for prolactin action both in the MPOA and throughout the network. Each of these manipulations, however, produced only subtle impacts on maternal care, suggesting that this distributed circuit is robust with respect to alterations in prolactin signaling. In contrast, acute deletion of Prlr in all MPOA neurons of adult female mice resulted in profound deficits in maternal care soon after birth. All mothers abandoned their pups, showing that prolactin action on MPOA neurons is necessary for the normal expression of postpartum maternal behavior in mice. Our data establish a critical role for prolactin-induced behavioral responses in the maternal brain, ensuring survival of mammalian offspring.
Collapse
|
45
|
Cabrera-Reyes EA, Limón-Morales O, Rivero-Segura NA, Camacho-Arroyo I, Cerbón M. Prolactin function and putative expression in the brain. Endocrine 2017. [PMID: 28634745 DOI: 10.1007/s12020-017-1346-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Prolactin is a peptide hormone mainly synthetized and secreted by the anterior pituitary gland, but also by extrapituitary tissues, such as mammary gland, decidua, prostate, skin, and possibly the brain. Similarly, prolactin receptor is expressed in the pituitary gland, many peripheral tissues, and in contrast to prolactin, its receptor has been consistently detected in several brain regions, such as cerebral cortex, olfactory bulb, hypothalamus, hippocampus, amygdala, among others. Classically, prolactin function has been related to the stimulation of lactogenesis and galactopoiesis, however, it is well known that prolactin induces a wide range of functions in different brain areas. PURPOSE The aim of this review is to summarize recent reports on prolactin and prolactin receptor synthesis and localization, as well as recapitulate both the classic functions attributed to this hormone in the brain and the recently described functions such as neurogenesis, neurodevelopment, sleep, learning and memory, and neuroprotection. CONCLUSION The distribution and putative expression of prolactin and its receptors in several neuronal tissues suggests that this hormone has pleiotropic functions in the brain.
Collapse
Affiliation(s)
- Erika Alejandra Cabrera-Reyes
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ofelia Limón-Morales
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Nadia Alejandra Rivero-Segura
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico.
| |
Collapse
|
46
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
47
|
Pérez-Hernández M, Hernández-González M, Hidalgo-Aguirre R, Amezcua-Gutiérrez C, Guevara M. Listening to a baby crying induces higher electroencephalographic synchronization among prefrontal, temporal and parietal cortices in adoptive mothers. Infant Behav Dev 2017; 47:1-12. [DOI: 10.1016/j.infbeh.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/16/2017] [Accepted: 02/21/2017] [Indexed: 11/26/2022]
|
48
|
Gustafson P, Kokay I, Sapsford T, Bunn S, Grattan D. Prolactin regulation of the HPA axis is not mediated by a direct action upon CRH neurons: evidence from the rat and mouse. Brain Struct Funct 2017; 222:3191-3204. [DOI: 10.1007/s00429-017-1395-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
|
49
|
Cservenák M, Kis V, Keller D, Dimén D, Menyhárt L, Oláh S, Szabó ÉR, Barna J, Renner É, Usdin TB, Dobolyi A. Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct Funct 2017; 222:781-798. [PMID: 27300187 PMCID: PMC5156581 DOI: 10.1007/s00429-016-1246-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.
Collapse
Affiliation(s)
- Melinda Cservenák
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094, Budapest, Hungary
| | - Viktor Kis
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094, Budapest, Hungary
| | - Diána Dimén
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Lilla Menyhárt
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Éva R Szabó
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094, Budapest, Hungary
| | - János Barna
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
- MTA-SE NAP Human Brain Tissue Bank Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, USA
| | - Arpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094, Budapest, Hungary.
| |
Collapse
|
50
|
Abstract
The oxytocin/vasopressin ancestor molecule has been regulating reproductive and social behaviors for more than 500 million years. In all mammals, oxytocin is the hormone indispensable for milk-ejection during nursing (maternal milk provision to offspring), a process that is crucial for successful mammalian parental care. In laboratory mice, a remarkable transcriptional activation occurs during parental behavior within the anterior commissural nucleus (AC), the largest magnocellular oxytocin cell population within the medial preoptic area (although the transcriptional activation was limited to non-oxytocinergic neurons in the AC). Furthermore, there are numerous recent reports on oxytocin's involvement in positive social behaviors in animals and humans. Given all those, the essential involvement of oxytocin in maternal/parental behaviors may seem obvious, but basic researchers are still struggling to pin down the exact role oxytocin plays in the regulation of parental behaviors. A major aim of this review is to more clearly define this role. The best conclusion at this moment is that OT can facilitate the onset of parental behavior, or parental behavior under stressful conditions.In this chapter, we will first review the basics of rodent parental behavior. Next, the neuroanatomy of oxytocin systems with respect to parental behavior in laboratory mice will be introduced. Then, the research history on the functional relationship between oxytocin and parental behavior, along with advancements in various techniques, will be reviewed. Finally, some technical considerations in conducting behavioral experiments on parental behavior in rodents will be addressed, with the aim of shedding light on certain pitfalls that should be avoided, so that the progress of research in this field will be facilitated. In this age of populism, researchers should strive to do even more scholarly works with further attention to methodological details.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Michael Numan
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|